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Keywords: Air traffic management, aircraft conflict predic-pose a probabilistic approach to this problem. We describe the

tion, wind perturbation, Markov chain approximation aircraft motion as the solution to a stochastic differential equa-
tion and quantify the criticality of a two-aircraft encounter by
Abstract means of the probability that a conflict occurs within a certain

time horizon: the higher the probability of conflict, the more
We study the automated aircraft conflict detection problerg¥itical the two-aircraft encounter situation. The probabilistic
Specifically, we introduce a method for estimating the proBethods proposed in the literature to compute the probability
ability of conflict for two-aircraft encounters at a fixed altitudeof conflict are generally based on a simple description of the
The spatial correlation between the wind perturbations to th#craft future positions originally proposed in [13]. Specifi-
aircraft positions is taken into account. The procedure usedcally, the two aircraft positions are described as uncorrelated
estimate the probability of conflict is based on the introductidaaussian random processes whose variance grows in time.
of a Markov chain approximation of the stochastic process ddowever, the uncorrelation assumption does not seem realistic
scribing the relative position of the aircraft. and could lead to erroneous estimations in this critical appli-
cation. This is because wind is the main source of uncertainty
and it causes a correlation between the aircraft positions that
becomes stronger as the aircraft get closer.

In this paper, we deal with the problem of evaluating the Critiﬁspired by [11], we introduce a two-aircraft system model

cality of an encounter situation where two aircraft are flying §fnjch takes into account the possible correlation between the
the same altitude in a certain region of the airspace, each gfigraft positions due to the presence of wind. We assume that
trying to follow a prescribed flight plan. The encounter situgsach ajrcraft is trying to follow a flight plan (i.e., to fly at con-
tion is sa|.d to generate a “cpnfhct” |f_the two a|r_craft get closeg_tam speed along the straight lines between given timed way-
than a minimum allowed distance, i.e., 5 nautical miles (nMphints), while its actual motion may deviate from it because of
in en-route airspace and 3 nmi in airspace close to the airpoff$ferent sources of uncertainty. In particular, we assume that
The procedure used to prevent the occurrence ofa CO”_ﬂICt YRe errors in tracking the flight plan are mainly due to the wind
ically consists of two phases, namely, i) aircraft conflict dgpat affects the aircraft velocity. This leads to a compromising
tection, and ii) aircraft conflict resolution. Automated tool,ggel petween the two conflicting objectives of being realis-
are curr_ently being studied to support the air traffi_c controllq@ and at the same time still simple enough for the problem to
(ATCs) in performing these tasks. A comprehensive overvigyg computationally tractable. The inspiring model proposed in
of the methods proposed in the literature can be found in [1?1.1] is certainly interesting but too complicated as a basis to

In automated conflict detection, models for predicting the aigynceive a method for computing the probability of conflict.
craft future positions are introduced and the possibility that a

conflict would happen within a certain time horizon is evalulhe computation of the probability of conflict for the model
ated based on these models ([13]-[14]). If a conflict is pr@roposed in this paper is based on the introduction of a Markov
dicted, then a modification of the aircraft flight plans is detefhain whose state space is obtained by gridding the region of
mined in the conflict resolution phase. The objective is to avoi@e airspace where the encounter takes place. By appropriately
the predicted conflict from actually occurring, while taking int6h0osing its transition matrix, the Markov chain can be guaran-
account the cost of the resolution action in terms of delays, figfd to converge weakly to the stochastic process modeling the

consumption, deviation from the previously planned itinerarircraft relative position as the grid size approaches zero. The
etc. ([2]-[6]). probability of conflict can then be approximated by the cor-

) . S responding quantity associated with the Markov chain, which
In this paper we focus on the conflict detection issue and p@-much easier to compute. A procedure for computing the

1 Introduction



probability of conflict map (i.e., the probability of conflict as e B(x,t) is time increment independent. This implies,
a function of the current relative position of the two aircraft) in particular, that the collections of random variables
is described. This procedure is based on the assumption that {B(x,t2) — B(x,t1)}secv and{B(z,t4) — B(x,t3) }scv
the wind correlation structure is homogeneous and isotropic are independent for arty < ¢, < t3 < t4;

in space, i.e., it depends only on the aircraft distance. As ex- ,
pected, the computations show that the wind correlation effect® foranyt; < 2, {B(2,t2) - B(z, 1)}sev is an (uncount-

cannot be neglected when estimating the probability of conflict. able) collection _Of Gaussian random variables with zero
mean and covariance

