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Abstract

Benchmarking is a tool for improvement and should
be considered as a benefit-driven activity. The ulti-
mate goal of benchmarking is performance improve-
ment. One of major difficulties in the benchmarking
of MIMO systems comes from the shear number of
control loops contained in a plant. By directly focus-
ing on the improvement of plant’s economic perfor-
mance, we present a controller benchmarking frame-
work based on the existing multi-level control hier-
archy. At each level of the hierarchy, a constrained
optimization which reflects the economic objective
is performed. The active constraints recorded in the
optimization process are treated as the goal of im-
provement in the lower levels. Consequently the con-
straints in each layer which limit the performance of
the plant are isolated. The retuning decision is made
based on the result of optimization of an economic
metrics. In this manner, the benchmarking problem
becomes not only manageable but also meaningful.

1 Introduction

Benchmarking is first and foremost a tool for im-
provement, achieved through comparison with the
best within the field. The purpose of a benchmarking
study is not only comparing for the sake of evalua-
tion, but also looking for the best ways to achieve im-
provements. Nowadays, manufacturing and process
industries are competing globally. A few percentage
increase in the profitability will have a huge impact
on the success of a company. This recent focus on
controller benchmarking is motivated by the impor-
tance that control systems have in enabling compa-
nies to achieve goals related to quality, safety and as-
set utilization.

Controller benchmarking has been an active research
area for the recent ten years [2, 8, 11]. This recent
resurgence of interest in control loop performance as-
sessment is due to the work of Harris [7]. In this pa-
per, Harris proposed the use of closed-loop data to
evaluate and diagnose controller performance using

minimum variance control (MVC) as a benchmark-
ing metric. Since the minimum variance controller
achieves the minimum output variance among all lin-
ear controllers, its performance was used as a lower
bound to assess the performance of single loop con-
trollers. This idea was further developed in [2, 3].

Most of available results are for the benchmarking of
SISO systems. In comparison with SISO benchmark-
ing, the effort needed to benchmark a MIMO system
grows substantially with the size of the plant. There
are two major problems associated with benchmark-
ing MIMO systems. The first one is the coupling
between loops of the system. Since the interaction
between loops is inherent in the process, it has to
be tackled directly. The other problem is the total
number of loops contained in such a system. In a
typical continuous process plant, there are hundreds
to thousands of control loops. Identifying the loops
which have the biggest impact on the economic per-
formance of the plant and subsequently improve its
performance will definitely improve the performance
of the plant.

The rest of the paper is organized as follows: in sec-
tion two, we present a brief introduction to the con-
troller benchmarking practice. The desirable prop-
erties of benchmarking metrics are also discussed. A
benchmarking framework based on economic returns
is presented in section three. In section four, we per-
form a benchmarking exercise on a crude oil separa-
tion system. The paper is concluded in section five.

2 Controller benchmarking

When a plant was commissioned, the controllers
were designed to perform the required specifica-
tions. However, as time goes by, the changes in
the plant dynamics, disturbance characteristics, per-
formance requirements, wear and tear of the con-
trollers, improper retuning (detuning) of controllers;
all these lead to the deterioration of the process’s per-
formance. Estimates of the percentage of industrial
process controllers with performance problems are
surprisingly high [9] - various studies indicate that
anywhere from66% to 80% of controllers are not
performing as well as they should [10]. These con-
trollers can have a significant detrimental effect on



plant profitability, both in terms of increased product
variance and increased reaction times.

In order to tackle the above mentioned problem, con-
troller benchmarking is employed to identify the un-
der performing loops and suggest the best way of
improvement. The idea of controller benchmarking
stems from the practice of business benchmarking
which was initiated in the early seventies by Xerox.
Its focus is on the improvement of economic return
of the critical processes. One distinctive feature of
controller benchmarking is that special attentions are
paid to the computation of meaningful benchmarks
and the cost and benefits of improvements. In the
case of controller benchmarking, we are not only in-
terested in maintaining the current performance, but
also interested in improving the performance to the
optimal level. Designing a suitable controller en-
sures the success of controller benchmarking prac-
tice. However, controller benchmarking is more than
a controller redesign practice. The decision for con-
troller redesign is only justified by the results from
the systematic analysis of the current performance.

2.1 The selection of benchmarking metrics

In order to analyze the performance of current sys-
tem, a set of metrics is needed. There are different
kinds of measurements which can indicate different
aspects of controller performance. However, not all
these measurements are suitable for the benchmark-
ing purpose. Ideally a controller assessment metric
should have the following attributes:

1. Controller oriented.

• Independent of disturbance or set-point
spectrum.

