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Abstract

The zero dynamics of simple continuous and fed-batch biore-
actors is investigated in this paper for different input and output
selections. A function λ generating the necessary coordinates
transformation has been determined analytically for each case
solving a simple PDE, and the resulting coordinates transfor-
mations have found to be invertible on the physically meaning-
ful operating region.

It is shown that that the investigated continuous and fed-batch
bioreactors are globally minimum phase systems with the ex-
amined reaction rate function if the manipulable input is the
inlet feed flow rate and the output is the substrate concentra-
tion.

It is also shown that the zero dynamics may have multiple (lo-
cally stable and unstable) equilibria if the input is the inlet feed
flow rate and the output is the biomass concentration.

1 Introduction

Fermentation processes are widely used in the biochemical in-
dustries for producing either biomass of a certain type or the
by-product of biomass growth. Baker’s yeast, beer and certain
antibiotics are typical products of bioreactors.

Two basic operation types of fermentation processes can be dis-
tinguished:

• In continuous fermenters the liquid volume in the biore-
actor is held constant which means that the inlet feed flow
rate is equal to the outlet flow rate in each time instant.

• In fed-batch fermenters the substrate is gradually fed into
the reactor, and the whole product is taken away at the end

of the process.

Even in the simplest case it is unavoidable to carefully perform
dynamic analysis, because fermentation processes are known
to be highly nonlinear both in the continuous and fed-batch op-
eration mode with difficult and sometimes unusual open-loop
dynamic properties. They may have narrow open-loop stability
region near desired operation points [11] and traditional linear
techniques, such as LQR or pole-placement may completely
fail when designed on their linearized models. In addition, fed-
batch fermenters may exhibit lack of reachability if the usual
input variable, the fed-batch feed flowrate is applied (see e.g.
[3] or [10]). There is a broad literature available on dynam-
ics of fermentation processes, the reader is referred e.g. to the
excellent papers [2] and [5] for mainly control-oriented results.

It is well-known that, in a globally minimum phase system (i.e.
a system having globally asymptotically stable zero dynamics),
system trajectories can be driven to an arbitrary small neigh-
borhood of the origin by using high-gain output feedback (see
e.g. [9] or [1]). Since certain state variables (typically, the
biomass concentrations) are rarely measurable on-line in biore-
actors, it is of significant practical interest, what system con-
figurations result in a locally or globally asymptotically stable
(or unstable) zero dynamics. Furthermore, the zero dynamics
analysis results are useful for designing nonlinear controllers
or controller-observer structures for bioprocesses.

The outline of the paper is the following. In Section 2, the
most important concepts and tools are described that are used
later on. Section 3 and 4 contain the main results about the
continuous and fed-batch case, respectively. Finally, the paper
is closed by some conclusions in Section 5.

2 The zero dynamics

The necessary definitions and notations are briefly summarized
in this section based on [6].



Consider a nonlinear single-input single-output dynamical sys-
tem in the following input-affine state-space form

ẋ = f (x)+g(x)u (1)

y = h(x) (2)

where x ∈ R
n is the state vector, u ∈ R is the input, y ∈ R is the

output, f and g are smooth R
n-valued mappings, f (0) = 0 and

h is a smooth R-valued mapping.

It is said that (1) has relative degree r at the equilibrium x0 = 0
if LgLk

f h(x) = 0 for all x in a neighborhood of x0 and all k <

r−1, and LgLr−1
f h(x0) �= 0.

After a suitable coordinates transformation z = Φ(x) where z i =
φi(x) = Li−1

f h(x) for 1≤ i≤ r and Lgφi(x) = 0 for r+1≤ j ≤ n
the state-space model (1) with relative degree r can be rewritten
as

ż1 = z2

ż2 = z3

. . .

żr−1 = zr

żr = b(ξ ,η)+a(ξ ,η)u
η̇ = q(ξ ,η) (3)

where ξ = [z1 . . . zr]T , η = [zr+1 . . . zn]T , a(ξ ,η) =
LgLr−1

f h(Φ−1(ξ ,η)) and b(ξ ,η) = Lr
f h(Φ−1(ξ ,η)).

