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Abstract 
 
For first order plus dead time models, an optimal method for 
tuning PI controllers is presented using dimensional analysis 
and numerical optimisation techniques. Considering a step 
change in setpoint, optimal equations for determining PI 
parameters are obtained through minimising the integral of 
absolute error (IAE). The optimisation process is constrained 
to guarantee a minimum Gain margin (G.M.) of 2 and a 
minimum Phase Margin (P.M.) of 60°. The proposed 
formulas can also be used for first order systems with long 
dead time. Simulation results show that the proposed method 
has a considerable superiority over conventional techniques. 
In addition, the closed loop system shows a robust 
performance in the face of model parameters uncertainties. 
 
1 Introduction 
 
In the earlier paper [16], the use of dimensional analysis in 
tuning of PID controllers for first order plus dead time 
(FOPDT) models was proposed. As an extension of this 
study, the current paper considers tuning of PI controllers for 
first order systems with dead time/long dead time. In addition, 
because gain and phase margins are often used as a measure 
of robustness [10], the optimal formulas are determined so 
that the predefined amounts for G.M. and P.M. are 
guaranteed. 
Despite the continual advances in control theory, the PI 
controller is still the most commonly used controller in the 
process control industry [2]. This is mainly due to its 
noticeable effectiveness and its simple structure which is 
conceptually easy to understand. According to the reports, 
more han 90% of the industrial controllers are PID, mostly PI, 
controllers [5,11,12]. In [3] a typical paper mill was reported 
with more than 2000 control loops while 97% of these loops 
used PI controllers. As a result, any improvement in the PI 
controller tuning methods is priceless because of its broad 
range of applications. A number of analytical and numerical 
methods have been proposed for tuning this controller since 

the 1940s, many of them reported in [1]. These methods are 
usually different in complexity, flexibility and in the amount 
of process knowledge used. Nevertheless, there is no 
generally accepted design method for this controller [2]. 
Therefore, the design of PI controllers still remains a 
challenge before researchers and engineers.  
Traditionally, PI controllers have been tuned empirically, e.g., 
by the first method of Ziegler and Nichols described in [18]. 
This method, called the “continuous cycling method” has 
been widely known as a fairly accurate heuristic method to 
determine good settings of PI and PID controllers for a wide 
range of common industrial processes [9]. It also has the 
advantage of requiring very little information about the 
process, however, it requires knowledge about the ultimate 
data which are obtained by destabilising the system under 
proportional feedback. Moreover, the method inherently leads 
to an oscillatory response in the face of a change in the 
setpoint [7, 14].   
A large number of industrial plants can approximately be 
modelled by a first order plus dead time transfer function as 
follows: 
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In order to design PI controllers for this important category of 
industrial plants, various methods have been suggested during 
the past sixty years. The second method of Ziegler and 
Nichols known as the “process reaction curve” method [19] 
and that of Cohen and Coon [4] are the most prominent 
methods mentioned in most control textbooks. Similar to the 
Ziegler and Nichols methods, Cohen and Coon technique 
sometimes brings about oscillatory responses, because it was 
designed to provide closed loop responses with a damping 
ratio of 25% [16]. However, Ziegler and Nichols methods are 
still widely used, either in their original form or with some 
modifications [1]. 
 
2 Proposed method 
 
An efficient design method should cope with a wide range of 
systems. It should satisfy the design specifications and be 



robust in the face of model uncertainties. The aim of this 
paper is to propose a set of formulas for tuning PI controllers 
for FOPDT models. Therefore, as shown in equation (2), the 
PI parameters should be defined based on the model 
parameters: 
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The problem is that it is very difficult to determine these 
functions, because each parameter of the controller is a 
function of three parameters of the model. Therefore, we 
propose to use dimensional analysis to reduce the number of 
parameters involved. Dimensional analysis is a mathematical 
tool often applied in physics and engineering to simplify a 
problem by reducing the number of variables to the smallest 
number of essential ones [20]. In other words, dimensional 
analysis is a process for eliminating extraneous information 
from a relation between quantities [17]. 
 
Definition 1: 
A dimensionless number is a pure number without any 
physical unit. Such a number is typically defined as a product 
or ratio of quantities that have units, in such a way that all 
units can be cancelled.  
 
