
 - 1 -

 Deadlock Avoidance Based on Banker’s Algorithm for FMS
 Xu Gang Wu Zhiming

 Shanghai Jiaotong University

Keywords Flexible Manufacturing System, Deadlock, Banker’s

Algorithm

Abstract
 This paper presents a method for deadlock avoidance
algorithm used in Flexible Manufacturing System(FMS).
This method is an improvement of the Banker algorithm.
The Banker algorithm is commonly used in the Operating
System (OS), but some improvement will have to be made
on the algorithm if this algorithm is used in FMS. The
difference between the process in operating system and the
job in the FMS is fully discussed. Based on this difference,
the improvement is made. In order to improve the algorithm,
formal methods are adopted to the manufacturing systems.
The simulation model is translated into a format suitable for
model checking. That is, the model is written into
PROMELA, the input language of the popular model
checker SPIN. After that, SPIN is used to verify that the
model does not have deadlock. This algorithm proves to be
highly effective in practice.

1. Introduction.
When designed and operated effectively, FMS can be

of assistance to manufacturer according to a defined
production and process plans, which specify the activities
and resources as well as sequence related conditions, such as
precedence relations and synchronization. Alternative
resources and routing for some of the jobs in FMS may be
specified previously. This results in an increasing flexibility
in job scheduling. Some resource allocations may lead to
deadlock situations, in particular when the resources in
system are limited. Deadlock problems can cause
unnecessary costs (e.g. long down-time and low use of some
critical and expensive resources), which are particularly
important to be solved in Flexible Manufacturing Systems.
Therefore, to develop efficient algorithm to improve and
optimize the system performances while preventing
deadlock situations become a basic requirement in running
an FMS.
 A deadlock is a state where a set of parts is in “circular
waiting” i.e. each part in the set waits for a resource held by
another part in the same set. In general, three strategies are
used for dealing with deadlocks.

1. Detection and recovery. Every time a resource is
requested or released, a check is made to see if any
deadlocks exist. If exist, some policy will be adopted to
recover the system from deadlock.

2. Deadlock prevention, by structurally negating one of the
four required deadlock conditions. deadlocks will be
impossible.

3. Dynamic avoidance by careful resource allocation:
deadlock avoidance. Make judicious choices to assure
that the deadlock point is never reached.
 In this paper, we focus on the problem of deadlock

avoidance. There are quite a lot research papers devote to
deadlock avoidance. In [1] a deadlock avoidance algorithm
is proposed for a class of Petri net models formed for flow
shop manufacturing where a set of sequential processes are
executed without alternating the order of using resources in
each case. The algorithm controls the input flowing of new
tokens in a local area, ensuring that token evolutions in
system are always possible. Abdallah in [5] use structure
theory of Petri nets to develop efficient deadlock prevention
and deadlock avoidance methods for FMS. In [8] Naiqi Wu
et al point out that, if an Automated Manufacturing
System(AMS) operates at the deadlock boundary, i.e., under
the maximally permissive control policy, it will not be
deadlocked but a blocking(the process is stopped
temporarily, and will go on after a peried of time) may occur
more likely. Wu presents an AMS that works near but not at
the deadlock boundary in order to gain the highest
productivity. For the first time Wu presents such a policy:
Liveness-policy. Without being too conservative, it can
effectively reduce or even eliminate the blocking possibility
that exists under a maximally permissive control policy. In
[10] both deadlock prevention and avoidance control
policies are proposed. The first part is based on the petri net
reachable graph, while the second part is based on a look-
ahead procedure that searches for deadlock situations by
simulating the evolution process of system for a
preestablished number of steps. Due to the fact that the
avoidance policy does not assure that deadlocks are not
reachable in future, they propose to combine this policy with
a deadlock recovery system. CSP is also well suited to model
information and control flows in manufacturing system

Foundation item Project supported by the National Natural and Science Foundation(Grant No. 59889505,60074011,70071017)

