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Abstract

The paper considers the optimal filtering and smoothing
problems and peculiar features of their solutions when gravity
anomaly is determined from an aircraft by using precision
satellite measurements of coordinates and velocity.

1 Introduction

It is not infrequently that in practice the estimation accuracy
of processes described by stationary equations can be
increased by off-line processing, i.e., when it is possible to use
not only previous, but also subsequent, relative to a current
point, measurements. This situation occurs, for example, in
surveying gravity anomalies (GA) from a vehicle, an aircraft,
in particular. The possibilities to increase the accuracy of
gravimetric surveys depend to a great extent on the possibility
to obtain subcentimeter accuracies in determining coordinates
and rather accurate velocity by using phase and Doppler data
from a satellite navigation system (SNS) [1,2].

With the availability of precision coordinates and velocities
provided by the SNS the problem of determining GA is
reduced, as regards processing, to integration of all available
data with the aim to derive the greatest possible GA accuracy.
The difference between the second integral of the gravimeter
readings and the altitude from the SNS, and the difference
between the first integral of the gravimeter readings and the
vertical velocity from the SNS are formed in order to exclude
unknown altitude values % , vertical velocity V', and

acceleration VZ . The differential measurements can be
presented as follows [2]
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in operator form. Here g - gravity anomaly; 8g - gravimeter

errors; g% - gravimeter readings; hSNS,VZSNS - altitude and

vertical velocity from SNS; 64,8V, - the errors of SNS

measurements.

The estimation problem consists in obtaining gravity
anomalies, altitude and velocity using differential
measurements (1), (2). Usually the processing is carried out
with stationary low-frequency Butterworth filters for direct
and reverse time whose parameters (order and cutoff
frequency) are selected empirically in order to make gravity
disturbance estimation most effective [1,4]. At the same time
specifying stochastic models for g, 64,8V, and &g the

problem of gravity anomaly estimation can be formulated in
the framework of the optimal filtering and smoothing theory
[3]. However a number of questions arise. What models
should be chosen to describe satellite measurement errors and
GA? What are the procedures for optimal filtering and
smoothing algorithms and what are their peculiarities? What
is the increase in GA estimation accuracy in the smoothing
mode as compared to that in the filtering mode? What is the
benefit from integrated use of altitude and velocity?

It is the discussion of these questions that this paper is
devoted to.

2 Statement of optimal filtering and smoothing
problems and the algorithms for their solution
As a rule, time-invariant models are used in describing errors
of satellite measurements and gravity anomalies [1-2]. Let an
n - dimensional vector x and the corresponding m -
dimensional measurements be specified as

x(t) = Fx()+ Gw(?) , 3)

y(&) = Hx(t) +v(1), “

where ', G, H are time-independent nxn,nx p,mxn -
dimensional matrices, respectively; w(t), v(¢) -the p - and

m - dimensional zero-mean white Gaussian noises
independent of each other and x(0) . The intensities (power



spectral density) for v(¢) and w(¢) are R>0 and E (unit
matrix), respectively.

For the n - dimensional vector x or r - dimensional vector
z related to it by the equation

z=Dx,

it is necessary for the steady-state mode to derive optimal
(minimum variance) estimates and covariance matrices
corresponding to them in the filtering problem with the use of
the measurements y(t) on the interval t € (—oo,#) and in the

smoothing problem with the use of the same measurements on
the interval T e (—o0,0) . It is assumed that the matrices F',

G, H are such that there exits a steady-state solution for
these problems.

As is well known, the solution of the optimal filtering problem
is determined by the Kalman filter [3]

() =(F -PHTR'M3()+ PHTR' (1) . (5

Here P is the filtering error covariance matrix that
characterizes the potential estimation accuracy in the real time
mode. This matrix can be obtained from the solution of the
following equation

PFT +FP—-PHTR'HP+GGT =0.  (6)

As consideration is being given to the steady-state mode, the
estimation algorithms of x and z can be described with the
use of nxm and rxm transfer function matrices that can be
written as

Wi(p)=(pE~F+PH R'H) ' PHTR™! (7)

Wi(p)=D(pE~F+PH R'H) ' PHTR™! (8)
Using the expression
~-F+PH'R'H=PFT P! +GGT P!

that results from (6), it is possible to present Eq. (7), (8) as
1
Wi(p)= P(pE +FT + P‘IGGTT HTR™ (9

