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Abstract 
 
The requirements, design and simulation of a control system 
for a precision tracking task, called a Pitch-rate Control 
Augmentation System (CAS), for the F-16 fighter aircraft 
model, is considered. This control system is designed over the 
entire flight envelope using one of the nonlinear Model Based 
Predictive Control techniques (MBPC), which is called Non-
linear Generalized Predictive Control (NLGPC). The non-
linear flight simulations reveal that the desired performance 
objectives are achieved and that the controller provides 
acceptable performance in spite of modelling errors and plant 
parameter variations. 
 
1 Introduction 
 
It is well known that the aerodynamic characteristics and 
operational requirements of modern high performance aircraft 
have required greater consideration of increasingly intensive 
and complicated nonlinearities. In spite of this knowledge, 
the process of designing flight control systems has been 
carried out traditionally by using linear systems analysis and 
design tools. A major reason that the use of linear systems 
theory has been so pervasive is that there is an analytical 
solution available. Hence, there are generally more rigorous 
stability and performance proofs that may be invoked. The 
computational demands and implementation problems for 
linear system simulation are usually quite small, in 
comparison to a nonlinear design. Obviously, the use of linear 
system techniques is quite limiting due to the large envelope 
of operation of the aircraft and thereby the high process 
uncertainties and nonlinearities. It is believed that progress in 
nonlinear control theory, combined with computer hardware 
advances, now allows advanced nonlinear control strategies 
to be implemented successfully in flight control systems. 
 

MBPC is a form of control in which, at each instant of time, a 
performance index is minimised obtaining an optimal control 
sequence. Only the first element of this sequence is applied to 
the plant. The major advantage of this type of control is its 
ability to account for hard constraints. In earlier studies on the 
theory of MBPC, the technique of quadratic programming was 
employed to solve the open-loop optimal control problem with 
constraints. This results in a rapidly growing computational 
burden with the number of decision variables. That is why the 
MBPC originated in process industry where it was applied to 
very slow processes. Such solutions have been unsuitable for 
aerospace applications, since they are too slow to deal with the 
relatively fast dynamics of aircraft. In this paper a nonlinear 
MBPC approach is proposed, which utilises an explicit 
optimal control law that can be solved analytically removing 
the need for quadratic programming, this reduces the 
computations and allows the controller to deal with models of 
systems with fast dynamics. 
 

This paper is organised as follows: In Section 2, a 
mathematical description of the aircraft model movement is 
introduced. Section 3 describes the underlying aircraft control 
augmentation system and poses the performance requirements 
imposed on it. Section 4 gives a description of the NLGPC 
used for the control system design. Non-linear simulations of 
the closed-loop system with the NLGPC are presented in 
Section 5 and this paper concludes with a brief summary in 
Section 6. 
 
2 Nonlinear F-16 Aircraft Modelling 
 
A model of high-performance F-16 aircraft was used to 
generate the simulation results in this paper. The simulation 
uses the standard longitudinal equations of motion and 
kinematic relations found in a variety of standard references 
on flight dynamics (see for example [1, 2]). 
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where: U and W are the forward and downward components 
of the aircraft velocity VT respectively; g is the gravitational 
acceleration vector; θ is the pitch angle; m is the aircraft 
mass; Q is the pitch-rate; S is wing area; POW is the engine 
power level; H is the altitude; Iy is the moment of inertia 
about OY axis; q  is the dynamic pressure; c  is the mean 
dynamic chord; Fx and Fz are the total forces acting along X 
and Z axes respectively and are equal to: 
 

x xF qSC T= +  (7) 
z zF qSC=  (8) 

Figure 1: Illustration of longitudinal aircraft entities. 
    

T is engine thrust vector (non-linear function depends on 
throttle setting δt); the non-dimensional aerodynamic force 
coefficients Cx, Cz and moment coefficient Cm depend on 
angle of attack α and elevator deflection δe. The data of these 
coefficients are contained in lookup tables [3]. The two 
actuators have magnitude saturation limits according to 
Table 1.  
  

Table 1. Actuator magnitude saturation 
 Upper position Lower position 

Throttle δt 0 1 
Elevator δe -25° +25° 

 

Since the aerodynamic force and moment components depend 
on the angle of attack and the aircraft velocity, we replace the 
state variables U and W in the above equations by VT and α 
according to the following relations: 
 

1tan W
U

α −  =  
 

 (9) 

2 2
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By taking the derivatives of the set of (9) and (10), the state 
vector becomes as follows: x = [VT α θ Q H POW ]T. 
 