 - 2 -

usually exhibiting concurrency and non-determinism.
Holzmann in [4] give an overview of the design and
structure of the verifier: SPIN, reviews its theoretical
foundation and gives some practical application. Havelund
in [2] presents an application of the finite state model
checker SPIN to formally analyze a multithreaded plan
execution module. J.M. van et al in [6][7] proposed a
specification of a heterarchical control system of a flexible
production cell. The CSP-based language is used in the
specification. V. Bos in [9] investigates whether automatic
verification can be applied successfully for the analysis of
industrial manufacturing systems models specified in , and
applies the approach to a model of a manufacturing system
consisting of a turntable, a drill, and a testing device.

If the FMS is modeled with CSP, many algorithms used
in OS can be easily modified and applied in FMS. In the
model of CSP, the problems of FMS correspond to the ones
of OS. For example, the Job scheduling in FMS to the
Process scheduling in OS. So, modeling FMS with CSP is
valuable. The objectives of this paper are threefold. Firstly,
the Banker algorithm is improved to be suitable to the FMS.
Secondly, model FMS in CSP, and ground the future work in
the analysis of FMS. Thirdly, verify the deadlock property of
the improved algorithm with SPIN.

The Banker algorithm is used in OS. OS and FMS are
all concurrent systems, they are similar in some way. So,
some processes scheduling algorithm in OS can be applied in
FMS after modified. But the two systems are different. In
this paper, the difference between OS and FMS is discussed

in detail. Based upon this difference, the Banker algorithm is
modified and is applied in the control of FMS. This paper is

organized as follows: the problem is presented in Section 2,
the improvement of the algorithm is introduced in Section 3,
the algorithm is applied in a case in Section 4 and Section 5
is a conclusion.
2 Modeling FMS with CSP
 In this paper, readers are supposed to be familiar with
CSP, and the definition of CSP can be found in Hoare [3]. A
job is modeled as a process (in section3, the operations of
Job is taken as process). The behaviour of each job is
described by a process. Individual processes that operate
concurrently communicate with each other by means of
channels. All channels are one-to-one connections between
processes. The interleaving of processes forms the behaviour
of the whole system, that is, the scheduling of the two Jobs.
The fig.1 describes two jobs competing for two resources.
Each job needs exclusive use of resource for a certain period
of time. The component of the system can be depicted using
CSP as following:
Machine = (get M->maching-> releaseM->Machine);
Job1=(getM1->maching->releaseM1->getM2->maching-
>releaseM2->skip);
Job2=(getM2->maching->releaseM2->getM1->maching-
>releaseM1->skip);
The whole system can be described as following:

M1:Machine // M2:Machine // (Job1 ||| Job2)
“|||” represents that the interleaving of process Job1 and

Job2. “//” represents that the processes M1 and M2 are
subordination process of (Job1 ||| Job2). Job1 and Job2
interleave and share the resource M1 and M2

Deadlock is a kind of system status, in which a set of
parts enter into a waiting loop, each part in the set waits the
resource occupied by another part in the set. Just like what
the shadow in Fig.1. has demonstrated, the x-axis represents
progress in the execution of Job1 and y-axis represents
progress in the execution of Job2. The joint progress of the
two processes is therefore represented by a path that
progresses from the origin in a northeasterly direction.

Process Job1 and Job2 share the resource M1 and M2,
which is different from processes in OS.
1. Job1 and Job2 do not need both resources at the same time,

and instead have the following forms:
Job1 Job2
… …
Get M1 Get M2
… …
Release M1 Release M2
… …

������������������������������
������������������������������
������������������������������
������������������������������

 Job1

 Job2

 Fig.1 Example of deadlock

Get
M1

Get M2

Release
M1 and
get M2

Release
M2

 Release M2
And Get M1

 Release M1 ��������������������
��������������������
��������������������
��������������������
��������������������

1 2

3

4
5

6

J1 and
J2 want
M1

deadlock
J1 and J2
want M2

 - 3 -

Get M2 Get M1
…… ……
Release M2 Release M1
2. One Job represents one part flowing in the FMS. Part will
occupy corresponding resource when it is processed in the
FMS. So, if Job1 finish its first operation, that is, its
operation on M1 has been done, Job1(part1) still occupied
the M1 (suppose no buffer in this system) and wait to enter
into M2. Releasing M1 occurs only when Job1 get M2.
When all the operations of Job have been finished, the Job
will be unloaded from the machine automatically. The same
is to Job2. So, if the Job1 and Job2 run as the execution of 3
or 4, the system will deadlock.

Fig.1. shows six different execution paths. These can
be summarized as follows:
Path 1. Job2 gets M2 and then releases M2. Get M1 and then
release M1. When Job1 resumes execution, it will be able to
get both resources.
Path 2. Job2 gets M2 and then releases M2. Get M1 and then
Job1 executes and blocks on a request for M1. Job2 release
M1 and finish. Job1 will get M1 and then M2
Path 3. Job2 gets M2 and then Job1 gets M1, deadlock will
occur. Because as execution proceeds Job1 will block Job2
on M1 and Job2 will block Job1 on M2.
Path 4. Job1 gets M1 and then Job2 gets M2, deadlock will
occur. Because as execution proceeds Job1 will block Job2
on M1 and Job2 will block Job1 on M2.
Path 5. Job1 gets M1 and then release M1. Get M2 and then
Job2 executes and blocks on a request for M2. Job1 release
M2 and then Job2 will get M2 and then M1.
Path 6. Job1 gets M1 and then releases M1. Get M2 and then
release M2. When Job2 resumes execution, it will be able to
get both resource.
The structure shown in Fig.1. can be extended to more
machines and jobs with different routing procedures to
describe a FMS. The approximate Gannt chart of Fig.1 can
be seen in Fig.2,3,4,5

 SPIN is a tool for analyzing models expressed in the

modeling language PROMELA[4]. PROMELA was chosen
for the study because of its focus on the interaction between
processes. It is loosely based on Hoare’s language of CSP
and on Dijkstra’s guarded command. A PROMELA
program consists of processes, message channels, and
variables. Processes are global entities, which specify
behavior. They communicate with one another on message
channels. Communication can be synchronous or
asynchronous.

Given a PROMELA model, SPIN can perform
simulations or exhaustive verifications of the system state
space, during which it checks for the absence of deadlocks
and for un-executable code. It can also verify linear time
temporal constraints. Exhaustive verification can show
conclusively whether a model contains errors. The model
simulation tool provided in SPIN allows users to
interactively simulate execution of PROMELA models. This
tool is invaluable in the initial development and refinement
of the model for the controller.

 Using XSPIN (XSPIN is a graphical front-end of SPIN),
the simulation result of routing 4 can be seen in fig6. The
CSP model is written as PROMELA. Every machine is
represented by a process, two jobs is combined into
controllers, and the controller is in charge of scheduling the
two Jobs. The channel is used by processes to communicate
with each other. In the figure6, the vertical line represents the
time line for instantiations of a process, and the line between
processes represents the channel between processes. It can
be seen that the system is deadlocked: process M1
(corresponding to M:2 process) and M2 (corresponding to
M:3 process) wait for each other for ever, and the system
can’t evolve.

3 Improvement of Banker algorithm
 The Dijkstra Banker’s algorithm operates commonly in the
Deadlock-Avoidance of the Operating System’s process

 (1,1)

 (2,1)

 (2,2)

 (1,2)

M1

M2

Fig.2. Gannt for deadlock in routing 3

 (1,1)

 (2,1)

 (2,2)

 (1,2)

M1

M2

Fig.4. Gannt for routing 5,6

 (1,1)

 (2,1)

 (2,2)

 (1,2)

M1

M2

Fig.5. Gannt for routing 1,2

 (1,1)

 (2,1)

 (2,2)

 (1,2)

M1

M2

Fig.3. Gannt for deadlock in routing 4

 Fig 6 XSPIN for rout 4

 - 4 -

scheduling. Because of the difference between OS and FMS,
it will be too restrictive when this algorithm is directly
applied to FMS. Some improvement had to be made.
3.1 why the banker can’t be used in FMS directly?
 The following table lists the basic difference between FMS
and OS.