—1
Wip)= DP(pE+FT +P_1GGT) HTR™ (10

The solution of the optimal smoothing problem can be
represented as [3]

() =(F+GGTP N2, ()-GGT P7'5(1) (1)

For the covariance matrix P°, that characterizes the potential
smoothing accuracy, i.e., estimation in the off-line mode, the
following equation holds true

(F +GGT (P! )PS +PS (F + GGT(P)*I)T =GGT .(12)

Writing the expression
2,(p)=—(pE-F -GG PHY'GGT P7'3(p)
=(-pE+F +GG"PHY1GGT P'x(p),

and taking into account (8), smoothing yields the following
nxm and r xm matrices of transfer functions for the
estimates x and z

1
W;‘(p)=(—pE+F+GGTP—1T x
(13)
1
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From (11) it follows that in the common case, in order to
derive the optimal smoothing estimate it is necessary, first, to

find the optimal estimate vector X(¢) , and then, using the

vector X(¢) as the n - dimensional measurement, process it
with the use of the algorithm (11).

3 The efficiency of smoothing in determing
gravity anomaly

In order to compare the efficiency of filtering and smoothing
algorithms used in the processing of satellite measurements of
altitude and vertical velocity in aerogravimetry, and also to
study the efficiency of their integrated processing, it is
necessary to specify some stochastic models for GA and
errors of the satellite measurements. The previous
investigations showed that the errors of the satellite
measurements of altitude and vertical velocity can be
described as the white noises with the intensities -

Ry, =(0.01m/s)’s, and R, =(0.005m)’s, respectively [2], and

the instrumental errors of the gravimeter used as the white
noise with the intensity - (SmGal)’s [8]. Gravity anomalies
can be described by a process with the spectral density [5]
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where the cs§ is the GA root mean square (RMS) value; o is

the value reverse to the correlation interval. It is not difficult
to show that this process can be described by using a third-
order shaping filter with constant coefficients, with scalar
forcing noise arriving at its input.



Under the assumptions made the problem reduces to
estimation of the five-dimensional vector x with the

components x = (Sh,SVZ,x3,x4,x5)T . Here the first two

equations have the form

Sh=238V,,

L (16)
6I/Z = g +qgwgs

where wg is the white noise that describes the gravimeter

errors, while the other three equations correspond to the
shaping filter for the equation g . The equations for the

differential measurements of coordinates and velocity will
have the form

yi®)=x;0)+v;(t), i=12. a7
Any component of the vector x, can be estimated, but of the
most interest is the anomaly value itself. Covariance matrices
for filtering and smoothing problems were calculated for the
models used. In calculations it was assumed that

Gg=3 Om@Gal. In so doing, the values of the derivative for GA

were assumed to be different - 3mGal/km, 5 and 10 mGal/km,
with the corresponding correlation intervals 1/ o - 14 km., 8.5
and 4.3 km. The velocity was assumed to be equal to

V' =50m/s, which is typical of an aerogravimetric survey.
Table 1 presents the calculation results as RMS errors in
filtering and smoothing determined with the use of the
diagonal elements of the covariance matrices.

Type of Value of derivative, mGal/km
SNS
measurements 3 5 10
Velocity 7.7/2.2 11.2/3.5 18.8/6.7
Altitude 1.8/0.3 2.7/0.5 4.5/1.0
Velocity 1.8/0.3 2.7/0.5 4.5/1.0
and altitude

Tablel. RMS errors in GA filtering (numerator) and
smoothing (denominator), mGal, for V=50m/s

The results presented in the Table allow the following
conclusions:

e the accuracy of gravity estimation in the solution of the
smoothing problem is 2—-8 times higher than the accuracy
achieved in the solution of the filtering problem;

e itis only with the use of altitude measurements for
smoothing mode that the gravity estimation accuracy can be
ensured at the state-of-the-art level of 1 mGal,

e integrated processing of coordinate and velocity
measurements from the SNS does not sufficiently increase the
accuracy of GA determination as compared to the case that
only altitude is used.

It should also be noted that the calculation results were
practically the same irrespective the white noise that describes
instrumental errors of the gravimeter was present or not.

From the preceding it follows, that the investigation of
filtering and smoothing may be further reduced to the solution
of the problem for the case of scalar measurements of the
altitude, neglecting the contribution from the instrumental
errors of the gravimeter.