Buckingham’s pi-theorem: 
Any equation such as 
 

.0),...,,( 21 =nxxxf  (3) 
 
with nonzero nxxx ,...,, 21 , is equivalent to an equation of the 
form 
 

.0),...,,( 21 =kg πππ  (4) 
 
where kπππ ,...,, 21  are independent dimensionless numbers. 
Here mnk −=  where m is the number of fundamental units 
used. In other words, m is the minimum number of 

nxxx ,...,, 21 , which include all the units in equation (3). 
In equation (1), the unit of dτ  and T is time. The unit of K is 

equal to 
inputofunit
outputofunit

 which is different from a plant to 

another one. K and dτ  (or T) are fundamental units and 
include all the units in equation (1). As a result, there is only 

one dimensionless number in the model, namely 
T
dτ

. Other 

dimensionless numbers for the model and the controller are: 
 

cKK  and either of 
d
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Based on Buckingham’s pi-theorem, the PI parameters are 
obtained from the parameters of the model through 

determining the second and third dimensionless numbers 
from the first one, as shown below: 
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Obviously, the functions in equation (5) can be determined 
much more easily than those in equation (2).  
Considering a step change in the setpoint, this paper aims to 
determine 1g  and 2g  so that the IAE is minimised. In order 
to ensure that the resulting system has enough robustness, two 
constraints are used to guarantee a minimum G.M. of 2 and a 
minimum P.M. of 60°. In addition, as the phase margin is 
known to be related to the damping of the system, it also 
serves as a measure of performance [10].  
First, the best values of controller parameters are determined 

for any given 
T
dτ

 using genetic algorithms [6]. In order that 

the resulting formulas can also be applied to first order plus 

long dead time systems, 
T
dτ

 is changed from 0.1 to 10. Then 

the optimal values of cKK  versus 
T
dτ

 are drawn. Finally, 

1g  is determined using curve-fitting techniques. The situation 

is same for 2g  if cKK  is replaced with 
d

iT
τ

 or 
T
Ti .  

Equations (6,7) represent the proposed formulas for tuning PI 
controllers: 
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3 Simulation results 
 
In this section, the performance of the proposed method is 
compared with that of other techniques. For simplicity, the 
Cohen-Coon, first Ziegler-Nichols, second Ziegler-Nichols, 
refined Ziegler-Nichols, Lee-Edgar, Hagglund and proposed 
methods are abbreviated to C.C., Z.N.1, Z.N.2, R.Z.N., L.E., 
Hag. and Pro., respectively.  
For the first example, the performance of the proposed 
method is compared with that of the C.C., Z.N.1, Z.N.2, 
R.Z.N. [9] and L.E. [13] techniques.  
 
Example 1: 
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The results of the comparison are shown in Table 1. The 
worst response is given by the C.C. method. Since the 
proposed method has the least percentage of overshoot and 
the highest phase margin and acceptable values of settling 
time and gain margin, it gives the best performance.  
 

 C.C. Z.N.1 Z.N.2 R.Z.N. L.E. Pro. 

cK  1.88 1.8 1.71 0.73 1.45 1.27 

iT  0.83 1.5 1.45 0.69 1.16 1.17 

P.O. 55.3 21.28 18.36 13.03 15.68 7.54 

sT  6.9 5.24 3.54 4.58 3.68 3.81 

G.M. 1.58 1.91 2 3.73 2.27 2.58 
P.M. 29.08 51.61 53.6 53.19 54.3 59.95 

 
Table 1: Comparison of the performance of different methods 

in controlling )(1 sG . 
 

Figure 1 shows the closed loop step responses resulted from 
the R.Z.N., L.E. and proposed methods. 

 

 
Figure 1. Closed loop step response resulted from applying 

the R.Z.N., L.E. and proposed methods to )(1 sG . 
 
Example 2: 
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In order to determine the PI parameters suggested by the 
Z.N.1 and R.Z.N. methods, first uK  and ω  are determined 
from the following equations: 
 

.
1

)14(136
2

22

+

++
=

ω

ωω
uK  (10) 

 
.)2(2)6()( 111 πωωωω =+++ −−− tgtgtg  (11) 

 

In order to use the C.C., Z.N.2 and proposed techniques to 
obtain the PI parameters, )(2 sG  is approximately modelled 
with a FOPDT model, using half rule [15]. 
 
Half rule: 
Let the original model be:  
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where nβββ ≥≥ ...21  and mααα ,...,, 21  are positive values. 
Then the FOPDT is given by: 
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Using half rule, the approximate model for )(2 sG  is given 
by: 
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Table 2 shows the results of the comparison.  
 

 C.C. Z.N.1 Z.N.2 R.Z.N. Pro. 

cK  1.34 1.59 1.26 0.71 0.98 

iT  6.9 14.47 15 6.6 8.84 

P.O. 46.08 20.44 3.17 11.19 10.93 

sT  73.4 54.7 61.8 33.1 40.1 

G.M. 1.72 1.89 2.4 3.18 2.65 
P.M. 31.15 48.83 67.19 56.35 58.32 

 
Table 2: Comparison of the performance of different methods 

in controlling )(2 sG . 
 
The response of the C.C. method is again the worst, while the 
performance of the Z.N.2, R.Z.N. and proposed techniques 
are the best. Figure 2 shows the closed loop step responses 
resulted from the Z.N.2, R.Z.N and proposed methods. 
Although the response given by the Z.N.2 method shows the 
least overshoot, it has the biggest undershoot and longest 
settling time. The percentage of overshoot and phase margin 
of the proposed method are slightly better than those of the 
R.Z.N. From settling time and gain margin points of view, the 
response of the R.Z.N. is better than that of the proposed 
method, however, the proposed technique suggests a faster 
response with a smaller rise time. 



