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Abstract 
 
The problem considered addresses the optimal wastewater 
distribution to several retention reservoirs in an urban sewer 
network during rainfall in the aim of protecting the quality of 
receiving waters via minimization of overflows. To this end, a 
linear multivariable feedback regulator is developed using the 
linear-quadratic design procedure. Inflow predictions are 
accommodated via suitable feedforward terms in the control 
law. A study for a real large-scale combined sewer network 
using this method is presented on the basis of a realistic 
simulation model. Results demonstrate the efficiency of the 
developed methodology.   
 
1  Introduction 
 
The construction of treatment plants for sewage protects the 
quality of the waters that receive the outflows of the sewer 
networks. However, urban combined sewer networks do not 
have separated collectors for the domestic and industrial 
sewage and the rainwater drainage. Therefore, during rainfall, 
networks and/or treatment plants may be overloaded, and 
overflows of untreated wastewater may take place upstream 
of overloaded stretches, causing pollution of receiving waters. 
Placing retention reservoirs at appropriate locations of the 
network is a cost-efficient way to avoid overflows at 
moderate rain events and to reduce them at stronger rainfall as 
the water is stored in the reservoirs during the rainfall and is 
directed towards the treatment plant after the rainfall stops.  
 
Optimal operation of the combined sewer network (that 
contains retention reservoirs) implies that for each rain event 
the whole retention capacity of all reservoirs will be used 
before overflows take place somewhere in the network. This, 
however, cannot be guaranteed by fixed gate settings, such as 
fixed weirs or manually adjustable gates for the filling and 
emptying of the storage spaces. Especially if the rainfall is 
distributed unevenly over the urban area, there may be 
reservoirs that are not totally filled, while overflows occur 
elsewhere in the network. In these cases, a further reduction 
of overflows can be obtained via real-time operation of the 
reservoirs, e.g. by use of controllable gates that are driven by 
an automatic control strategy. On the other hand, an efficient 

control strategy may lead to substantial cost savings, as the 
number and storage capacities of the reservoirs required to 
keep overflows below a certain (usually legislatively defined) 
limit, depends upon the efficiency of the applied control 
strategy. 
 
A real-time control structure for sewer networks that 
combines high efficiency and low implementation cost, may 
be composed of a number of control layers (multilayer control 
structure). Such a flexible, reliable, and efficient hierarchical 
control structure for real-time control of sewer networks has 
been proposed e.g. in [13]: An adaptation layer is responsible 
for rain and/or inflow prediction (if needed) and for real-time 
estimation of the system state. An optimization layer is 
responsible for the central, overall network control, i.e. for 
specifying reference trajectories for the reservoir storages and 
outflows. A decentralized direct control layer is responsible 
for the realization of the reference trajectories. With regard to 
the optimization layer, several approaches have been 
proposed in the past, like: 
• Nonlinear optimal control [12, 4, 9, 5, 14]. 
• Multivariable feedback control [8, 4, 6]. 
• Methods based on dynamic [2] or linear programming 

[10]. 
• Expert systems, fuzzy control [1], and further heuristic 

approaches. 
 
This paper focuses on the multivariable feedback control 
approach to central control of sewer network flow. Several 
improvements, modifications and extensions introduced to 
previously developed versions of the method [8] in order to 
increase its efficiency are included. The main paper focus 
compared to previous studies [6] is on application and testing 
of this method by use of a realistic simulation model, the 
program KANSIM.    
 
2  Control Problem Formulation 
2.1 Mathematical model and constraints  
 
For the study of the sewer network control problem, two 
mathematical models of the sewer network are employed, a 
realistic simulation model (KANSIM) and a simpler control 
design model that is referred to as simplified model. The 
simplified model is used for the design of the multivariable 
regulator while KANSIM [7] is used for testing the 
performance and sensitivity of the control method. Within 

     

mailto:magda@dssl.tuc.gr
mailto:markos@dssl.tuc.gr


KANSIM all the dynamic phenomena that take place in the 
different elements of the sewer network are modeled in detail 
using known laws of hydraulics such as the Saint-Venant 
equations for the sewer stretches, the Poleni formula for 
overflows, etc., while the simplified model has lower 
accuracy and complexity.   
 
