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nonlinear systems, dynamic models, polynomial models. red by Pearsom®t al. [14]. Assuming that the inverse non-
linear steady-state characteristic is known, they proposed the

Abstract weighted least squares approach to identification of the linear

] o ) _dynamic system. With the least squares algorithm of Janczak
A new approach to identification of Wiener systems by using 10} a polynomial model of the inverse nonlinear element

the instrumental variables method is presented. In this apyq 5 non-inverted model of the linear dynamic system can be
proach, an inverse characteristic of the nonlinear elemeniyi§iained. In this approach, the class of identified systems is
represented by a polynomial of a known order. It is showRgyricted by an assumption that the inverse nonlinear element
that parameters of a modified series-parallel Wiener model @8 (ains the first order term. The same assumption is also ne-
timated with the least squares method are non-consistent. cIQq4ry in the adaptive least squares parameter estimation me-
obtain consistent parameter estimates, the instrumental Vagigiq proposed by Marciadt al. [13]. Their approach is based
bles method is used. The instrumental variables are generfﬁﬁ%placing the ARX model used in [9, 10] with an orthonor-
by filtering the system input with the linear dynamic mode},5| pasis functions-based one.
obtained with the least squares method. In this paper, Hi§s motivation of this work is to extend the class of identi-
known least squares identification method, based on the mqgliy \iener systems by replacing this assumption with another
fied series-parallel model, is also extended to Wiener systegis of a non-zero second order term. The main contribution of
with inverse nonlinear characteristics, which polynomial reprgs paper is a new identification algorithm for Wiener systems
sentation does not contain the first order term. Two simulatigtL+ extends the least squares based approach [9, 10] to systems
examples are also included to show the effectiveness and P{gfr inverse nonlinear characteristics, which polynomial repre-
tical feasibility of the presented approach. sentations do not contain the first order term. To solve the pro-
blem of parameter estimates non-consistency, an instrumental
1 Introduction variables (IV) method, with instrumental variables generated
via filtering the system input through a linear dynamic model
Various approaches to the Wiener system identification, whigBtzined with the least squares method, is used.
have been proposed in a few last decades, are based on cqfig-paper is organized as follows. The identification problem
lation analysis [2, 3], non-parametric regression [5, 6], line formulated in Section 2. Then a modified definition of iden-
regression [9, 10, 11, 12, 13, 14], and nonlinear optimizatigfication error is introduced in Section 3. Section 3 contains
[1, 7,8, 15, 16]. Wigren proposed two recursive identificatiogso the details of the least squares and instrumental variables
algorithms based on the prediction error method in which therameter estimation. The effectiveness of the approach is il-
characteristic of the nonlinear element is piecewise linearizg@trated with two simulation examples in Section 4. Finally, a

[15] or assumed known [16]. In these algorithms, parameigly conclusions are presented in Section 5.
estimation is formulated as a nonlinear optimization problem

and solved by the Gauss-Newton method. An alternative o Prob| = lati
the above approaches is identification of the inverse Wierfer roblem Formulation

system [14]. The inverse Wiener model is the Hammersteiynsiger a SISO Wiener system (Figure 1) composed of a li-
model, which is more convenient for identification, but not aHear dynamic system followed by a static nonlinear element.

Wiener systems are invertible. Moreover, if an inverse parallel &
model is employed, the linear dynamic system should be mini-
mum phase. Kalafatist al. [11] considered the least squares u; B(q™) Si Yi

identification of Wiener systems using a frequency sampling— ] — O f(s;)) —
filter model of the linear dynamic system and a power series
approximation of the inverse nonlinear element. The identifi-

cation of the linear dynamic system with the steady-state gain Figure 1: The Wiener system.




The outputy; to the inputu; at timei is Assume that the functiofi*l() has the form of a polynomial
of the order

—1
yi=f |:§(q_1)ui + 61} ; (1) .
(a1 F7H @) = A0 + b + 4207 + - + A0 (10)
where
Assume also thaf; # 0. Then combining (9) and (10), the
Alg ) =14a1g "+ +anaqg ", (2) output of the model can be expressed as
B(q_l) = blq_l +- 4+ ban_nb7 (3) A7 —1
o= = |29 A ) (12)
andf(-) is the nonlinear element characteristic! is the bac- YA LAg) vl
kward shift operatorgy,. . ., anq, b1,. - -, bup, are the unknown
parameters of the linear dynamic system, ant the distur- where
bance. The following assumptions are made about the system:
AN G) = Ao +A2b; + 330 + - + A0 (12)