• Sensitive to detuning and process model
mismatch or equipment problems.

2. Easily obtainable

• Does not require plant tests.

• Able to be automated.

• Requires minimum specification of pro-
cess dynamics.

3. Objective and accurate

• The confidence interval of the metric
should be provided or the accuracy can be
tested by plant data.

• Absolute or non-arbitrary measure.

4. Improvement indicator

• Realistic and achievable under the physi-
cal constraints.

Figure 1: Increasing economic performance by the
reduction of variance

• Indicative of why the controller is per-
forming poorly.

• Measures the improvement in profit due to
the controller.

It is a stringent requirement for any benchmarking
metrics to possess all these attributes. But as a guide-
line, any benchmarking metrics to be used should
possess as many above mentioned attributes as possi-
ble. These guidelines can also be used as a reference
when selecting a benchmarking metric.

2.2 MVC benchmark

In this subsection, we use MVC benchmark to show
the points raised above. The performance of a pro-
cess control loop can often be assessed in terms of the
variance of the controlled variable, since it indicates
the consistency of the product quality. A lower vari-
ance also implies the possibility to move the set-point
to the limiting boundary (see figure 1), resulting in in-
creased economic reward. This is a major reason why
so many efforts are focused on MVC benchmarking
activities.

Assume that the system is a minimum phase system
and its dynamics can be represented as:

y(i) = z−k B(z−1)
A(z−1)

u(i) +
C(z−1)
A(z−1)

d(i) (1)

wherek is the process time delay. Under the assump-
tion of zero set-point, the cost function to be mini-
mized is the expected value of output variance:

J = E{y2(i + k)} (2)

The minimum variance controller was derived in [1]:

Cmv(z−1) =
G(z−1)

B(z−1)F (z−1)
(3)

while G(z−1) andF (z−1) are the solution of the fol-
lowing Diophantine equation:

C

A
= F + z−k G

A



with deg F = k − 1 anddeg G = max(deg A −
1, deg C − k).

While the MV controller requires the specification of
process and disturbance transfer functions, Desbor-
ough and Harris [2] showed that equation (2) can be
determined using only closed-loop data and the infor-
mation of process time delay. The MVC benchmark
has many desirable theoretical and practical proper-
ties. For example it is data-driven and can be simply
automated. Theoretically, this estimation also repre-
sents a lower bound on what can be achieved by any
linear controller.

But it may fail at requirement (1) - it gives varying
results depending on the actual disturbance that en-
ters the process and is not always sensitive to pro-
cess model mismatch. It also fails at requirement(4)
- since the benchmark is usually not achievable. Nev-
ertheless, MVC benchmarking is widely used due to
its simplicity and the minimum requirement fora
priori knowledge about the system.

Controller benchmarking based on MVC metric also
illustrates the major difference between controller
benchmarking and controller design. In the case
of designing a minimum variance controller, a full
model of the plant is required. For controller bench-
marking, there is no such requirement in the analyz-
ing phase. The accurate model is only needed after
the decision has been made that a retuning of the con-
troller is really needed.

3 Controller benchmarking based on
economic metrics

As discussed in the previous section, the MVC
benchmark can be derived directly from the closed
loop data. Based on this, the performance gap be-
tween the current controller and the ‘ideal’ controller
can be obtained. Although it is desirable to minimize
the output variance, MVC benchmark alone does not
indicate any economic reward due to the reduction of
output variance. Based on a MVC benchmark alone,
the re-tuning of controller is not justified.

In a typical continuous process plant, there are hun-
dreds to thousands of control loops. It is impossible
and impractical to benchmark each of them. The pri-
ority should be put on finding a set of control loops
which could generate the biggest economic returns
by retuning. We propose to use economic metrics
directly to measure the process performance. From
this analysis, we are trying to find which part of the
controller limits the process performance. The idea
is similar to the so calleddebottleneckingwhich was
widely used in business benchmarking practice.

3.1 Loop prioritization based on economic met-
rics

Although a plant may consist of thousands of control
loops, it can always be represented in multi-level hi-
erarchy based on control functions, seee.g. figure 2,

Figure 2: A outline of control hierarchy

Figure 2 shows a conventional control structure on
the left for Unit 1 and a model predictive control
structure on the right for Unit 2. At the top of the
structure a plant-wide optimizer determines optimal
steady-state settings for each unit in the plant. These
may be sent to local optimizers at each unit which
run more frequently or consider a more detailed unit
model than is possible at the plant-wide level. The
unit optimizers compute optimal economic steady-
states and pass these to the dynamic constraint con-
trol systems for implementation. The dynamic con-
straint control must move the plant from one con-
strained steady state to another while minimizing
constraint violations along the way. In the conven-
tional structure this is accomplished by using a com-
bination of PID algorithms, Lead-Lag (L/L) blocks
and High/Low select logic. In the MPC methodol-
ogy this combination of blocks is replaced by a sin-
gle MPC controller. At the bottom of the hierarchy
are the basic dynamic control loops used for tracking
and regulation.