Combined sewer networks consist of a set of elements in 
which different processes take place, as for example storage 
(in the reservoirs or in the sewers), transport (in the sewers), 
merging of flows (in the nodes). Τhe typical elements upon 
which a combined sewer network may be built according to 
the simplified model [3, 6] are reservoirs, nodes, external 
inflows, link elements and treatment plants (Figure 1).  
 
A particular network can be assembled from these elements. 
The whole flow process may be considered to have a vector 
input u including all controllable reservoir outflows, a 
disturbance vector d including all external inflows, and a state 
vector x including all reservoir storages and link outflows. 
Then, the model equations may be expressed in the following 
general form [3]  
 

x(k+1) = f[x(k), x(k−1),...,x(k−κx), u(k), u(k−1),...,u(k−κu), 
d(k), d(k−1),...,d(k−κd)]                         (1) 

 
where k= 0,1,...  is the discrete time index and κx, κu, κd are 
the longest time delays of x, u and d, respectively. 
 
The control constraints have the form  
 
                 umin ≤ u(k) ≤ umax(x(k),k)                                   (2a) 

                ∑                               (2b) 
=
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u
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where A(k) is a matrix of zero/one coefficients. In contrast to 
KANSIM, the simplified model does not consider backwater 
effects. 
 
2.2 Control Objectives 
 
The main task of the control system is the minimization of 
overflows for any rainfall event. This can be achieved by: 
• Using all available storage space before allowing an 

overflow to occur somewhere in the network. Moreover, if, 
due to strong rainfall, overflows are unavoidable, they 
should be distributed as homogeneously as possible over 
time and over the network reservoirs. However, if there are 
storage elements without overflow capability (no overflow 
weirs), the avoidance of overloading of these storage 
elements is of even higher importance. 

• Emptying the network as soon as possible (by fully using 
the inflow capacity of the treatment plant) so as to provide 
free storage space for a possible future rainfall.  

 
A direct way of considering these main objectives, along with 
some secondary operational objectives, is via minimization of 

a nonlinear objective function [3]. In this paper, an alternative 
approach that leads to a quadratic objective criterion is taken 
[3]. 
 
3  Regulator Design 
3.1  Linear-quadratic formulation 
 
For the sewer network flow control problem, application of 
the linear-quadratic-regulator (LQR) methodology appears 
most convenient [8].  
 
The LQR methodology is not directly applicable in presence 
of time delays, like those appearing in the process model (1). 
This difficulty may be readily circumvented by introducing 
some auxiliary variables ix~  [6]. Thus, if a control variable uj 

appears in the model equations with time delay , one may 
introduce the additional auxiliary state equations  

juκ

 
            (k)u 1)(kx~ j1  =+  

~~            (k)x  1)(kx 12 =+     
                 …                                          (3) 
            (k)x~   1)(kx~ 1κκ ujuj -=+  
 

and substitute (k)x~ ujκ

x

 in all model equations where uj(k–κuj) 
appears. This modification can be performed for all time-
delayed control and state variables of the process model. The 
auxiliary variables ~  are regarded as additional state 
variables that are incorporated in the state vector x. With this 
modification, (1) obtains the simpler form 
 
                       x(k+1) = f[x(k), u(k),d(k)].                            (4) 

 
To facilitate the application of LQR design, linearization 
around a stationary nominal point is required. For the 
definition of this point, a nominal rainfall is considered that 
leads to constant nominal external inflow values dN such that 

 = rmax (rmax is the plant’s maximum 
capacity) results in absence of any control actions (all gates 
opened). Under nominal conditions no overflows occur, 
because we have assumed that the sum of external inflows 
equals rmax. Using these values, the nominal values for each 
reservoir’s outflow  the nominal reservoir storages , 

the nominal values of the link outflows  and of the 

auxiliary variables 
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~  are obtained [3]. The nominal steady-
state just described corresponds to a steady-state form of (4) 

       
 xΝ = f(xN,uN,dN).                                               (5) 

 
Linearization of (4) around this steady-state leads to 
 

            ∆x(k+1)= N
∂
∂
x
f ∆x(k)+ N

∂
∂
u
f ∆u(k)+ N

∂
∂
d
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where ∆x(k)=x(k)–xΝ, ∆u(k)=u(k)–uN, and ∆d(k)=d(k)–dN 

are the linearized variables, and A=∂f/∂xN, B=∂f/∂uN, 
C=∂f/∂dN are the state, control, and disturbance matrices, 
respectively, of the linearized system. 
 