1. The linear dynamic system is asymptotically stable.

2. The nonlinear functiorf(-) is invertible and its inverse The model (11) can be written as
nonlinear functionf —1(-) can be expressed by the poly-
nomial of the order 1

1

‘ 9 =[1-Alg ]9+ — [B(qfl)ui
FYwi) = v0 +1vi + 7202 + -+l (4) gl

R ) (13)
— A(g ") AF ()

]

The identification problem can be formulated as follows. Givereplacingg: by y; on the r.h.s. of13), the following modified
. . Series-parallel model can be obtained [9]
the sequence of the Wiener system input and output measure-

3. The polynomial orders, na andnb are known.

ments{u;,y;}, i = 1,..., N, estimate parameters of the linear R 1.
dynamic system and the inverse nonlinear element minimizing 9i=[1-A(g )]y + —[Blg
the following criterion o 73 (14)
a — Alg)ASf (wi)]-
1, q yi
M:52%7 (5)
=

The modified series-parallel model (Figure 2) differs from both
wheree; is the one step prediction error of the system ouptutt._he series-parallel m_odt_al, which contalns_the model Qf the non-
linear element and its inverse, and the inverse series parallel

. . model [10]. Applying (14), the following definition of the pre-
3 Least squares approach to identification of diction[err]or Cgﬂ{,e?n(tméuced J P

Wiener systems
e; = P
For Wiener systems, both the parallel and series-parallel po- %
lynomial models are nonlinear functions of model parameters. = A(q~!)y; — -
Moreover, the series-parallel model contains not only a model i
of the nonlinear element but also its inverse [7].

Consider the parallel model of the Wiener system given by

R(,—1
Ui = f{igq 1;uz:| , (6) WIENER SYSTEM | €i
q : :
th " B ) s
W Alg™)
A(qil) =1+ CAqufl + o+ &naqinaa (7)
B(q_l) = l;lq—l + .4 [;an—”b7 (8) MODIFIED SERIES-PARALLEL MODEL
where the estimated nonlinear functiff), the estimated po- ~ B |; <l Ag) <$¢ Af—j i) |,
lynomialsA(g~1), B(¢~!) and the estimated parameters of the 7 $T N
linear dynamic system are denoted with the hat symbdgfl(-If I,

K3

is invertible, (6) can be written as

F ) = _ ) Figure 2: Identification error definition for Wiener systems
D TP with the first order term.



3.1 Wiener system with the first order term WIENER SYSTEM | €i
f(:)

Assuming that the identified Wiener system has an invertibl% 1| Bl
inverse nonlinear characteristic with # 0, we will formulate A(g™)
the identification problem as a linear in-parameters one. The
model (14) can be written in the following linear in-parameters

y

form MODIFIED SERIES-PARALLEL MODEL
A 2 _1 - ~
9 =x. 6, (16) .| BUD) T A
72
with the parameter vectdr and the regression vectgy

Ve,

; (17) Figure 3: Identification error definition for Wiener systems
without the first order term.

R N A A N ~ ~ T
0= [al «. . Qpg ﬁl S Bnb Qp,0 @20 - - - O‘T,na}

Xi == ¥Yic1-- = Yiena Uim1 - Uimnp 1
) . ]T (18)
—Yi -~ Yi—nal >
Then (21) can be written in the linear in-parameters form (16)
where with the parameter vectd and the regression vectar defi-
. by ned as
ﬂszv k:17 7nb7 (19
T N N - 2 A N R T
9 = [al oo Qpq /61 Ce ﬂnb 01070 01370 e ar,71a] s (24)
B k=0,j=023....r , ,
Gjp = 1;% (20) X; = [— Vit = Yieng Wim1 - Ui—nb 1 (25)
ar->, k=1,...,na, j=0,2,3,...,r 3 r T
kﬁ/l J _yi"'_yifna} )
Minimizing (5), the parameter vectd can be obtained with where
the least squares (LS) method. Note that the number of para- A
: ) . R i
meters in (141 |91_a1+ @b —l_—lr(na +A1) Wh|le the number of B = Ai, k=1, .. .nb, (26)
parameters of\(¢—"'), B(¢~"), and f(:) isna + nb+ r + 1. Ao
Therefore, to obtain a unique solution, methods similar to these
proposed for identification of Hammerstein systems by Eskinat s
- k=0,5=0,3,4,...,r
et al. [4] can be employed. R 3
G=9 125 (27)
. . . dkf]a kzla ,na,j—07 37 47 , T
3.2 Wiener system without the first order term Y2

Consider a Wiener system that fulfills the following conditiongAs in the previous case, the parameter ve@toan be obtained
) o . ) minimizing (5) with the LS method.
1. The functionf(-) is invertible on the intervdk, b].