 
Figure 2. Closed loop step response resulted from applying 

the Z.N.2, R.Z.N. and proposed methods to )(2 sG . 
 
Example 3: 
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This example indicates a system with long dead time. Control 
of systems with long dead time is difficult [1]. For this 
example, the performance of the proposed method is 
compared with that of the C.C., Z.N.1, Z.N.2, R.Z.N. and 
Hagglund [8] techniques to show the effectiveness of the 
proposed method when facing with such systems. The results 
of the comparison are shown in Table 3. 
 

 C.C. Z.N.1 Z.N.2 R.Z.N. Hag Pro. 

cK  0.17 0.47 0.09 0.38 0.25 0.35 

iT  2.87 18.66 30 5.61 3.9 5.22 

P.O. 3.38 0 0 1.99 1.34 1.23 

sT  45 182 1362 45.2 25.7 45.7 

G.M. 2.83 2.18 11.5 2.13 2.58 2.22 
P.M. 61.42 100.01 93.27 66.07 62.83 65.2 

 
Table 3: Comparison of the performance of different methods 

to control )(3 sG . 
 

The responses resulted from Z.N.1 and Z.N.2 methods are 
very slow, however, all of the remaining methods show good 
responses. The response of the Hag. method has the least 
settling time, while the least percentage of overshoot comes 
from the proposed method. From G.M. and P.M. points of 
view, the C.C. and R.Z.N. techniques are the best, 
respectively.  
 
4 Robustness studies 
 
In order to investigate the robustness of the mentioned 
methods in the face of model uncertainties, the model 

parameters in )(1 sG  and )(3 sG  are deviated as much as 20% 
of their nominal values. The worst case is related to an 
increase of 20% in K and dt and a decrease of 20% in T [16]. 
Considering )(1 sG , the perturbed model is given by: 
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Table 4 shows the results of the comparison. 
 
 C.C. Z.N.1 Z.N.2 R.Z.N. L.E. Pro. 

cK  1.88 1.8 1.71 0.73 1.45 1.27 

iT  0.83 1.5 1.45 0.69 1.16 1.17 

P.O. 65.79 60.55 27.07 51.83 37.68 

sT  17.44 13.28 5.05 9.25 6.03 

G.M. 1.19 1.24 2.27 1.41 1.6 
P.M. 

Unstable 
closed 
loop 
system 18.71 22.9 44.22 31.27 41.13 

 
Table 4: Comparison of the performance of different methods 

in controlling )(1 sG
∧

. 
 

Facing with model uncertainties, the closed loop system 
resulted from the C.C. controller parameters is unstable, while 
the Z.N.1 and Z.N.2 methods resulted in highly oscillatory 
responses. Among the remaining techniques the performance 
of the proposed method is acceptable, whilst the best and 
worst responses are related to the R.Z.N. and L.E. techniques, 
respectively. 
Considering )(3 sG , the perturbed model is given by: 
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The results of comparison are shown in Table 5.  
 

 C.C. Z.N.1 Z.N.2 R.Z.N. Hag Pro. 

cK  0.17 0.47 0.09 0.38 0.25 0.35 

iT  2.87 18.66 30 5.61 3.9 5.22 

P.O. 26.08 0 0 38.6 27.29 34.75 

sT  71.7 153 1139 85 77.4 84.2 

G.M. 2 1.77 9.37 1.61 1.87 1.67 
P.M. 47.68 97.42 93.54 49.88 48.34 49.42 

 
Table 5: Comparison of the performance of different methods 

in controlling )(3 sG
∧

. 

 
While the C.C. method shows the highest degree of 
robustness and gives the best response, Z.N.1 and Z.N.2 
methods bring about sluggish responses. The proposed, 
R.Z.N., and Hag. methods show relatively robust 
performances and give acceptable responses. 



5 Conclusions 
 
In this paper an optimal technique for tuning PI controller 
parameters for FOPDT models was proposed. Dimensional 
analysis and numerical optimisation methods were used to 
simplify the procedure of obtaining optimal formulas for 
control parameters. Simulation studies for three common 
examples showed that the proposed method could deal with 

the FOPDT models over a large range of 
T
dτ

. In addition, for 

systems of higher orders which are capable of being reduced 
to FOPDT models, the performance of the method is quite 
satisfactory. Comparing the proposed method with well-
known techniques, suggested that the proposed method was 
advantageous to most of them such as Ziegler-Nichols and 
Cohen-Coon methods. In addition, robustness studies proved 
that the PI controller given by the proposed formulas was 
satisfactorily robust against model uncertainties. 
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