It will be mentioned later that the model is linearised, at each 
simulation iteration, with a small sampling time (50 ms). Note 
that the set of linearised models is only used for controller 
design, while all results in this paper are generated from the 
full nonlinear model. The differences between the design 
model and simulation model introduce model uncertainties, 
which can be referred to as the model/plant mismatch. The 
controller employed in flight control systems should therefore 
be insensitive to model uncertainties over the whole envelope 
of operation. That is, the design must be robust. 
 
3 Longitudinal CAS 
 
The aircraft modes can be divided into different categories. 
One category includes modes that involve the rotational 
degrees of freedom; these are the short-period, roll, and dutch-
roll modes. The second category includes the phugoid mode 
that involves the translational degrees of freedom. The third 
category includes the spiral mode that depends on 
aerodynamic moments. The responsiveness of an aircraft to 
manoeuvring commands is determined by the speed of the 
rotational modes. The frequencies of these modes tend to be 
high that a pilot would find it difficult or impossible to control 
the aircraft if the modes were lightly damped or unstable. 
Therefore, it is necessary to design augmentation systems to 
control these modes, and to provide the pilot with a particular 
type of response to the control inputs. These systems are 
known as Control Augmentation Systems (CASs). Normally 
CASs are split into two control systems, to handle longitudinal 
and lateral problems, assuming negligible interaction. They are 
implemented by feedback controllers using accelerometers and 
rate gyros as sensors; and elevators, ailerons, or rudder as 
control surfaces.  
 

In high-performance military aircraft, the pilot may have to 
perform tasks such as precision tracking of targets. In this 
situation, a suitable controlled variable is the pitch-rate (Q), 
which is required to follow a pilot’s stick command. It has 
been found that a deadbeat response to pitch-rate commands is 
well suited to the task. Therefore, a specialised control 
augmentation system is needed, which is known as a “Pitch-
rate Control Augmentation System”. This system is 
conventionally designed for the longitudinal dynamics. 
 

Since the performance specifications of aircraft are often given 
in terms of time-domain criteria such as the C* criterion and 
D* criterion  [4, 5] and these criteria are close to the step 
response, we shall assume henceforth that the reference input 

  



is a step command. Designing for such a command will yield 
suitable time-response characteristics. For the command 
tracking, the following design specifications must be 
satisfied:  
1. A step response is required to reach 90% of the final value 

in less than 0.5 sec. 
2. The overshoot must be less than 5%. 

 
4 Nonlinear Generalized Predictive Control 
 
An approach to nonlinear predictive control, utilising the 
optimal control trajectory, calculated in the previous time 
instant of the control algorithm, was employed by 
Kouvaritakis et al. [6]. An extension of the previous optimal 
trajectory to the current time instant was referred to as the 
“tail”. The system is linearised around this trajectory and this 
linearised time-varying system was employed to obtain the 
optimal control, which is calculated as a perturbation from 
the “tail” trajectory. In Lee et al [7] a similar methodology 
employing linearisation at points of the seed trajectory was 
introduced, using a discrete time model representation of the 
system. In this paper we use this method with small changes. 
We will use finite time cost function and consequently we 
will not be able to guarantee stability. This is consequence of 
using the Generalized Predictive Control algorithm in its base 
version [8] to solve the minimisation problem. 

4.1 The model 
 
The aircraft model is given by the following differential 
equation: 
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where 
x(t) is a vector of size nx, u(t) is a vector of size nu, y(t) is a 
vector of size ny. 
 

It is assumed that, within the working range of values for x, u, 
both f(x(t),u(t)), h(x(t)) are smooth functions and posses 
continuous first derivatives with respect to all their 
arguments. This assumption is fulfilled by the model 
inherently because this was obtained by interpolating the data 
of the lookup tables of the aerodynamic coefficients. 
 