2.1 =0. 3.3 Asymptotic bias error of parameter estimates

3. 72 #0.
? Consider the polynomial Wiener system (1) containing the li-
In this case, the following modified series-parallel model carear term, i.e.;; # 0, and its modified series-parallel Wiener

be defined model (16). We will show now that the parameter estimates of
. 1. the modified series-parallel Wiener model obtained with the LS
97 =[1—A(g "]yl + —[Blg " )us method are non-consistent, i.e., asymptotically biased, even if
o 72 (21)  the additive disturbancs is
Al H)AF (i), .
where T A(g™t)’ (28)
A7) = Ao + As} + Aadl + -+ Bl (22) where; is the discrete white noise.

and the definition of the prediction error (Figure 3) has the forfheorem 1. Let 6 denote the vector of parameter estima-
e =y; — 0 tes, defined by (17) anfl is the corresponding true parameter
l l : (23) vector of the Wiener system. Then the the LS estima#,d$
= A(g"y? = —[Bla™ui — Ala™H)AF ()] asymptotically biased, i.e, does not converge (with probabi-

1
gp) lity 1) to true parameter vectd.



Proof: The outputy; of the Wiener system, defined by (1), (4)The choice of instrumental variables is a vital design problem

and (28) is in any instrumental variables approach. Clearly, the best cho-
. o ice would be the undisturbed system outputs, but these are not
= [1 — Alq )]yi + " [B(q Jui (29) available for measurement. Instead, we can employ the out-
— AT HAF () + 6_] putss$; of the linear model obtained with the LS, and define the
9 Yi L instrumental variables as
whereA f~1(y;) = f~(yi;) — 71v:. Introducing the true para- Zi=[—81... =8 naUi—1.. Uinp 1
meter vecto#, R ]T (35)
0, = [a1 el B B 00 Q2 - ar’m]T, (30) inthe case of Wiener systems with the linear term or
[ g2 52 . ,
where Zi [ Si—1- 817777,10, Uim1 - Ui 1 (36)
b -85
Br=— k=1,...,nb, (31) v “m] _ _
gt in the case of Wiener systems without the linear term. The
o7 . instrumental variableg; are uncorrelated with the system di-
- k=0,5=0,23,...,7 . -
o " sturbances, i.e£[z;¢;] = 0.
OéLk = Yi (32)
-2, k=1,...,na,j=0,2,3,...,7
a!

4 Simulation examples

the system output can be expressed as . ] ]
Example 1. The Wiener system with the first order term,

1 ; : .
Y = XZTBO ¥ = (33) v # 0._ The following Wiener system composed of the linear
Y1 dynamic system
The solution to the LS estimation problem is given by B(q~') _ 0.125¢"" —0.025¢"* (37)
) A(g™Y) 1-1.75¢~1 4+ 0.85¢2’
N N
_ b T 1 . and the nonlinear element given fys;) = arcsin(s;), |s;| <
- lN EXZXZ' 1 [N leyll ' (34) 1, was used in the simulation study. The input seque{m@¢

consisted 050000 pseudo-random numbers uniformly distri-
From (33) and (34), it follows that the difference between thauted in(—0.6125,0.6125) and the additive system disturban-
estimated and the true parameter vectdés= 6 — 6, is ces were given by, = [1/A(q¢71)]e; with {¢;} — a pseudo-
. random sequence, uniformly distributed (#0.025,0.025).

1 ex 1 X 1 en Both the LS and IV parameter estimation was performed as-

— Z XX, — Z Xy — | = inx, 6o A, — _ i ot ; ;

N < i N < N < i sumingy; = 1 andr = 7. The identification results, given in
=1 - =1 =1 Tables 1 and 2 and illustrated in Figures 4 and 5, show a consi-
11 & - 1 X derable improvement of the IV parameter estimates in compa-

= — | == Z X; X —_— Z X;€;

rison with the LS ones.