The Problem of Zeroing the Output is to find, if it exists, pairs
consisting of an initial state x∗ and input function u defined
for all t in a neighborhood of t = 0, such that the correspond-
ing output y(t) of the system is identically zero for all t in a
neighborhood of t = 0. For any fixed initial state x ∗ the input
function u can be determined as follows. Let us set the output
to be identically zero, then the system’s behavior is governed
by the differential equation

η̇(t) = q(0,η(t)). (4)

The dynamics (4) describes the internal behavior of the system
when the output is forced to be zero and it is called the zero
dynamics. The initial state of the system must be set to a value
such that ξ (0) = 0, while η(0) = η 0 can be chosen arbitrarily.
Furthermore, the input must be set as

u(t) = −b(0,η(t))
a(0,η(t))

(5)

where η(t) denotes the solution of (4) with initial condition
η(0) = η0.

In the forthcoming sections we will examine models with 2
state variables, therefore it is useful to briefly describe how the
zero dynamics analysis can be simplified in this special case.
Consider a nonlinear coordinates-transformation of the state
variables in the following form

z = Ψ(x), (6)

Table 1: Variables and parameters of the bioreactor model
X biomass concentration [ g

l ]
S substrate concentration [ g

l ]
F feed flow rate [ l

h ]
V volume 4 [l]
SF substrate feed concentration 10 [ g

l ]
Y yield coefficient 0.5 -
µmax, kinetic parameter 1 [ 1

h ]
K1 kinetic parameter 0.03 [ g

l ]
K2 kinetic parameter 0.5 [ l

g ]

where

z1 = y = h(x) (7)

z2 = λ (x), (8)

and λ is calculated such that

Lgλ (x) =
∂λ
∂x

g(x) = 0. (9)

Then the second state equation in the transformed coordinates
reads

ż2 = ∂λ
∂x ẋ = ∂λ

∂x ( f (x)+g(x)u) = L f λ (x)+Lgλ (x)︸ ︷︷ ︸
0

u =

Lf λ (x) = Lf (Ψ−1(z)),
(10)

and the zero dynamics can be examined independently of the
input by setting z1 = 0 (or constant) in (10). Note that this
method requires the solution of the PDE ∂λ

∂x g(x) = 0 and the
coordinates-transformation Ψ to be analytically invertible.

3 The continuous case

The dynamics of the isotherm continuous bioreactor is given
by the state space model

dX
dt = µ(S)X − XF

V (11)

dS
dt = − µ(S)X

Y + (SF−S)F
V (12)

where µ(S) = µmax
S

K2S2+S+K1
(13)

The first equation originates from the biomass component mass
balance, while the second is from the substrate component
mass balance. They are coupled by the nonlinear reaction
rate function µ(S)X which is the main source of the nonlin-
earity and uncertainty in this simple model. Note that the
source of the difficulties in the nonlinear dynamics is the non-
monotonous character of the function µ(S) which has a maxi-
mum in the operation region of interest.

The variables and parameters of the model together with their
units and parameter values are given in Table 1. The parameter
values are taken from [7]. It is stressed, that in this case, the
volume V is constant.



3.1 Control input: feed flow rate

The continuous model (11)-(13) can easily be written in stan-
dard input-affine form with the centered state vector x =
[x1 x2]T = [X −X0 S−S0]T consisting of the centered biomass
and substrate concentrations. The centered input flowrate is
chosen as manipulable input variable u = F −F0. The vector
fields in the state equations are

f (x) =

[
µ(x2 +S0)(x1 +X0)− (x1+X0)F0

V

− µ(x2+S0)(x1+X0)
Y + (SF−(x2+S0))F0

V

]
,

g(x) =

[
− (x1+X0)

V
(SF−(x2+S0))

V

]
(14)

with (X0,S0,F0) being a steady-state operating point. A typical
control problem is to operate the system at the point where the
outlet biomass mass flow rate X ·F is maximal.