For reasons not detailed here, the original system (6) is not 
fully controllable [3]. To obtain a fully controllable linear 
model, the nx state variables and according state equations 
corresponding to the nx reservoirs, are replaced by nx–1 new 
state variables and state equations. The new state variables 
and state equations are obtained by building nx–1 independent 
differences of the old state equations. For example, if the 
linearized conservation equations of reservoirs i and j are 
 
              ∆Vi(k+1) = ∆Vi(k) – T[∆ui(k) + ∆di(k)]                 (7) 
              ∆Vj(k+1) = ∆Vj(k) – T[∆uj(k) + ∆ul(k)]         (8) 
 
respectively, where Vi(k) is the storage in reservoir i and T is 
the discrete time interval, a new state equation may be 
obtained with new state variable 
 

           ∆xi′(k+1)= ⋅
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−
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               (9) 

 
Although other schemes may be envisaged, we consider a 
specific reference reservoir No. j in (9) while i=1,…,nx, i≠j. 
Note that the modification (9) is applied only to the reservoir 
state equations, while the other state equations (for the link 
outflows and for the auxiliary variables) remain unchanged.  
 
A quadratic criterion that considers the control objectives 
mentioned previously has the general form (for simplicity ∆x 
is used in the following to denote ∆x′) 

      J=∑ (∆x(k) +∆u(k) )                       (10) 
∞

=0k

2
Q

2
R

where η =ηΤSη while Q and R are nonnegative definite, 
diagonal weighting matrices. The infinite time horizon in (10) 
is taken in order to obtain a time-invariant feedback law 
according to the LQ optimization theory [11].  
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Due to the definition of ∆x(k), the first term in (10) penalizes 
relative storage differences between reservoirs. The diagonal 
elements of Q corresponding to the reservoir storages ∆xi are 
set equal to 1, while the diagonal elements of Q 
corresponding to the link outflows ∆qi and those 
corresponding to the auxiliary variables ∆ ix~  are set equal to 
zero. A controller designed to minimize this criterion, will 
automatically tend to equalize the relative storage distribution 
between reservoirs. This is an indirect way of achieving 
overflow minimization for the sewer network.  
 
By the choice of the weighting matrix R, i.e. its diagonal 
elements, the magnitude of the control reactions can be 
influenced. This is necessary in order to avoid high feedback 

parameters that would lead to nervous control behavior. 
Moreover, it provides the possibility to consider, to a certain 
extent, indirectly, the constraints (2), because increased 
values of the diagonal weighting parameters will lead to 
lower deviations of outflows from their nominal values. 
However, the strict consideration of the constraints (2) is not 
guaranteed by the quadratic criterion and must be imposed 
after the feedback law calculations, i.e. the control variables 
must be truncated according to (2). The choice of the diagonal 
matrix R is performed by a trial-and-error procedure so as to 
achieve a satisfactory control behavior for a given application 
network.  
 
The inflow r(k) into the treatment plant is not included in the 
control vector u, but is set r(k) = rmax.  
 
3.2 Multivariable control law  
 
Two multivariable controllers, one with and another without 
feedforward terms, were designed via the LQR methodology 
in order to investigate both the reactive and anticipatory 
regulator behavior. The minimization of the performance 
criterion (10) subject to the linearized state equation, when 
inflow predictions are available (∆d(k)≠0), leads to the 
control law 
                   u(k)=uN–L·∆x(k)–U(k)                      (11) 

 
where L is a constant feedback gain matrix calculated from 
the well-known Riccati equation. The time-variant 
(feedforward) vector U(k) is calculated in real time using  at 
each time instant k the predictions ∆d(κ), κ=k,…,k+K−1, 
where K is the prediction horizon. In the case of sewer 
network control, K corresponds to the horizon of the real-time 
available inflow predictions Kp (taken from a predictive 
rainfall-runoff model) plus the inflow predictions obtained by 
the use of a simple extrapolation scheme [3]. In the present 
study, the extrapolation scheme uses the known values of the 
last three time intervals Kp−1, Kp−2, Kp−3 to predict, using 
linear regression, the inflow values for the next 20 min after 
which the inflows are assumed to move towards dry weather 
flow values, which they reach 20 min later. If ∆d(k)=0, the 
time-variant vector U(k) vanishes leading to a purely 
feedback control law in (11). 
 