FMS OS
Scheduling object Job Process
Deadlock avoidance
policy

schedule
algorithm

Banker
algorithm

Basic scheduling unit Operation None
 The basic idea of the Banker’s algorithm is to assure at all
times that all possible future requests for resources can be
satisfied with the current set of free resources.
1. Banker’s algorithm requires that the number of
resources in system should be fixed, the total resource
number that the process requires must be declared before the
process starts. The resource requirement that will make the
system transfer to safe state can only be satisfied. However,
the scheduling algorithm in FMS takes advantage of the
production routing information. The total resource number
that a Job requires can only be determined after the routing
of a Job is determined. Because a Job can have one or more
routing in FMS, and there will be different number of
operations in different routing, the resource requirement
number is different in different routing. So, the total number
of resource requirement for a Job can only be determined in
the processing, and can’t be declared before a Job starts.
2. The Banker’s algorithm assumes nothing about the
order in which resources will be requested and released, that
is, the operations order of a Job aren’t be taken into account.
In OS, the process will not start until its total resource
requirement are satisfied, and it will not release the total
resource until it finish. But in FMS, with the progress of the
Job, its operation releases some resource, at the same time,
the next operation will occupied some resource. So, the
resources will not be fully used if the Banker’s algorithm is
directly applied in FMS.
 It can be seen from the above description that it will be too
restrictive and the analysis of deadlock will be too
conservative if the Banker’s algorithm is directly used in
FMS. Some improvement had to be made.
3.2 Modification of Banker’s algorithm
 The Jobs are represented by controller process. Every
resource is represented by a resource process. The
information transferring between processes represents parts
flowing in the FMS. In the following description, the process
is Job, ie, controller. Some notation are shown as following:

Safe State, at this state there is at least one resource
allocation sequence that can make all processes finish safely,
and no deadlock produce;
Unsafe State, the state which is not satisfied with the
condition of Banker;
Deadlock State, the state in which no process can go on.
Suppose one system with n processes, and m resource. For
convenience, the array addition, subtraction, et al are
abbreviated as following (X and Y are arrays with subscript
[n][m])

YX <= , if and only if]][[]][[mnYmnX ≤

YX ± , if and only if]][[]][[mnYmnX ±

YX =: , if and only if]][[:]][[mnYmnX =

Resource = ARRAY [1 m] OF integer. Total amount of
each resource in the system
Claim = ARRAY [1 n,1 m] OF integer. Requirement of
each process for each resource.
Need = ARRAY [1 n,1 m] OF integer. Equal to (Claim –
Allocation)
Allocation = ARRAY [1 n,1 m] OF integer. Current
allocation
Available = ARRAY [1 m] OF integer. Total amount of
each resource not allocated to a process.
Request = ARRAY [1 n,1 m] OF integer. The current
resource requesting of processes.
Route_change OF integer. The flag of the other routing of
process.
Need_change = ARRAY [1 n,1 m] OF integer. The Need
array on another routing of the process.
Request_change = ARRAY [1 n,1 m] OF integer. The
Request array on another routing of the process.
Modified Banker’s algorithm
Resource Allocation Algorithm is shown as following:
(1) If Request[i] ≤ NEED[i],then goto(2),else ERR // too

many process request,return.
(2) If Request[i] ≤ Available, then(3), else waiting
(3) Tentative allocation, run as following:
Allocation[i]:= Allocation[i] + Request[i];
Need[i]:= Need[i] - Request[i];
Available[i]:= Available[i] - Request[i];
(4) If Need[i] ≤ Available[i]
 then if (Route_change==1)
Allocation[i]:= Allocation[i] - Request[i];
Need[i]:= Need[i] + Request[i];
Available[i]:= Available[i] + Request[i];
{Need[i]:=Need_change[i];