The paper is organized as follows. In Section 2 we describe T
the two-aircraft model, and in Section 3 we define the problem E{[B(w,t2) = Bz, 11)][B(y, t2) — By, t1)]" }
of determining the probability of conflict based on this model. = h(l|z —yl)(t2 — t1) L2, Yo,y € U,

In Section 4, the Markov approximation scheme for estimating
the probability of conflict is presented. An example is given in
Section 5. Finally, some conclusions are drawn in Section 6.

wherels is the 2-by-2 identity matrix, and : R — R
is a continuous, decreasing function witf0) = 1 and
h(oo) = 0. In addition,h has to be non-negative definite
_ in the sense that thie-by-k matrix [h(||x; — :z:j||)]ﬁj:1 is
2 Two-aircraft model non-negative definite for arbitrany,, ..., z;, € R? and

We consider an encounter where two aircraft are flying at positive integet:. See [1] for further details.

the same altitude in a certain bounded open regioof the B(-,-) is in fact Gaussian, stationary (its finite dimensional

airspace. We refer to the two aircraft as “aircraft 1” and “air.* ./ : - .
craft 2". Since the aircraft are flying at the same altitude, trg|str|but|ons remain unchanged when the origintob< T' is

airspace can be identified wilk?. hencel C R c%anged), and isotropic in space (its finite dimensional distri-
P ' ' butions are not affected by a change of orthonormal coordinates

We focus our attention on a certain time horizbn= [0,¢¢], in U). Finally,g : U x T — R?*? is the term introduced to
where( denotes the current time instant ands a positive real modulate the variance of the air turbulence perturbations.
”“”.‘ber (possibly infinity) repres_entmg _the look-ahead tm{ﬁ/e assume that, u; andu, are known to ATC throughout.
horizon. We assume that each aircraft tries to follow a certaAn R o

. ) L . . Iso, we suppose for simplicity thgt= oI, for some constant
flight plan during the time interval’ starting from its current > 0, s0 that equations (1) and (2) can be rewritten as
position, where the flight plan for aircraftis defined through 7 ~ ™ q
a velocity functionu; : T — R2. So at any timg € T, the dXi(t) = f(X1,t)dt+ui(t)dt+odB(Xy1,t), (3)
plan of aircrafti is to fly at the constant speéfd;;(¢)|| along dX. _

. : N ) : t) = Xo, t)dt t)dt + cdB(X»,t). (4

a straight line with direction defined hy;(¢). Typically, the 2(t) F(Xs, t)dt + uz(t)dt + 0dB(Xa,1). - (4)
velocity functionsu; andu, are piecewise constant, modelingNote that the assumption that= o1, jointly with the assump-
the fact that the aircraft are generally trying to follow piecewisgon that B(-, -) is isotropic implies that the effect of the wind
linear motions specified by a series of timed way-points.  stochastic components on the aircraft positiénremains the

We start by describing the most general model. Due to the pr@@-me under any change of orthonormal coordinatés. of

ence of the wind perturbation, the actual velocity of airciaft

timet € T'is the sum ofy;(¢) and an additional term represent3  Computing the probability of conflict

ing the wind disturbance. The wind contribution can be further ] ) o
decomposed into two components: i) a deterministic term ref-this section, we describe a procedure for estimating the prob-
resenting the nominal wind velocity, which is assumed to gbility of conflict, ie., the probaplllty that one of the alrcrgft
available to ATC through measurements; and ii) a stochasggters the protection zone of radiusentered at the other air-
term representing the effect of air turbulence and errors in tRéft, based on the model introduced in the previous section.