Next the model (11) is linearised around a particular 
operating point ( , )n nx u on the predicted trajectory: 
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Between the original system (11) and the linearised system 
(12) the following relationships for states, outputs and controls 
can be established: 
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The system (12) is then discretised with sampling period sT . 
Index “n” in ,n nx u  denotes discrete time and st n T= ⋅ . The 
following discrete-time state space model is obtained: 
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Next integral action is introduced for the discrete time model 
(14): 
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With the knowledge of predicted future trajectory, it is 
possible to approximate nonlinear system (11) by the linear 
time varying model. At each iteration of control algorithm, a 
set of future linear models is established and is used to 
calculate an optimal control sequence using a time-varying 
linear control law. 
 
4.2 The controller 
 
The cost function is given by the following equation: 
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where  is the setpoint vector of size  for linearised 

system at time n,  and Λ >  
are weighting matrices and N is a positive integer number 
greater or equal to one. 

lin
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It should be noticed that the cost function (16) is written in 
terms of linearised model variables and especially setpoint 
values for such model could be rather difficult to supply for 
the algorithm without a special consideration. This problem 
will be addressed later. For a time being a control law 
minimising the cost function (16) will be established and later 
relationship with the cost function written for the original 
(nonlinear) model variables will be shown. 
 

Now the following vectors containing current and future 
values of control , future values of state nv∆ nξ , output  
and setpoint r

nw
n are introduced: 

 





















=


















=



















=


















∆

∆
∆

=∆

+

+

+

+

+

+

+

+

+

+

+

+

−+

+
−

lin
Nn

lin
n

lin
n

Nn

Nn

n

n

Nn

Nn

n

n

Nn

Nn

n

n

Nn

r

r
r

R

w

w
w

W

v

v
v

V

MM

MM

2

1

,1
2

1

,1

2

1

,1

1

1
1,

,

,,

ξ

ξ
ξ

ξ

 (17) 

 

The cost function (16) employing notation (17) can be written 
in a vector form as follows: 
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Now it is easy to determine a future state prediction in the 
following form: 
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Note that to obtain state prediction at time instance  

knowledge of matrices predictions 

n j+

1...I I
n nA A + −j  and 

1...I I
n n jB B + −  is required.  

Also the output prediction can be obtained easily from the 
output equation: 
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Finally taking into consideration notation (17) and equations 
(19), (20), the following equation may be obtained: 
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Substituting  in (18) by equation (21) and performing 
static optimisation the following equation is obtained: 
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More detailed derivation of the above may be found in [9]. 
Equation (25) represents the explicit optimal control law of the 
NLGPC, which can be solved analytically without 
computational complexity. 
  

Now consider the difference between outputs of the linearised 
and of the nonlinear model of the system. Using notation 
similar to (17), for the model (11): 
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Taking into account that predicted trajectory (for linearised 
model) is different from the actual trajectory (for the 
nonlinear system), the updated future output prediction of 
nonlinear system which results from (13) is given by: 
 

1, 1, 1,n N n N n NY Y W+ + += +  (26) 
where  

[ T
NnnnNn yyyY ++++ = L21,1 ]  is the prediction of 

future output trajectory from previous iteration. Note that the 
last prediction is extended to obtain the required size of the 
vector. 
   

Now consider that the original nonlinear system (11) is to be 
controlled. It is desired that the output of the system (11) 
follows trajectory . This would result from the 
minimisation of the following error: 
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Taking into consideration (26), the error equation (27) after 
rearrangement can be rewritten as follows: 
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where  
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1,n NR +  is the future setpoint vector for the model linearised 
around the trajectory and is used within the control algorithm. 
Tracking error (28) is kept low by minimising of the cost 
function (16) provided that reference signal for the linearised 
model  is calculated using (29). 1,n NR +

 
5 Simulation Results 
 
The problem of dealing with input constraints has been 
solved by approximating these constraints by means of 
smooth limiting function and including them into the 
dynamics of the plant [10]. The error function erf and the 
sigmoid function S have been used to approximate the 
actuators magnitude saturation constraints. The input 

constraints are included into the plant dynamics (11) by 
replacing δt and δe with S(δt) and )(25 25

eerf δ respectively. (see 
[10] for more details) 
The NLGPC tuning parameters were set to N = 19 (control 
horizon = prediction horizon), ΛE  = 20, the sampling time Ts = 

50 ms, and . The 

initial conditions are chosen to be the forward c.g. steady-state 
flight trimmed conditions according to [3]; i.e. 
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t has a negligible effect on the pitch-rate Q and is used only to 
update the engine-power-level and consequently the thrust. 
Therefore, we concern in the elevator control δe. As mentioned 
before, our design is based on step-response shaping, where 
the setpoint trajectory is given as: 
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Figure (2) shows a deadbeat output trajectory with the rise-
time (to reach 90% of the final value) is 0.143 sec, while 
Figure (3) shows the input trajectory. 
 