The state feedback regulator (11) requires availability of 
measurements for all state variables in real time. In the sewer 
network context, measurements are typically available for the 
reservoir storages and possibly for some link outflows, but 
not necessarily for the retarded auxiliary variables. Thus, if 
full real-time measurements are lacking, some sort of state 
estimator may have to be developed in order to estimate the 
missing measurements in real time [3].    
 
4  Application Example 
4.1 Application Network 
 
To assess the efficiency of the described methodology in 
reducing the overflows and more generally in satisfying the 

     



control objectives when applied to a real sewer network, an 
extended investigation was performed for the sewer network 
of Obere Iller (Bavaria, Germany). This network connects 
five neighboring cities to one single treatment plant. The 
network has very long sewer stretches with accordingly long 
flowing times in the link elements. The simplified model of 
this network is depicted in Figure 1 whereby reservoir 7 is a 
storage element created by installing a control gate to regulate 
the flow at the end of a voluminous sewer in the network 
without overflow capability. There is, however, for 
emergency needs, a bypass of the control gate (a weir over the 
gate), so that in case of an overload, an overflow qover,7 is 
created that enters the sewer 5 through nodes 4 and 5. 
 
For the simplified model of this sewer network the equations 
(1) are used. The discrete time interval T is taken equal to 180 
s for the control and 60 s for the KANSIM-simulation. The 
treatment plant has maximum capacity rmax = 2 . For the 
LQ formulation of the present problem, the auxiliary 
variables (3) are used in order to take into account the time 
delays, and the corresponding equations are added to the state 
equations. Thus, taking into account the time delays, we have 
159 state variables for the present problem (10 for the 
reservoirs, 6 for the link outflows, and 143 for the auxiliary 
variables) [3]. 

/sm3

 
Various scenarios of external inflows [3] were used in order 
to investigate the efficacy of the multivariable regulator for 
the particular network under different circumstances. The 
control results for one of these scenarios, which has fairly 
inhomogeneous external inflows, are presented in this paper. 
 
4.2 Applied methodologies 
 
The multivariable controllers were programmed and were 
connected as an additional module to the simulation program 
KANSIM. For the design procedure, reservoir 7 of the 
particular application network is considered as the reference 
reservoir j as this reservoir is geographically in the center of 
this sewer network. Thus we have as state variables ∆xi = (Vi 
– Vi

N
 )/(Vi,max– Vi

N) – (V7 – V7
N)/(V7,max– V7

N), i=1,...,11, i≠7.  
 
After the calculation of the control variables from (11) for the 
LQ regulators with or without feedforward terms, a water 
level control scheme is activated if necessary to keep the 
water level in reservoir 7 near the value hw,7 (height of the 
overflow weir of reservoir 7) by appropriate operation of the 
control gates of the reservoirs upstream of reservoir 7 and by 
this way to avoid the overloading of this storage element [3]. 
 
KANSIM also simulates the underlying actions of local direct 
control [7] within the multilayer control structure. This 
program is also used to simulate the no-control case, so as to 
illustrate the achievable improvements via application of an 
efficient central control strategy to the particular network. In 
the no-control case, the gates are assumed opened to 28%, 
27%, 100%, 50%, and 100% of their maximum opening 
height for reservoirs 1, 2-6, 7, 8-10, and 11, respectively. The 

selection of the above percentages for the opening heights of 
the orifices, which have different geometric characteristics, 
was performed by doing many simulation investigations using 
different percentages so as to achieve acceptable fixed-control 
performance without overloading reservoir 7. 
 
5  Results 
5.1 No-control case 
 
The simulation results of the no-control case are summarized 
in Table 1. In the scenario considered here which has a 
duration of 6 h, external inflows are stronger downstream of 
reservoir 7 than upstream of reservoir 7. Reservoirs 10, 8, and 
9 receive very strong external inflows (d11, d8, d10, 
respectively) and thus, large overflows appear in these 
reservoirs (Table 1, Figure 2a) when no control actions are 
taken. Reservoirs 1 and 2 are also overflowing, although they 
do not have very strong external inflows. This is due to the 
opening height of the gates of reservoirs 1 and 2. However, it 
should be noted that the selection of the percentages of the 
opening heights of the orifices leads to the avoidance of 
overloading of reservoir 7 for this particular scenario [3]. 
 