wind speed measurements. We assume for simplicity that the nominal wind velocity field
Denote byX; the position of aircrafi. Then,X; and X, are ./ does not depend on the positionc U, i.e., (1) = f(1),
governed by the stochastic differential equations: t € T, which means that at any given time the nominal wind

field is uniform in the considered regidn of the airspace. In
dXy(t) = f(Xy,t)dt +u(t)dt + g(X1,8)dB(X1,t), (1) this case, we can incorporafét) into «;(¢) and simply set
dXo(t) = f(Xa,t)dt + ua(t)dt + g(Xa,t)dB(X2,t), (2) f(t) =0,t € T. Thus Equations (3) and (4) become

wheref : U xT — R? is a time-varying vector field off such dX1(t) = wui(t)dt+odB(X1,1), (5)
that f(z, t) is the nominal wind velocity at position at time _

t. B(-,-) is a time varying random field oi modeling (the dXo(t) = ua(t)dt +odB(Xz,1). ©6)
integral of) air turbulence perturbations on the aircraft velocityhe equation governing the relative positibh= X, — X;

and is specified by the following properties: of the two aircraft can be obtained by subtracting Equation (5)

. ) . from Equation (6), and is given by
e for eachz € U, B(x,t) is a standard two dimensional

Brownian motion; dY (t) = v(t)dt + o[dB(X2,t) — dB(X1,t)], @)



where we set £ uy — uy.

Fix X1, X, and defineZ(t) £ B(X3,t) — B(X,t). We claim
that in terms of distribution,

Z(t) ~ V2(1 = h([|X2 — X)) W (2), (8)

4 Approximation using Markov chains

We now determine an approximation of the solutidfi) to
Equation (9). The point is to discretize the state sgageanto
some grid points that constitute the state space of a Markov
chain. By carefully choosing the transition probabilities, the
solution to the Markov chain will converge weakly to that of the

whereWV (¢) is a standard two-dimensional Brownian motiorstochastic differential equation (9) as the grid size approaches

To show this, we notice first thaf(0) = W (0) = 0 and next
verify that their variances are identical. In fact, for any< ¢,

zero. Therefore, if we choose a small grid size, a good estimate
of P.is provided by the corresponding quantity associated with

by the definition ofB(-, -) we have the Markov chain, which is much easier to compute.

Fix a grid sized. We next define a Markov chaQa¢, k >

0}, whereAt > 0 is a positive constant representing the time
interval between successive jumps. We shall specify the value
for At later. Denote byZ? the integer grids scaled b,
namely, 6Z% = {(md,nd)| m,n € Z}. Each grid point
SinceW andZ are both Gaussian processes with zero means= (md, nd) in §Z? has four immediate neighbors:

Z(t) ~ /2(1 = h(| X2 — X1])))W (t), for X1, X, constant.

In our case Xy, X5 are themselves stochastic processes whose
outcomes depend 0B, hence or?Z, therefore this conclusion

is in general not true. However, since the functiois usually
very flat at]| X; — X || > r, henceh(| X, — Xo||) varies much The state space @xa¢ is S = (Uy \ D) N dZ?, which con-
more slowly thari¥/ (t), we can think ofz(|| X; — X||) as lo- sists of all of the grid points ofZ? that lie insideUy but out-
cally constant near each time instant. Therefore, Equation @€ of D. The interior ofS, denoted bys®, consists of all
still holds approximately. Given thatis a decreasing function those points inyZ? that belong taS and such that their four
with 7,(0) = 1 andh(co) = 0, Equation (8) says that the closefmmediate neighbors belong tas well. The boundary of
the aircraft get to each other, the more similar are the wind pi§-defined to bé)S = S\ S°, and is the union of two disjoint
turbations to their positions. When the aircraft are far away, thgts: S = 9Sy U 9Sp, where points indSy have at least
wind effect on each aircraft position becomes more and mdtge neighbor outside dfy, and points indSp have at least

uncorrelated. By making this approximation, we can replag8€ neighbor insideD. The transition probabilities ofja¢
Equation (7) with are such that each stated$ is an absorbing state, and start-

ing from an arbitrary state = (md, nd) in S°, the transition
dY (t) = v(t)dt + o+/2[1 — h(||]Y|])]dW (¢).