Although our design is based on step-response shaping, we 
prove that the resulting control system, if properly designed, 
will give good time responses for any arbitrary reference 
command signal by using another dynamic trajectory as given 
by: 
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The simulation results for this particular output trajectory and 
for the associated input one are shown in Figures (4-5). 
Figures (2,4) show that the nonlinear controller works properly 
as the output time responses for the closed-loop system follow 
the tracking signals. 
 
6 Conclusions 
 
A receding horizon control algorithm, which optimises a 
tracking performance cost for nonlinear systems with input 
constraints was proposed. The optimisation procedure is based 
on performing a dynamic linearisation around trajectory, by 
taking into account the changes in the system model that are 
likely to occur due to the nonlinearities. The aims of this paper 

  



were to introduce the concepts of MBPC and its application 
to multivariable flight control systems by designing of a 
controller that can cope with modelling errors and, plant 
parameters variations, as well as provides good performance.  
 

The simulation results indicate that issues like handling 
qualities and tracking capabilities may be addressed directly 
for all flight conditions, using this type of flight control 
system. This should improve levels of performance over 
conventional flight controller designs. 
 
Acknowledgements 
We are grateful for the support of the Engineering and 
Physical Science Research Council (EPSRC) grant Non-
linear Predictive Control and Industrial Applications 
GR/N05482E468 and Industrial Non-linear Control and 
Applications GR/R04683/01. We also wish to thank Prof. 
Basil Kouvaritakis and Dr. Mark Cannon for their comments 
and advice. 
 
REFERENCES 
[1] A.W. Babister, “Aircraft Dynamic Stability and 

Response,” Pergamon Press, 1980. 
[2] J. H. Blakelock, “Automatic Control of Aircraft and 

Missiles,” John Wiley & Sons, 1965. 
[3] B. Stevens and F. Lewis, “Aircraft Control and 

Simulation,” John Wiley & Sons, 1992. 
[4] E. G. Rynaski, “Flying Qualities in the Time Domain,” 

AIAA Guid., Navig. Control Conf., Snowmass, Colo., 
pp. 85-1849, Aug. 1985. 

[5] H. N. Tobie, E. M. Elliot and L. G. Malcom, “A New 
Longitudinal Handling Qualities Criterion,” in Proc. 
National Aerospace Electronics Conf., Dayton, Ohio, 
1966, pp. 93-99. 

[6] B. Kouvaritakis, M. Cannon, and J. A. Rossiter, “Non-
linear model based predictive control,” Int. J. Control, 
vol. 72, no. 10, pp. 919-928, 1999. 

[7] Y.I. Lee, B. Kouvaritakis, and M. Cannon, “Constrained 
receding horizon predictive control for nonlinear 
systems,” Automatica, vol.38, no.12, pp. 2093-2102, 
2002. 

[8] A. W. Ordys, and D. W. Clarke, “A state-space 
description for GPC controllers,” Int. J. Systems SCI., 
vol.24, NO.9, pp. 1727-1744, 1993.  

[9] M. J. Grimble, A. W. Ordys, “Non-linear Predictive 
Control for Manufacturing and Robotic Applications,” in 
Proc. IEEE Conference on Methods and Models in 
Automation and Robotics, Poland, Aug. 2001, pp. 579-
593. 

[10] A. M. Youssef, A. W. Ordys, and M. J. Grimble, 
“Nonlinear Predictive Control for Fast Constrained 
Systems”, submitted for publication in IEE Proceedings: 
Control Theory & Applications (Special Issue on: 
Nonlinear Model Predictive Control). 

 

 
 
 
 
 
 
 
 
 
 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 -0.05 
0 

0.05

0.1 
0.15

0.2 
0.25

0.3 
0.35

Pitch Rate

Time 

Q

Figure (2): Setpoint and output trajectories 
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Figure (4): Setpoint and output trajectories 
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Figure (5): Control input 
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