5.2  Multivariable regulator without feedforward terms  
 
The main observations in the scenario presented here are 
summarized in the following remarks: 
• The regulator manages to significantly reduce the total 

overflows in the network (Table 1) compared to the no-
control case. During the critical period where overflows 
occur, the regulator closes reservoir 7 in order to equalize its 
relative storage with that of the other reservoirs and so, 
reservoirs 8, 9 and 10, that are strongly overflowing in the 
no-control case, can have high outflows which leads to a 
significant reduction of their overflows (Figure 2b). At the 
same time, the overflows of reservoirs 1, 2 are completely 
avoided (Table 1). 

• The treatment plant is fed with its maximum capacity, and 
so the network is emptied as soon as possible in order to 
have free storage space for a possible future rainfall. 

 
5.3 Multivariable regulator with feedforward terms  
 
The multivariable regulator with additional feedforward terms 
anticipates to some extent the impact of future inflows. For 
the various scenarios of external inflows used in [3] the 
results obtained using the regulator with feedforward terms 
are equally efficient or slightly superior to the control results 
obtained using the regulator without   feedforward  terms,  
depending  upon  the  particular inflow event.  
 
When accurate inflow predictions are assumed available for 
the whole simulation horizon, the results of Table 1 are 
obtained  for  the  scenario  considered here. The regulator 
with feedforward terms results in slightly less overflows  
(Table 1) than the regulator without feedforward terms. This 
is because the regulator with feedforward terms, knowing 
about the large inflow peaks that will reach reservoirs 8, 9 and   
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Figure 1: Application network. 
  

10, retains more water in reservoir 7, during a certain critical 
period, and thus, reservoirs 9 and 10 can have greater 
outflows and smaller overflows than the ones in the case 
without feedforward terms [3]. 
 
The impact of inaccurate inflow predictions on the regulator’s 
behavior is also investigated. Thus, the regulator with 

feedforward terms is applied when accurate inflow 
predictions are only available for 60 min (Kp =20), 30 min 
(Kp =10) or when there are no available predictions (Kp  = 0, 
that is we have only extrapolation of current and past inflow 
values). The results are summarized in Table 1 and they can 
be seen to be very similar to the ones obtained with accurate 
inflow prediction. However, when only past values

  

                         
(a)                                                    (b) 

   
Figure 2: Relative reservoir storages (Vi(k)/Vi,max)100% for i=7,…11, for the no-control case (a) and for the regulator without 

feedforward terms (b). 

     



Rese-
rvoir 

No 
control  

Regulator without 
feedforward terms 

Regulator with 
feedforward terms 

Kp=K 

Regulator with 
feedforward terms 

Kp=20 

Regulator with 
feedforward terms 

Kp=10 

Regulator with 
feedforward terms 

Kp=0 
1 541 0 0 0 0 0 
2 72 0 0 0 0 0 

3-6 0 0 0 0 0 0 
8 471 0 0 0 0 0 
9 1150 252 217 217 218 246 

10 2047 98 83 83 83 98 
11 0 0 0 0 0 0 

Total 4281 350 300 300 301 344 
7 0 0 0 0 0 0 

Table 1: Reservoir overflows and overload of reservoir 7 in [m3]. 
 

are used for the prediction (Kp=0) and, thus, an 
underestimation or overestimation of the future inflow values 
is more likely, the results obtained may not always be as good 
as the ones obtained with accurate inflow predictions. Indeed 
for Kp=0, results are slightly inferior to the ones of the 
regulator with feedforward terms and accurate inflow 
predictions but are quite similar to the ones of the regulator 
without feedforward terms. 
 
6  Conclusions 
 
A generic problem for central sewer network control has been 
outlined. The developed methods, multivariable feedback 
regulator with and without feedforward terms, have been 
applied to a large real-life sewer network. A realistic 
simulation model has been used as a representation of the real 
network for the assessment of the control results. The results 
obtained were very satisfactory and were significantly better 
than the ones obtained when no control actions were taken. 
These results indicate that the main goals required by a 
control system for combined sewer networks are met by these 
control methods. 
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