From the state equations (11)-(12) it can be calculated that at
any non-washout equilibrium point

XF = (SF −S)µ(S)VY. (15)

From (15), the maximizing equilibrium value of S (and then
that of X and F) can be calculated. From now on, we assume
that X0, S0 and F0 correspond to this optimal operating point
(although some of the presented results do not depend on the
selection of the operating point) which is at

S0 =
1
2

−2K1 + 2
√

K2
1 +S2

FK1K2 +SFK1

SFK2 + 1
(16)

X0 = (SF −S0)Y (17)

F0 = µ(S0)V. (18)

The coordinates transformation generator function The
continuous model (11)-(13) has clearly two state variables and
the PDE ∂λ

∂x g(x) = 0 can be solved analytically for this case to
obtain a function λ that satisfies the condition in (9)

λ (x) = F

(
V (−SF + x2 +S0)

x1 +X0

)
, (19)

where F is an arbitrary continuously differentiable function (a
class C1 function).

3.1.1 Choosing the substrate concentration as output

If the substrate concentration is chosen as output, i.e.

y = h(x) = x2 (20)

then the coordinates-transformation Ψ and it’s inverse is given
by [

z1

z2

]
=

[
x2

V(−SF+x2+S0)
x1+X0

]
= Ψ(x) (21)

and [
x1

x2

]
=

[ −z2X0−SFV+Vz1+S0V
z2

z1

]
= Ψ−1(z). (22)

This results in the zero dynamics governed by the differential
equation

ż2 = Lf λ (Ψ−1(0,z2)) = − (z2Y +V)S0µmax

Y (K2 +S2
0 +S0 +K1)

(23)

which is linear and globally stable (considering that the con-
stant parameters of the system are always positive). The equi-
librium state of the zero dynamics is at z∗2 = −V

Y which, to-
gether with z1 = 0, corresponds to the desired equilibrium state
x1 = 0,x2 = 0 in the original coordinates.

The above analysis shows that if we manage to stabilize the
substrate concentration either by a full state feedback or by an
output feedback (partial state feedback) or even by a dynamic
controller then the overall system will be stable.

3.1.2 Choosing the biomass concentration as output

The output in this case is the biomass concentration:

z1 = y = h(x) = x1 (24)

The zero dynamics of the system is given by

ż2 = − V µmax(z2
2YX0 + z2(YVSF +VX0)+SFV 2))

(K2X2
0 z2

2 + z2(2K2X0SFV +VX0)+V 2(K2S2
F +SF +K1))Y

,

(25)
which describes a nonlinear dynamics and is only locally sta-

ble around the desired equilibrium state. The stability region
can be determined using the parameters of the system.

The right hand side of (25) is visible in Fig. 1 using the param-
eter values of Table 1. It can be seen that the zero dynamics has
two equilibrium points: the equilibrium point corresponding to
the optimal operating point (z2 = −V/Y = −8) is stable and
the other one is unstable.

3.2 Control input: inlet substrate concentration

In this case we assume that the inlet feed flow rate (F) is con-
stant and the manipulable input variable is the inlet substrate
concentration (SF ). We assume that F = F0 (see Eq. (18)). Let
us introduce the following centered variables similarly to the
previous case:[

x1

x2

]
=

[
X −X0

S−S0

]
, u = SF −S f 0, (26)

where (X0,S0) is again a steady state operating point defined
by the nominal input value S f 0.

Using the above notations, the f and g vector fields in the input-
affine form of the model defined by (11)-(13) is the following:

f (x) =

[
µ(x2 +S0)(x1 +X0)− (x1+X0)F

V

− µ(x2+S0)(x1+X0)
Y + (S f 0−S0−x2)F

V

]
,

g(x) =
[

0
F
V

] (27)
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Figure 1: The zero dynamics in the transformed coordinates:
continuous bioreactor, input: inlet feed flow rate, output:
biomass concentration

3.2.1 Choosing the substrate concentration as output

There is no need for a coordinates-transformation here (h(x) =
x2), because the first state equation is not affected by the input.
Therefore we can simply set x2 = 0 in the first state equation
which gives

ẋ1 =
(

µ(S0)− F
V

)
x1 = 0, (28)

since it is visible from (11) that in any non-washout equilibrium
point µ(S0) = F

V .