At the top two levels of the control hierarchy,
static/dynamic optimization is involved to optimize
some pre-specified economic metrics. If MPC con-
troller was used in the third level, then another con-
strained dynamic optimization would also be re-
quired. An important characteristic of these opti-
mizations is that they are all constrained optimiza-
tion problems. Most of the constraints come from
the lower levels of the hierarchy. For example, the
constraints of MPC controllers come from the regu-
latory level, while the limitations of MPC controller



has to be taken into consideration when a high level
economic optimization is performed.

A typical static optimization problem can be written
as:

minys,u J∗(ys, u)
s.t. y = fs(u), umin ≤ u ≤ umax

ymin ≤ ys ≤ ymax, g(ys, u) ≤ 0
(4)

The model used is a static model andJ∗(ys, u) is a
predefined economic metric. The constraints on the
system input and output come from the lower level of
the hierarchy. Depending on the type ofJ∗(ys, u), in
many cases, the optimal solution for (4) is obtained
on the boundary of the constraints, and these con-
straints are called ‘active constraints’, see figure 3.

Figure 3: An illustrative solution for a static opti-
mization

The constraints in a plant can be classified into two
types:

• Hard constraints - the ones that can not be
changed by re-tuning the controller.

• Soft constraints - the ones that can be changed
by controller tuning.

From figure 3, it is not hard to find that the active
constraint limits the achievable value forJ∗(ys, u).
If the active constraint is a soft one, then by push-
ing this constraint outward, a better economic per-
formance can be expected. It is natural to ask the
following questions:

1. Can these constraints be pushed further?

2. Do we need to re-tune the controller?

The first question can be answered by using control
loop benchmarking techniques such as MVC bench-
marking . This information provides guideline on
which part of the plant should be investigated. The
second question is more involved, and can be con-

verted into another optimization problem:

maxC ∆J∗(y, u)− Jc(y)
s.t. ∆J∗(y, u)− Jc(y) ≥ 0
y(k + 1) = f(y(k), y(k − 1), . . . , u(k), u(k − 1), . . .)
umin ≤ u ≤ umax, y′min ≤ y ≤ y′max,
g(y, u) ≤ 0

(5)
where∆J∗(y, u) is the economic benefit obtained
from pushing constraints outward through controller
retuning, whileJc(y) is the cost involved in retuning
the controller. Correct definition ofJc(y) is a diffi-
cult problem, which should be defined by discussions
with the industrial partners. Another effective way of
definingJc(y) is through economic auditing.

Equation (5) is actually a controller benchmarking
metric. It provides a link between economic bene-
fit and the classical benchmarking techniques such as
MVC benchmarking. By focusing on the active con-
straints obtained from (4), we only need to bench-
mark the subsystems (or control loops) related to
them. The number of control loops that need to be
investigated can be significantly reduced. The bench-
marking problem becomes not only manageable but
also meaningful. Furthermore, from the solution of
(5), the loop prioritization is achieved, the retuning
of the identified loops will definitely bring the maxi-
mized economic benefit.

In (5), the term∆J∗(y, u) can be obtained easily
from (4) by relaxing the constraints. It can be easily
computed by using the economic optimizer already
installed in the plant. The termJc(y) can be hard to
compute, which makes (5) difficult to solve. How-
ever, if we impose a restriction that the controller
to be re-tuned keeps the original structure, then ap-
plying the optimal controller simply means updating
the controller parameters. In this case,Jc(y) can
be set to zero. The optimization problem would be
greatly simplified. Some recent results on restricted-
structure controller design can be found in [4, 5]. In
summary, the benchmarking process based on eco-
nomic metrics is illustrated in figure.4.

4 Controller benchmarking of a oil sep-
aration system

4.1 Process description

The separation system is designed to process reser-
voir fluids [6]. Crude oil, flash gas and water are
separated in a separation train comprising three sepa-
ration vessels (representative of the three-stage sepa-
ration process) and then passed downstream to other
process units. The inflow of reservoir fluids into this
separation train can be described as oscillatory with
high amplitude and can be regarded as a sinusoidal



Step 1: Record the active constraints from the
solutions of  (4)

Step 2: Root cause analysis: identify the control
loops responsible for the active constraints.