 - 5 -

Request[i]:=Request_change[i]; goto(1)}
else stop;

else goto(5);
(5) Safety checking. If safe then allocate Request[i]:=0;

else run as following (abort the allocation):
Allocation[i]:= Allocation[i] - Request[i];
Need[i]:= Need[i] + Request[i];
Available[i]:= Available[i] + Request[i].

iP wait.

Safety checking algorithm is shown as following:
Work : ARRAY [1 m] OF integer. Record the resources
which are currently idle or supposed to be released.
Finish : ARRAY [1 n] OF bool. The flag for the finishing
of process.
(1) Work := Available;Finish [j] := False (1 j n);
(2) Search for process jP ,whose (Finish[j]==False and

Need[j] Work).
If not found, goto (4);
(3) Work := Work + Allocation[j];
Finish[j] := True; goto (2).
(4) if Finish[j]==True (1 j n),
then the state is safe,
else the state is not safe.
Additional explaining:
 Check every process to see if Available + Allocation ≥
Claim. Dynamic change of the Claim array is taken into
account in the modified Banker’s algorithm. In the original
algorithm, the Claim array is determined at the initial of the
system. It is not changed while the whole procedure. This is
feasible in OS. But in FMS, it doesn’t work. In FMS, there
are operations in the Job. If an operation of a job finish, it
will release the resource which it occupied, and go on to the
job’s next operation. The operation is taken as a process here.
The process can finish firstly, it releases the resource which
it occupies. Thus, the resource can be used by other
processes. That is, the operations of a job can release
resources orderly when the operations of the job has finished.
So, the resource releasing don’t need to wait until the job
finishes. In this case, the Claim array is designed to change
with the job progressing. The definition of Allocation array
and Available array are not changed. The Claim array varies
with the information flowing in channels.
 The routing selection of Jobs is involved in the modified
algorithm. When one routing is not satisfied with the
condition of the Banker’s algorithm, another routing is
selected. If this routing is still not satisfied with the condition
of the Banker’s algorithm, then the next one, or waiting.

4 Case study
 The CSP model of an example with three machines and
two jobs is shown in Fig.7. The job information is shown as
following: =1P {M1, M2, M3}, =2P {M3, M2, M1 or M3,
M1}. The CSP model for Fig.7. is shown as following:
Machine = (getM->maching-> releaseM-> Machine);
Job1=(getM1->maching->releaseM1->getM2->maching-
>release M2->get M3->maching ->release M3->skip);
Job2=(getM3->maching->releaseM3->(getM2->maching -
>release M2->getM1->maching->releaseM1->skip | get
M1->maching->releaseM1->skip));
Process Job1 and Job2 share the resource M1 and M2, the
whole system can be described as following:
M1:Machine // M2:Machine // M3:Machine // (Job1 ||| Job2)
 In this model, there are five processes and nine channels.
Transform the model into the PROMELA, the main part of
the model is shown as following.

/*routing information*/
routing definition of Job1,Job2_1,Job2_2;
resources Flag definition;
/*channel information*/
definition of channels among different process;
a,b,c,d,e,f,g,h,i;
/*main function and process*/
inline function banker()
inline function safecheck()
Job1’s process template definition, Job1()
Job2’s process template definition, Job2()
Machine template definition M
The Job routing information is transmitted in the channel.
While the Job progresses in the system, the routing
information will be modified. In order to make the resources
mutual exclusion use, Flag for the resources M1, M2, M3 is