4 Simplification of the problem

It is clear that the potential accuracy derived, as well as the
structure of the algorithms depend on the type of the models
used for measurement errors and GA. The models describing
measurement errors were derived from the analysis of the real
data [2]. Model (15) is widely used in the problems that
require stochastic description of GA [5]. At the same time it
makes the algorithms more complicated in comparison with
the case when a simpler model is used to describe GA. To
find out if it is possible to use a simpler description for GA in
the problem under consideration, it is reasonable to use the
approach proposed in [7] for constructing algorithms that
provide accuracy close potential. According to this approach
the transfer function of the optimal algorithm is mainly
determined by the crosspoint of spectral densities of the signal
estimated and measurement errors and the inclination of these
densities. The analysis of equation (15) shows that if ®@>>a,
the following approximation holds good for it

Sz ~q* /o (18)
The latter corresponds to the description of GA in the form of
the second integral of the white noise with the intensity
similar to that of the forcing noise in the model (15), i.e.,

2 _ 3.2
q° =10a o%-
It may be shown that for the assumption made (F=50m/s,
Ry, =(0.01m/s)’s, R, =(0.005m)’s) the density (15) in the
vicinity of its crosspoint with (x)zRVz , o*R , 1s approximated

rather accurately by Eq. (15) (see Fig. 1).



Fig 1. The spectral density of the signal and measurement errors in the problem of gravity anomaly estimation.

Taking into consideration the preceding, model (15) can be
replaced for a simpler one in the form of (18). Thus the
matrices F,G in (15) can be determined as

01 00 0
0 010 0
F= ,G=| 1, (19)
0 0 01 0
0 0 00 q
and matrix H = [1 0 0 0] in (16), i.e., measurements are

YO =x @) +v (0. (20)

The investigation of efficiency of filtering and smoothing
algorithms corresponding to (19), (20) proved to be highly
efficient. It turned out, in particular, that their accuracy is
close to potential in the conditions when the real model for
GA is supposed to be more complicated and similar to model

(15).

Using simplified models makes it possible to derive in explicit
form analytic expressions for the covariance matrices P and

PS . That makes the analysis of the GA estimation potential
accuracy for the steady-state mode of filtering and smoothing
easier [2]. Besides the explicit expression can be obtained for
transfer functions corresponding to these simplified models.
Further let us see to what the filtering and smoothing
procedures in these conditions are reduced and what their

specific features are.
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5 Analysis of the peculiarities of optimal
filtering and smoothing algorithms in
determining gravity anomalies

It can be shown that for model (19), (20) the transfer

functions (9), (13) that define filtering and smoothing
algorithms for steady-state mode have the following form

a’
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(22)

1/8
4™_order Butterworth filter; and p = (q2 / r2) ,

a:\/2(2+\/5) , B:\/5+1, 2 - intensity of the

measurement noise.

Note the following peculiarity of the derived transfer
functions. From (21) it follows that the realization of the
optimal smoothing algorithm needs no filtering estimates for
the whole state vector. As it can be concluded from (21), to
realize the optimal smoothing algorithm it is sufficient to
process the measurements (20) in direct time using the
transfer function Wpg(p) , and then to process the derived

result in reverse time using the transfer functions, j =0,1,3,
depending on what state vector component is being estimated.
Let us discuss the cause for this peculiarity. For the class of

the problems when H and D are rows, and
G - the vector, expression (14) can be modified as

W (p) = 7 p) rPGGT P (p) =

- (23)
=W. (=p)W. (p),
where
W (p)=GT P} (p), (24)
W. (-p)=G"P~'rW }(-p), (25)

— —1
W;“(p)zp(pE+FT +P‘1Q) DTR™!,

Here W, (p), W, (p) represent the transfer function for

single input single output systems, and R = 2.

The Eq. (23) establishes the relation between the transfer
functions corresponding to optimal smoothing and the transfer
functions for optimal filtering for problem under
consideration.

For the particular case that D=H ,

WSZ (P)=Ws (=p)W. (p), (26)

where

We (p) =W, (p)=G P Wi (p).  (@7)

From (23) it follows that in order to derive an estimate for any
component of the state vector, it is sufficient to process the
initial measurements (20) in the filter with the transfer

function W, (p), to store only one realization of the derived

estimates regardless of the state vector x dimension, and then
process this realization in reverse time in the filter with

transfer function W, (p) . If in this case the state vector

components that are being estimated and measured are the
same ( D = H ), the transfer functions for direct and reverse
time also identical. It is interesting to note that the transfer
function (24) corresponds to the solution of the optimal

filtering problem for the process z(¢) = rGTpP 71x(t) using

measurements y(¢) = Hx(t) + v(¢) . It is not difficult to
illustrate this using (21) for problem (19), (20).