E{[Z(t2) — Z(t2)][Z(t2) — Z(t1)]"}
=[2 = 2h([| X2 — Xa|)](t2 — t1) 12
= E{[W(t2) = W (t)][W(t2) — W(t1)]"}.

q = ((m —1)4,nd),
qa = (md, (n — 1)0),

gr = ((m + 1)d,nd)
qu = (mé, (n +1)0).

probabilities are given byk(> 0):

P{Q(k+1)At = q,|QkAt =q} =

©)

If we setUy = {y = 2o — 21 € R? : 21,25 € U}, and define

kAL kALY kAt
: g , = exp(—9 crat, = q;
D to be the subset dfy corresponding to an aircraft entering p;At(q) B p(é ,i"t )C/"“Aqt q/ B @ .
the protection zone around the other aircraft, then the problem pzAt(q) = exp( & ki{ q kAt q/ =qr; (11)
of determining the probability of conflict ovér becomes: Pt (q) = exp(—dng=")/Ci2, ¢ = qa;
kAt _ kAt kAt !/ __ .
“Given the initial conditonY (0) € Uy \ D, compute pZA (g) = exp(0m, ™) /C™, 0 = qu;
. . t( ) — XkAt/CkAt q/ =q.
P{Y(t) € Dforsomet € T}, whereY is the solution to Po—\4 q a

the ordinary stochastic differential equation (9) defined on t

. » tf%e arameters in the above expression are chosen to be
open sel/y- \ D with initial conditionY (0).” P P

D is usually taken to be a closed disk of radius= 5 nmi At = A
centered around the origin. To account for the possibility that gkt _ v1 (KAL)
Y (t) hits the boundary of/y- first than it hitsD, we can choose a 202[1 — h(6v/m? + n?)] ’
Uy to be large enough and declare the situation to be safe any A
time Y (¢) wanders outside df/y-. Therefore, the quantity we et = va(k20)
Y- ' q o 2[1 — 'm2 - n2)]’
are interested in is actually the probability Bf¢) hitting D 20°(1 h(51 m? +n?)]
beforeUs: = R? \ Uy within the time intervall’, namely, At = — 4,
1 Ac2[1 — h(dv/m? + n?)]
P. =P{There exists somec T such thatr'(t) € D (10) CEAL = \FAT 4 exp(—6€F2T) + exp(6€h2T)
andY (s) € Uy forall 0 < s < t}. + eXp(—(SmlfAt) + exp((;n]q“m),

Note thatP. is a function only of the initial relative position wherev; (kAt) and vy (kAt) are the two components of the
Y (0). When we need to point this out, we wrii& (Y (0)). vectorv(kAt). A is a positive constant small enough such that



X’;At defined above is positive for ait, n and allk. In partic- ThenP®, 0 < k < ky, is a series of functions satisfying
ular, this is guaranteed ¥ < (402)~ .

(k) -
{Qxat, k > 0} is a time-inhomogeneous Markov chain sucl%gc (md, nd) =
that i) starting from a state if° at timekAt, k > 0, the chain [ p£at(q) PV (q) + piat(q) P (q)
jumps to one of its four neighbors or stays at the same stal e+p’?At(q)P§k“)(qT) +p§At(q)Pc(k+1)(qd)

T

ocation and the Gme. ana ) sates 15 ave avsoring. | 7607w S
(Snligf:)sés)eeth;(t) .aése%rr'r: time instadt¢ the chain is at statg = O: if g afijsj)
b/;m _ éE{Q(kJrl)At — QradlQiac =q),  (12) together with the initial condition
A = éE{(Q(k-H)At — Qran)(Quenar — P ) = {(1) icf)tﬁeerv?iig | (19

Qrar) " |Qrar = q}- (13)

The desired quantity is thud? = P (ms, ad).

Direct computation shows that . . .
Based on the preceding analysis, we can summarize the proce-

dure to compute an approximation Bf in (10) as follows:

prat 29 [sf‘(&f’fii)] ’

‘ CyAtat [shong™) Algorithm 1 GivenY (0) andv(t) = ua(t) — uy (t), t € T.
RS 242 [Csr(égfjm) 0 ]

a C§AtAt 0 cS|”(577§At) ' 1. Fixd > 0. Define the Markov chaifiQa:, k£ > 0} with

state spacé = (U\D)N§Z?, and transition probabilities
given by(11). ChooseAt = \é? for some) € (0, 25),

If for eaché we choosen andn such thatmd, nd) is closest e
and letky = [t/ At].

to a fixed pointy € Uy, then it can be verified that as— 0

, 2. Initialize P*7) according to Equation (16).
bimsns) — v(kAL), AFSE 5 — 2071 = h(|ly|)] L2
3. Fork = ks — 1,...,0, computeP!" from P ac-
By Theorem 8.7.1in [3, pp.297] (see also [15]), we have cording to Equation (15).