 Controller

Job1

 M2

 M1

 M3

 Fig.7. Components of an FMS

 a

 b

c

 d

e

f

h

g

 i

Job2

 - 6 -

set: resourceFlag, which is an user-defined structured data
type. When the resource process (such as M2 process)
receives message from its upper process (such as M1
process), the Flag.M1flag will be set to 1, which represents
the releasing of resource M1. At the same time, Flag.M2flag
will be set to 0, which represents the resource M2 being
occupied. And the corresponding part of routing information
JRInfo will be set to zero, for example, J1Rinfo.OP1=0 if
this is Job1. When the Job process (such as the Job1)
receives message from other resource process (such as M1
process), the Flag.M1flag will be set to 1. When the Job
process send message to other resource (such as M1 process),
the Flag.M1flag will be set to 0. When the Job finishes, the
corresponding routing information will become all zero.
The routing selection is determined in the execution, and it is
dynamic. The sequence of the Job process execution and the
communication between processes guarantee that the part is
processed according to its routing.
Simulation with SPIN

In the Message Sequence Chart fig.8, there are six
vertical lines that represents the six processes in the system
(list from the left to the right): Job1, Job2, init process
(which is used to initialize the M1, M2, M3 process), M1,
M2, M3. The arrows connecting the processes are channels.
Boxes correspond to steps in the simulation. Communication
between Job1, Job2, M1, M2, M3 is executed through
channels. Job1 process sends J1RInfo to M1 process
(corresponding to process M:3 in the graph; M2 process to
M:4 process; M3 process to M:5 process), M1 process
finishes its operation, sends the J1Rinfo to M2 process.
Finally, M2 process to M3 process. Thus, all operations of
Job1 are finished and M3 Process sends the final J1Rinfo to
Job1 process. The same to the progressing of J2Rinfo. The
graphical output only highlights the interaction between
processes. Steps are numbered sequentially and described in
a separate Simulation Output window (not shown).
 Above system should meet the following requirement:

1.No deadlock;
2.every product should be processed according to their

operation requirement.
Verification with SPIN

1.The linear-time temporal logic (LTL) formulae for
this system is written as “<>S”. “<>” is the temporal
operator “eventually”. S is defined in a macro, represents the
final state of the successful execution: it is the logical and of
the Jobs’ routing information and the final resource state.
#define p (J1RInfo. OP1== 0) && (J1RInfo.OP2==0) &&

(J1RInfo.OP3==0)
#define q (J2RInfo. OP1== 0) && (J2RInfo.OP2==0) &&
(J2RInfo.OP3==0)
#define r (p && q)
#define r1 (Flag.M1flag==1) && (Flag.M2flag==1) &&
(Flag.M3flag==1) && (AGV_Flag==1)
#define S (r && r1)
The verification result of the LTL statement on the model is
shown below.

State vector Depth reached Output
392 1300 success

2. We used PROMELA's event trace mechanism to
verify that every product is processed. Event traces define
admissible sequences of communications. SPIN checks if
each trace of the model adheres to the event trace. That is, of
each trace of the model only the events occurring in the event
trace are considered and these events have to occur in the
order defined by the event trace. Event traces are defined
with communication statements and normal control flow
structures of PROMELA (for example, do...od and if...fi),
however no variables are allowed. If a channel occurs in a
statement of an event trace, the verifier checks if every
communication along the channel matches an event of the
event trace. For a thorough description of SPIN's event
traces, refer to [20]. In the event trace, we define
possible/allowable communications that identify the Job
operations. We chose communications over channels, and
we can make the following observations:
trace
{

do
::Job1’s operation channels sequence: Job1->M1-

>M2->M3->Job1;
::Job1’s operation channels sequence: Job2->M3->

if
::M2 is idle:->M2->M1->Job2;
::M1 is idle:->M1->Job2;
fi

od;
}

The verification result shows that every product will be

processed according to the operation requirement.