Also note that in the problem considered the state vector
components are related to each other by a simple relation of

the form x ;. (p) = pjxl (p), j=01,2. As in smoothing

the procedures of estimate calculation and such
transformation of the initial process are commutative [6], then
in the case under consideration it may be assumed that

D = H and, consequently, Eq. (26) holds true. In other
words the problem can be reduced to derivation of a smoothed
estimate of the first component of the state vector estimated

and subsequent application of the operator p or p2 Ctis

possible to show that the equation obtained can be generalized
for the cases that the models for GA are the third, fourth and
so on integrals of the white noise.

An at last, note that the results derived give the possibility to
establish the relations between the optimal smoothing
algorithms for estimation GA and suboptimal algorithms using
the Butterworth filters.

5 Conclusion

The problem of integrated processing of data from a satellite
navigation system and gravimeter readings aimed at
determining gravity anomalies has been formulated in the
scope of the theory of optimal filtering and smoothing.

The efficiency of using optimal smoothing algorithms in
comparison with the use of filtering algorithms has been
analyzed for the models considered. It has been shown, in
particular, that acceptable accuracies in determining
anomalies can only be obtained with the use of satellite
coordinate measurements for smoothing mode, while
integration of measurements of coordinates and velocity
proved to be ineffective.

The expression establishing the relation between the transfer
functions corresponding to optimal smoothing and the transfer
functions for optimal filtering have been derived for the class
problems under consideration. It has been shown that, in order
to derive an optimal estimate, it is sufficient to process initial
scalar measurements in the filter with a specified transfer
function, to store only one realization of the derived estimates
regardless of the dimension of the state vector and then
process this realization in reverse time with the similar
transfer function. It has been shown that the first transfer
function corresponds to the optimal filter that estimates a



specified linear combination of state vector components that
describes the estimated process.

The results derived give the possibility to establish the
relations between the optimal smoothing algorithms for
estimation GA and suboptimal algorithms using the
Butterworth filters.

References

1.

Abdelmoula F. Ein Beitrag zur Bestimmung der
Erdbeschleunigungsanomalien an Bord eines
Flugzeuges. Aachen: Shaker, 2000 (Berichte aus der
Luft-und Raumfahrttechnik) Zugl.: Braunschweig,
Techn., Univ., Diss., 2000.

Stepanov O.A., B.A. Blazhnov, Koshaev D.A. The
Efficiency of Using Velocity And Coordinate Satellite
Measurements in Determining Gravity Aboard an
Aircraft. Proceeding of 9-th Saint Petersburg
International Conference on Integrated Navigation
Systems. May, 2001 Russia, St.Petersburg. 2002,
pp.255-264

Meditch J.S. Stochastic optimal linear estimation and
control. Mc. Graw Hill. New York, 1969.
Hammada Y. Optimal Versus Non-Optimal Lowpass
Filtering in Airborne Gravimetry. Proceedings of the
International Symposium on Kinematic Systems in
Geodesy, Geomatics and Navigation. Banff, Canada,
June 3-6, 1997. PP 633-640.
Jordan S.K. Self-consistent statistical models for gravity
anomaly and undulation of the geoid. J. Geophys. Res.
Vol. 77. N 20. 1972. Pp. 3660- 3670.
Harry L. Van Trees. Detection, Estimation, and
Modulation Theory. Partl. MIT. John Wiley. Inc. New
York-London-Sydney. 1968.
Chelpanov 1.B. Nesenjuk L.P., Braginsky M. V.
Computation of navigational gyro devices characteristics.
L. Sudostroyeniye 1978 (in Russian).
Blazhnov B.A., Nesenjuk L.P., Peshekhonov V.G.,
Sokolov A.V., Elinson L.S., Zhelesnyak L.K. An
integrated mobile gravimetric system. Development and
test results. Proceedings of the 9™ Saint- Petersburg
International Conference on Integrated Navigation
Systems. 27-29 May.



	Session Index
	Author Index
	369.pdf
	5 Conclusion