4. Choose a poin{md, nnd) in S closest toY (0) and set

6 _ p0)/=s -
Proposition 1 Suppose that the state of the Markov chain Pe = P (mo, n).

{Qrat, k > 0} is constantQra; on each time interval ) o s _
[kAt, (k + 1)At) between successive jumps. Themas 0, If 6 is sufficiently small, thenP, ~ P?. In practice, Algo-

the solution{Qxa;, & > 0} converges weakly to the solutior{ithm 1 works only for the finite-horizon case.lf = oo, then
{Y (), t > 0} to the diffusion equation (9). the iterations will take infinitely many steps. Hence a different

procedure should be adopted. A solution to the infinite horizon
case is presented in the next section under the assumption that

Because of the weak convergencedfa; to Y (¢), the proba- © IS constant from some time instant on.
bility (10) can be approximated by the probability
4.1 The infinite horizon case

5 b _ i
P =P{Qksar € 95p} = P{Qra hits 0Sp (14) We start by considering the case when the relative velacity
first than it hitsd.Sy within 0 < & < ky} between the two aircraft is constant o&rWe then study the
case when is constant from some time instant on.

for small 6. Herek; £ [t;/At] denotes the largest integenf we arrangePc(k)(mé, né), (md,nd) € S°, into a long col-

not exceeding /At (k; = oo if t; = o0), and the chain umn vector according to some fixed ordering of the points in
{Qrat, k > 0} is assumed to start from a poifibd, n6) € SS9, and denote it b{*), then Equation (15) can be written as
closest tay (0). " . "
k) _ A (k)pk+l k
Foreachk =0, ..., ky and eacly = (mé, nd) € S, define P =ATP +b (17)
for suitably definedA®) e RIS’I¥IS°l and b®) ¢ RISl
PM(q) 2 P{Qx,at € 9Sp|Qrar = g} where|S°| denotes the cardinality of°.

(&



Under the assumption thatis constantA(*) = A andb(*) = 4.2 Extension to the case when the aircraft current posi-
b, £ > 0, and Equation (17) becomes tion is uncertain

P = APV 4 b, (18) In Section 3, we formulated the problem of determining the
probability of conflict P, for a two-aircraft encounter under
A is a sparse positive matrix with the property that the sum tfe assumption that the aircraft current positions are perfectly
its elements on each row is smaller than or equal to 1, whéseown. We then introduced a procedure to compute the con-
equality holds if and only if that row corresponds to a poirftict probability map, i.e., a functio®. : Uy — [0, 1] which,
in (S9)9, the interior ofS°, namely, a point inS® whose four given the current relative positidri(0) of the two aircraft, de-
neighbors all belong t&°. On the other hand; is a positive terminesP, (Y (0)). This procedure is extended here to address
vector with nonzero elements on those rows correspondingthé case when the aircraft current positiotig(0) and X»(0)
points on the bounda§(S°) = S°\ (5°)° of S°. (henceY (0) = X5(0) — X;(0)) are not known precisely. If
Y (0) can be described as a random variable with a certain dis-
Lemma 1 The eigenvalues oA are all in the interior of the tribution py (y), y € Uy, over Uy, then the probability of
unit disk ofC. conflict can be computed zjgy P.(y)dpy (y), which actually
reduces to a finite summation if we adopt the approximation

The proof of this lemma is straightforward, hence omitted hEI%r_ocedure for estimating (y).

As a result, we conclude that
5 Anexample

Lemma 2 Consider the discrete-time linear dynamic syste . . . .
. .~In this section we consider a two-aircraft encounter and com-
that starts at some time = k; < oo and evolves backward in . . .
pute the probability of conflict by using the procedure de-

time according to Equation (18). scribed in Section 4. The main objective of this section is to
_ ) o o demonstrate through a numerical example that the correlation
o There is a uniquéP(~>) € RI®| satisfyingP">) = peqween the aircraft future positions cannot be generally ne-
AP) +b. glected when computing the probability of conflict.

e Starting from any initial valug?(*s), P(*) converges to We consider the infinite horizon case and assume that the ve-

P(—>) ask — —occ. locity functionw is constant and given by(t) = [1 0|7, ¢ > 0.

we suppose that = 1, and the spatial correlation function is
o If P() > P>, thenP®) > P> forall k < ks. given byh(d) = exp(—cd), ¥d > 0, wherec > 0 is some
< ks.

all k< ky In Figure 1 we plot the level curves of the probability of con-
flict P as a function of the initial relative position of the two
aircraft for two different values of (6 = 1, A = 1/5). We set
Uy = [-200,20] x [-50,50] andD = {y € R? : |jy|| < 3}.