3.2.2 Choosing the biomass concentration as output

In this case, the investigated output is h(x) = x1, and the system
has relative degree 2 around the optimal operating point, since

Lgh(x) =
[

1 0
][

0
F
V

]
= 0. (29)

and

LgLf h(0) =
∂ f1

∂x
(0) ·g(0) �= 0. (30)

Therefore the system is exactly linearizable with this output
selection and it has no zero dynamics.

4 The fed-batch case

In the fed batch case the volume V is not constant any more,
therefore the model (11)-(13) is extended by one additional dif-
ferential equation, namely

dV
dt

= F (31)

The inlet feed flowrate F is chosen as the only input variable
for this case. Then the standard input-affine form (1) of the

model equations (11)-(31) is given by

x =


 x1

x2

x3


 =


 X

S
V


 , u = F (32)

f (x) =


 µ(x2)x1

− 1
Y µ(x2)x1

0


 =




µmaxx2x1
K1+x2+K2x2

2− µmaxx2x1
(K1+x2+K2x2

2)Y
0




g(x) =


 − x1

x3
SF−x2

x3

1




(33)

4.1 Reachability and the minimal realization of fed-batch
bioreactors

It’s easy to check from the model equations (33) that the func-
tion

γ(x) = x3

(
− 1

Y
x1 − x2 +SF

)
(34)

is constant in time under any input i.e. d
dt γ = ∂γ

∂x ẋ = 0 (see e.g.
[8] or [10] for a complete control Lie-algebraic derivation).

Using the calculated γ function, it’s possible to give a minimal
state space realization of fed-batch fermentation processes in
the temperature-independent case. Since the reachability hy-
persurface defined by γ is two-dimensional, the minimal real-
ization will contain two state variables (i.e. the input-to-state
behaviour of the system can be described by two differential
equations). It’s clear from the above that

γ(x(t)) = − 1
Y

x1(t)x3(t)− (x2(t)x3(t)−SFx3(t)) = (35)

= − 1
Y

x1(0)x3(0)− (x2(0)x3(0)−SFx3(0)) = γ(x(0)).

Therefore we can express the volume x3 from the above equa-
tion in the following way:

x3 =
γ(x(0))

− 1
Y x1 +SF − x2

, − 1
Y

x1 +SF − x2 �= 0 (36)

and the minimal state space model reads

ẋ = fmin(x)+gmin(x)u, (37)

where

x =
[

x1

x2

]
, fmin(x) =

[ µmaxx2x1
K1+x2+K2x2

2− µmaxx2x1
(K1+x2+K2x2

2)Y

]

gmin(x) =


 1

Y x2
1+x1(x2−SF )

γ(x(0))
(− 1

Y x1+SF−x2)(SF−x2)
γ(x(0))


 (38)

We can see by expressing x3 from γ that the structure of the
reaction rate function in fmin remains unchanged. It’s also im-
portant to note that the function gmin in the minimal realization
(38) depends on the initial state of the system. However, the
following results on the zero dynamics are independent of the
initial conditions.



4.2 The zero dynamics of the minimal realization

The coordinates transformation generator function Now
again, we have two state variables in the minimal realization
model (38). The PDE ∂λ

∂x g(x) = 0 can be solved analytically
for this case to obtain a function λ that satisfies the condition
in (9)

λ (x) = F

(
ln

(
x1

SF − x2

))
, (39)

where F is an arbitrary function of the class C1. Note that
this solution requires the assumption SF −x2 > 0 which always
holds under physically meaningful operating and initial con-
ditions. It’s important to note that λ does not depend on γ
containing the initial conditions.