Step 3: Benchmarking each identified control loop, compute
the new constraint bound with restricted structure controller.

Step 4: Compute the potential economic reward
by using (4) with the new constraint bound.

Step 5: Retune the controller which maximizes
(5)

Figure 4: Controller benchmarking based on eco-
nomic metrics

disturbance, see Figure. 5. The PID control system
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Figure 5: Input Flow into separator train

associated with each separator is tasked with keep-
ing the level in the vessel constant. However, be-
cause of the sinusoidal nature of the input flow of
reservoir fluid, the existing PID solution did not meet
the requirements. The level alarm setting for both
tanks is from 0.3m (min) to 1.95m (max). A Matlab /
Simulink model of the first two stages of the separa-
tion system (high pressure (HP) and medium pressure
(MP) separators) was developed and validated using
the real plant data. The process characteristics were
obtained by linearizing this model around the nor-
mal operating conditions and using balanced model
reduction techniques[13]. One simulation with the
original PID controller is shown in Figure. 6.

4.2 Benchmarking Analysis

First a careful analysis of the process revenue gener-
ation has been carried out. It is clear that the main
process objective is to maximize production. Con-
sequently a high process up time is the most impor-
tant requirement, the estimated economic loss due to
a trip/plant shutdown is about 500,000 pounds. The
input flow oscillatory disturbance must be controlled
and not transmitted down stream to other process
units. It is also observed that the separation perfor-

Initial PID Performance Evaluation For Loop 1

0 0.5 1 1.5 2 2.5

x 10 4

 0

1.9

0.9

L
ev

el
 (

m
)

Time (sec)

(a)

Initial PID Performance Evaluation For Loop 2
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Figure 6: (a) Liquid level of HP separator (b) Liquid
level of MP separator

mance is not sensitive to the liquid level. Based on
the above analysis, an economic metric function for
a whole month is formed as following:

Jmonth = 30 ∗ (14000 ∗ σ2
flow + 350 ∗ σ2

level)
s.t. 0.3m ≤ Ll ≤ L ≤ Lh ≤ 1.95m

(6)
σ2

flow andσ2
level are the variances of the outflow and

the tank level respectively, whileLl andLh are the
soft constraints of allowable low/upper liquid levels.
The cost coefficients were obtained from steady-state
simulations and estimates provided by plant operat-
ing staff.

Because of the sinusoidal nature of the input flow,
it is impossible to haveσ2

flow andσ2
level to be zero

at the same time. In fact, keeping the flow constant
and keeping the level constant are two conflicting re-
quirements. The optimal solution of (6) reveals the
following facts:

• The level in the slugcatcher must be kept within
the physical limits to avoid plant shutdown.

• The minimum of (6) is obtained whenσ2
flow is

minimized.

• By relaxing soft constraintsLl andLh, the min-
imum of (6) can be further reduced.

In summary, the separators should be used as
surge/buffer tanks. The control objective is to
dampen the changes in output flow while keeping the
liquid level in the vessel between limits. The original
controller is trying to keep the tank level to the set-
point (i.e. Ll andLh were set around the set-point.),
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Figure 7: HP separator under proportional control

and as a result the tank is acting as a pipe with poor
flow variation damping. This controller should be re-
placed by a so called average-level controller [12].

4.3 Controller redesign based on economic met-
rics

The optimal level controller are in effect non-linear
constrained optimizers, where the objective is to min-
imize the maximum rate of change of the outlet flow
subject to the level remaining within bound [9]. Ex-
tra measurements of inflow, outlet rates are needed
to implement such a nonlinear controller. If this
new controller is to be installed, the plant has to be
shut down to install new sensors and controllers. In
this case, the termJc(y) in equation (5) is 500,000
pounds (equivalent to the cost of a shutdown). The
economic loss is so big that it would outweigh the
benefit of retuning the controller. Instead, we choose
to detune the original PID controller into a propor-
tional level controller [12]. The simulation result is
shown in figure.7. It is clear that the tank level has
been successfully regulated, the variance of flow is
about a third of the original PID controller. Further-
more, the outlet flow is smooth.

5 Conclusions

In this paper, we present a controller benchmark-
ing framework inspired by the practice of business
benchmarking. The specific features of benchmark-
ing activities are discussed. A guideline on how to
choose benchmarking metrics is presented. Since
benchmarking activity is a benefit-driven activity, we
propose to use economic metrics directly for con-
troller benchmarking. The process ofdebottleneck-
ing provides us with the vital information on which
parts of the process need to be further investigated.
By integrating low level controller benchmarking
techniques with the high level economic optimiza-
tion, we make sure that the controller benchmarking
would result in a better economic performance.
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