Proof: P(=>) = (I — A)~'b sincel — A is invertible
by Lemma 1. Define®*) = P®*) — P(=20)  Thene*) =
Ae*t1D)  So by Lemma 1¢*) converges td) ask — —oo.
The last conclusion is a direct consequence of the fact that
components of the matriA are nonnegative. m

If (md,nd) € S is a point closest td"(0), then the element
of P(—>) corresponding téms, 7d) is the desired probabilis- |
tic quantity P° defined in Equation (14) for the infinite hori-
zon case with constant velocity Furthermore, because of ™
Lemma 2, we can estimate the speed of convergence of s,| .
tem (18) toP(—*) in the following way. Let the system start

from two initial conditions that are one an upper bound?f Figure 1: Map of the estimated probability of conflict for the
(one such example can be chosen tooben 95y and1 on  corelation functiorh(d) = exp(—cd), when the velocity func-
9Sp U §%), and the other a lower bound &f (for example, o, is constant (Left — 1; Right: ¢ = 0.01).

1 on 9Sp and0 on 39Sy U S%. Then the iterated results for

the two initial conditions will provides upper bounds and loweXote that the shape and the extension of the level curves for
bounds forP?, respectively, which converge toward each othgjiven flight plans depends on the valuecphence on the cor-
(hence taP?) as the number of iteration increases. relation structure of the wind perturbation.

720 00 80 60 40 20 0 20 %0 -8 160 -0 120 -0 80

If the velocityv(t), t € T, is constant only starting from a cer-In Figure 2, we set = 1 and plot the probability of conflict for
tain time instant, one has to first determirfe(—>°), and then the case when is piecewise constant given byt) = [1,0]%
execute Algorithm 1 replacing; with [£/At] and initializing for ¢ € [0,15], v(t) = [0,1]" for t € [15,30], andv(t) =
P overS based oP(—) [1,0] for ¢t > 30. Note that the level curves of the probability
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Figure 2: Map of the estimated probability of conflict for the

correlation functiorh(d) = exp(—d), when the velocity func-

tion is piecewise constant.

of conflict strongly depends on the aircraft flight plans.

view”, in Proc. 39th IEEE Conf. on Dec. and Con{op.
4164-4169, (2000).

[6] J. Hu, M. Prandini, and S. Sastry. “Optimal coordinated

maneuvers for three dimensional aircraft conflict resolu-
tion”, J. Guidance, Contr. and Dynayvolume 25, num-
ber 5, pp. 888-900, (2002).

[7] J. Hu, M. Prandini, and S. Sastry. “Aircraft conflict de-

tection in presence of spatially correlated wind perturba-
tions”, submitted tal. Guidance, Contr. and Dynam.
(2003).

[8] J. Kosecka, C. Tomlin, G. Pappas, and S. Sastry. “Gener-

ation of conflict resolution maneuvers for air traffic man-
agement”, IinlEEE Conference on Intelligent Robotics
and System '9&olume 3 pp. 1598-1603, (1997).

[9] J. Krozel, T. Mueller, and G. Hunter. “Free flight conflict

6 Concluding remarks

In this paper we study the problem of determining the proba-

bility of conflict for a two-aircraft encounter in the level-flight

case. We propose a simple kinematic model for the two-aircraft
system. The distinguishing feature of our model with respect
to the ones commonly adopted for developing conflict detec-
tion algorithms is that the correlation between the aircraft posi-
tions due to the wind perturbation effect is considered. We thgry
introduce an approximation scheme for estimating the proba-
bility of conflict based on a simplified version of this model,
where the nominal wind field is constant in space at each time,
and the stochastic wind components have a spatial correlatidal
structure that depends only on the distance of the aircraft. For
an extension of this work to general nominal wind field case
and the three dimensional case, see [7].
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