4.2.1 Choosing the substrate concentration as output

Now we choose z1 = y = h(x) = x2. Because λ does not depend
on γ , the following coordinates-transformation is valid for all
initial states: [

z1

z2

]
=

[
x2

ln
(

x1
SF−x2

) ]
= Ψ(x) (40)

This results in the inverse transformation:[
x1

x2

]
=

[
exp(z2)(SF − z1)

z1

]
= Ψ−1(z). (41)

Then the zero dynamics reads

ż2 = λ̇ =
∂λ
∂x

ẋ =
1
x1

f1(x)+
1

SF − x2
f2(x), (42)

which gives

ż2 = µ(x2)
(

1− x1

(SF − x2)Y

)
(43)

If we apply the inverse coordinates-transformation given by
(41), the µ function remains in the expression and this gives

ż2 = µ(z1)
(

1− exp(z2)
Y

)
(44)

It’s easy to calculate that the equilibrium point of (44) is at z∗2 =
ln(Y ) independently of how z1 (the substrate concentration) is
set (if z1 > 0). This means that if the substrate concentration
is kept on any constant value (by manipulating the input feed
flow rate), then the biomass concentration always converges
to the corresponding equilibrium value on the x1 – x2 plane
independently of the reaction rate function µ .

4.2.2 Choosing the biomass concentration as output

In this case z1 = y = h(x) = x1 and the coordinates-
transformation is:[

z1

z2

]
=

[
x1

ln
(

x1
SF−x2

) ]
= Ψ(x) (45)
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Figure 2: The zero dynamics in the transformed coordi-
nates: fed-batch bioreactor, input: inlet feed flow rate, output:
biomass concentration, z1 = 4 g

l

Its inverse transformation is in the following form:

[
x1

x2

]
=

[
z1

exp(z2)SF−z1
exp(z2)

]
= Ψ−1(z) (46)

The zero dynamics in the new coordinates is then:

ż2 =
µmax(exp(z2)SF − z1)exp(z2)(Y −exp(z2))

(exp(2z2)(K1 +SF +K2S2
F )−exp(z2)(z1 −2K2SF z1)+K2z2

1)Y
(47)

The right hand side of Eq. (47) is shown in Fig. 2 for a fixed
value of z1 = 4 g

l . It is visible, that in this case the zero dynam-
ics have two equilibria, one of which is independent of z 1 and is
locally asymptotically stable (z∗2 = ln(Y )≈−0.6931 g

l ), and the
other one is unstable. It means that a high gain feedback of the
biomass concentration may move the biomass concentration it-
self out of the desirable range, similarly to the continuous case
(see section 3.1.2).

5 Conclusions

The zero dynamics of a simple fermenter both in continuous
and fed-batch operation mode is investigated. The manipulable
input variables were the inlet feed flow rate and the inlet sub-
strate concentration in the continuous case and only the inlet
feed flow rate in the fed-batch case. The minimal realization
of fed-batch bioreactors was used for the investigations based
on former reachability results. The selection of the substrate
as well as the biomass concentration as the output was investi-
gated in all cases.

It was shown that the investigated continuous and fed-batch
bioreactors are globally minimum phase systems if the manip-
ulable input is the inlet feed flow rate and the output is the
substrate concentration.



It was also shown that the zero dynamics may have multiple
(locally stable and unstable) equilibria if the input is the inlet
feed flow rate and the output is the biomass concentration. Fur-
thermore, continuous bioreactors with the inlet substrate con-
centration as input have relative degree 2 if the output is the
biomass concentration, and they are typically (but not necessar-
ily) non-minimum phase systems if the substrate concentration
is selected as output.

A function λ generating the necessary coordinates transforma-
tion has been determined analytically for each case solving
a simple PDE, and the resulting coordinates transformations
have found to be invertible on the physically meaningful oper-
ating region.

Further work will be directed towards the application of the
zero dynamics analysis results for nonlinear controller struc-
ture selection by choosing controlled or performance outputs
as well as for feedback linearization and observer design.
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