It can be seen that after simulation and verification, the

algorithm is right. The complexity of the algorithm is linear O(|Cn|),

Cn is the number of channels. The channel number is related to the

machines and operations number. The algorithms in Banaszak[1],

Abdallah[5], Wu[8], Viswanadham[10] put more emphasis on the

 - 7 -

Petri net theoretical analysis. Limited by the Petri net, the size of

the FMS in which it can be applied is small, and has little practical

use. After simulation and verification, the algorithm in this paper

has been applied in the FMS controller of the virtual workshop

platform in Shanghai Jiaotong University. The example in [11] is

adopted to demonstrate the effectiveness of the algorithm. It is

supposed that the problem size can be represented with M N(M is

the machine numbers, N is the job numbers). The size of this

problem is 33 127. The CPU time for this problem on PC with

Celeron533, RAM 64M is 7.7 minutes. All jobs can be completed,

and no deadlock occurring.

5 Conclusion
 In this paper, a deadlock avoidance method applied in
FMS is proposed. This method is modified upon the classical
Banker’s algorithm. The different between OS and FMS is
discussed in detail. Based on this difference, some
improvement is made. FMS is modeled with CSP, so the
algorithm can be verified with SPIN. Form the result of the
experiment, it can be seen that the model is deadlock-free.

Reference
[1] Banaszak, Z.A.; Krogh, B.H. Deadlock avoidance in

flexible manufacturing systems with concurrently
competing process flows[J]. IEEE Transactions on
Robotics and Automation, 1990, 6(6), 724 –734.

[2] Havelund K; Lowry M; Penix J. Formal analysis
of a space-craft controller using SPIN[J].IEEE
Transactions on Software Engineering, 2001, 27(8), 749-
765.

[3] Hoare C A R, Communicating Sequential
Processes[M]. Prentice--Hall, 1985, 9.

[4] Holzmann G J. The model checker SPIN[J]. IEEE
Transactions on Software Engineering, 1997, 23(5),
279–295.

[5] I.BenAbdallah ; H.ElMaraghy. Deadlock Prevention
and Avoidance in FMS:A Petri Net-Based Approach[J].
International Journal of Advanced Manufacturing
Technology, 1998, 16(1).

[6] J.M. van de Mortel-Fronczak and J.E. Rooda. A Case
Study in the Design of Control Systems for Flexible
Production Cells[A]. Proceedings of MIM'97[C], Vienna
Austria:1997,243-248.

[7] J.M. van de Mortel-Fronczak, J.E. Rooda, and N.J.M.
van den Nieuwelaar. Specification of a Flexible
Manufacturing System Using Concurrent
Programming[J]. The International Journal of Concurrent
Engineering: Research & Applications, 1995,3 (3), 187--
194.

[8] Naiqi Wu, MengChu Zhou. Avoiding deadlock and
reducing starvation and blocking in automated
manufacturing systems[J]. IEEE Transactions on
Robotics and Automation, 2001, 17(5), 658 –669.

[9] Bos and J.J.T. Kleijn. Automatic verification of a
manufacturing system[J]. Robotics and Computer
Integrated Manufacturing, 2001, 17(3):185-198.

[10] Viswanadham, N.; Narahari, Y.; Johnson, T.L.
Deadlock prevention and deadlock avoidance in flexible
manufacturing systems using Petri net models[J]. IEEE
Transactions on Robotics and Automation, 1990, 6(6),
713–723.

[11] Hoitomt D J, Luh P B, Pattipati K R, A practical
approach to job-shop scheduling problems,IEEE
Transactions on Robotics and Automation, 1993, 9(1), 1-
13.

 - 8 -

 Fig.8. Simulation for controller (random seed=1)

	Session Index
	Author Index
	401.pdf
	Deadlock Avoidance Based on Banker’s Algorithm fo
	Keywords Flexible Manufacturing System, Deadlock,
	Abstract
	This paper presents a method for deadlock avoidance algorithm used in Flexible Manufacturing System(FMS). This method is an improvement of the Banker algorithm. The Banker algorithm is commonly used in the Operating System (OS), but some improvement
	Job1 Job2
	Simulation with SPIN

	Reference