Therefore, ifN — oo

o
)
T

00, %[E(xixf)]_l [E(xie:)] #0,

o
)
T

ask [ylzq] # 0,... ,E[y:ez] 7é 0, and thust [Xiei] # 0.

o
L)
T

3.4 Instrumental variables method

erse nonlinear functions
o
S

To obtain asymptotically unbiased parameter estimates, the @-
gression vectok; should be be uncorrelated with the systeng 02|
disturbanceg,;. That is not the case if we use the modlfle(ﬁ 04l
series-parallel model. Instrumental variables methods are tEe
well-known remedy for such a situation. Applying an instru® 61
mental variables method, the parameter estimation can be pérgs i
formed according to the following scheme:

1. Estimate parameters with the LS method.
2. Simulate the linear dynamic model.

3. Estimate parameters using the IV method with the instrufigure 4: Wiener system with the first order term. The true
mental variables;. f~Y(y:) and estimated ~*(y;) inverse nonlinear functions.
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Figure 5: Wiener system with

estimation errorf ~! (y;

0.5 1 1.5

the first order term. The

) — fﬁl(yi)-

were used in the example of a Wiener system with the second
order term and without the first order term. The inverse non-
linear function f~1(y;) = 0.25 — y2? + y} is invertible for

y; > +/0.5. The input sequencgu; } contained0000 pseudo-
random numbers uniformly distributed {#.5, 5.25). The ad-
ditive system disturbances were givenqy= [1/A(¢"1)]e;
with {¢;} — a pseudo-random sequence, uniformly distributed
in (—0.025,0.025). As in Example 1, the LS and IV parameter
estimation was performed assumiiig= 1, 43 = 0 andr = 4.

The identification results, given in Tables 3 and 4 and illustra-
ted in Figures 6 and 7, confirm the practical feasibility of the
proposed approach.

W
o

n
(&
T

n
o
T

Parameter True LS v
ay 0.1250 0.1174 0.1249
as —0.0250 —0.0235 —0.0252
by —1.7500 —1.7143 —1.7526
132 0.8500 0.8308 0.8517
A1 1.0000 1.0000 1.0000
o0 0.0000 0.0252 0.0069
3 —0.1667 —0.7992 —0.1792
A4 0.0000 —0.1487 —0.0299
s 0.0083 1.2778 0.0495
Y6 0.0000 0.1649 0.0252
A7 —0.0002 —0.7438 —0.0339
Table 1: Parameter estimates.
Performance index LS v
2
Y [(aj—a;)*+(b;—b;)?] | 427 x 107+ | 2.45 x 107
j=1
7
(=) 4.36 x 107 | 7.60 x 1074
j=2
50
IS ) —f M wa)]? | 101 x 1072 | 3.83 x 1077
=1

Table 2: Comparison of estimation accuracy.

True and estimated inverse nonlinear functions

Figure 6: Wiener system without the first order term. The true

2.5

f~(y:) and estimated ~*(y;) inverse nonlinear functions.
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Example 2. The Wiener system without the first order term, _ _ _
v = 0 and~ys # 0. The linear dynamical system (37) along Figure 7: Wiener system without the first order term. The

with the nonlinear functioryf(s;) = /y/s;i +0.5, s; > 0

estimation errof ~* (y;) — /= (vs).

25



Parameter True LS \V
ai 0.1250 —0.0068 0.1238
Qs —0.0250 0.0013 —0.0247
by —1.7500 —1.4988 —1.7655
52 0.8500 0.6972 0.8725
o 0.2500 2.2297 0.3435
Y2 1.0000 1.0000 1.0000
o 1.0000 0.2590 0.9925
Table 3: Parameter estimates.
Performance index LS v
2
2 laj—a;)*+(bj—b;)?] [2.52 x 1072 | 1.87 x 1074
j=1
(o —%0)* + (va —44)?] | 2:23 x 10° | 4.40 x 1073
50 ) 5
=Y [ Ny~ )] | 6.94 x 100 | 5.28 x 1073
=1

Table 4: Comparison of estimation accuracy.

5 Conclusions

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

This paper describes a combined least squares and instrumen-
tal variables approach to identification of polynomial Wiener
systems. Itis assumed that the inverse nonlinear element is de-
scribed by a single-valued smooth function that can be approxit1]
mated by a polynomial. Assuming that the linear dynamic sys-
tem is modelled by the ARX model, a modified series parallel
Wiener model is introduced. It is also shown that least squ-

ares parameter estimates of the polynomial Wiener model af
non-consistent. To avoid the consistency problem, two identt

1

fication procedures for systems with and without the first order
term are considered. Both these procedures employ a model
of the linear dynamic system obtained with the least squargs3]
method to generate instrumental variables. Although, only one
techniqgue of instrumental variables generation is discussed in
the paper, the other known techniques can also be considered.
Two simulation examples included in the paper illustrate prac-

tical effectiveness of the proposed identification procedures.
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