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Abstract

We consider robust adaptive control designs for relative degree
one, minimum phase linear systems of known high frequency
gain. The designs are based on the dead-zone and projection
modifications, and we compare their performance w.r.t. a worst
case transient cost functional penalising theL∞ norm of the
output, control and control derivative. If a bound on theL∞

norm of the disturbance is known, it is shown that the dead-
zone controller outperforms the projection controller when the
a-priori information on the unknown system parameter is suffi-
ciently conservative.

1 Introduction

It is well known that adaptive control is suitable for physical
systems whose mathematical model contains an uncertain pa-
rameterθ. A common feature of adaptive designs is the con-
struction of a time varying parameter̂θ whose value is con-
trolled by an adaptive law. In contrast with most adaptive con-
trol mechanisms which would attempt to ‘identify’ or ‘esti-
mate’ the uncertain parameterθ of the plant, the objective of
a ‘non-identifier-based’ adaptive controller is to use certain in-
formation about the plant to find suitable methods of system
regulation. In other words, the adaptive law has no interestto
identify or estimate the unknown plant parameterθ, but merely
attempts to seek out a stabilising value ofθ̂. See eg. [1, 6, 7, 9]
and [3] for an overview.

However this method, like other adaptive controllers, is sus-
ceptible to phenomena such as parameter drift even when small
disturbances are present. To overcome such problems, a num-
ber of standard techniques are widely utilised, such as dead-
zones,σ modification, projection modification [8].

Each of these designs have advantages and drawbacks. For
example, dead-zone modifications require a-priori knowledge
of the disturbance level, and only achieve convergence of
the output to some pre-specified neighbourhood of the origin
(whilst keeping all signals bounded). In particular if the dis-
turbance vanishes, then the dead-zone controller does not typ-

ically achieve convergence to zero, the convergence remains
to the pre-specified neighbourhood of the origin. On the other
hand, projection modifications generally achieve boundedness
of all signals, and furthermore have the desirable propertythat
if no disturbances are present, then the output converges to
zero, however, an arbitrarily smallL∞ disturbance can com-
pletely destroy any convergence of the output.

This illustrates that in the case of asymptotic performance,
there are some known characterisations of ‘good’ and ‘bad’
behaviour. However, there are many situations in which we
cannot definitively state whether a projection or dead-zonecon-
troller is superior even when only considering asymptotic per-
formance. Furthermore, the known results, as with most results
in adaptive control, are confined to singular performances,ie.
without any consideration of the control signal.

In this paper we aim to compare the dead-zone and projec-
tion based adaptive controllers for finite dimensional minimum
phase linear systems with relative degree one. The compari-
son has been made with respect to a worst case non-singular
transient cost functionalP penalising both the statex and the
input u of the plant. We will identify a circumstance in which
the dead-zone controller is superior to the projection controller
with respect toP.

2 System and Basic Control Design

SupposeΣ is a SISO linear time invariant plant described by

y =
bmsm + bm−1s

m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
(u + d), (1)

whereai, bj , 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m, are unknown
constants andd(·) belongs to a class of bounded disturbances
D ⊂ L∞[0,∞). We assume that only outputy(·) is available
for measurement. A minimal state space realisation of the plant
in canonical observer form can be obtained as follows:

Σ(x0, θ, d(·)) : ẋ(t) = Ax(t) + B(u(t) + d(t)),

y(t) = Cx(t),

x(0) = x0,

(2)



in whichx(t), B,CT ∈ R
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(3)
C =

[

1 0 · · · 0
]

,

whereρ = n−m is the relative degree of the system and

θ = (a0, . . . , an−1, b0, . . . , bm), (4)

represents the uncertain system parameters. We emphasise that
by non-identifier-based control, we are not estimating unknown
parameterθ. Consider the following assumptions:

C1. The plant is minimum phase i.e.bmsm + bm−1s
m−1 +

· · ·+ b0 is Hurwitz.

C2. The plant ordern is known; the plant is of relative degree
one (i.e.ρ = 1), and the high frequency gain is positive
(i.e. bm = bn−1 > 0).

It was shown [1] that disturbance free(D = {0}) systems of
the form (2), i.e.Σ(x0, θ, d(·)) which satisfyC1,C2, are sta-
bilised by the following simple adaptive high-gain controller:

Ξ : u(t) = −δ̂(t) y(t),

˙̂
δ(t) = y(t)2 δ̂(0) = 0.

(5)

The above controller is a basis for ‘non-identifier-based’ adap-
tive controllers and̂δ(·) is called ‘tuning function’. Special
features of such controllers are their simplicity and the absence
of any plant identification mechanism. For an early survey see
[3].

3 Robust Modifications to the Control Design

It is well known that even a smallL∞ disturbance can cause a
drift of the tunable function̂δ(·), see eg. [2]. To overcome this
problem, two distinct approaches have been proposed: (i) using
an appropriate reference input, and (ii ) modifying the adapta-
tion law. In the next section we briefly explain two common
methods in modifying the adaptive law i.e. dead-zone modifi-
cation and parameter projection modification (see e.g. [8] for
details).

3.1 Dead-Zone Modification

Consider unmodified adaptive law of the form˙̂δ(t) =

y(t)2, δ̂(0) = 0. The idea of the dead-zone [10] is to modify
the adaptive law so that the adaptive mechanism is ‘switched
off’ when system outputy(·) lies inside a regionΩ0 where the
disturbance has a destabilising effect on the dynamics. The
size of the disturbance is necessary a-priori knowledge in defin-
ing the dead zone. Letdmax be thea-priori knowledgeof the

upper bound of the disturbance level. For SISO output feed-
back systems (2), the dead-zone regionΩ0(dmax) can be sim-
ply defined byΩ0(dmax) = [−η0, η0] whereη0 = %(dmax)
and% : R

+ → R
+. The standard definition of the modified

adaptive law is˙̂δ = DΩ0(dmax)(y) y(t)2, whereDΦ(y) := 0 if
y ∈ Φ andDΦ(y) := 1, elsewhere. However, as an alternative
– to avoid discontinuous switching, we use so-called ‘smooth
dead-zone’ defined by

D′
Ω0(dmax)(y) =

{

0, y ∈ Ω0(dmax)

|y| − η0, y 6∈ Ω0(dmax)
(6)

leading to the modified adaptive law of the form [3]

ΞD′(dmax) : u(t) = −δ̂(t)y(t))

˙̂
δ(t) = D′

Ω0(dmax)(y) |y(t)|, δ̂(0) = 0,

η0 = dmax,

(7)

for which, the existence and uniqueness of the solution of the
closed loop(Σ(x0, θ, d(·)),ΞD′(dmax)) follows directly from
the classical theory of differential equations. The following
theorem establishes the properties of such controllers:

Theorem 3.1. Consider the closed loop system
(Σ(x0, θ, d(·)),ΞD′(dmax)) defined by (2), (7), where
C1,C2 hold andd(·) is bounded. Assume thatdmax is such
that ‖d(·)‖L∞ ≤ dmax. Then for anyx0 ∈ R

n, the following
properties hold:

D1. There exist a unique solution(x(·), δ̂(·)) : R
+ → R

(n+1).

D2. x(·), δ̂(·), u(·) are uniformly bounded as a continuous
function ofx0, θ, dmax.1

D3. y(t)→ Ω0 ast→∞.

Proof. See [3] for the proof of D1,D3, and [11] for the proof
of D2.

3.2 Projection Modification

The projection modification [4] is an alternative method to
eliminate parameter drift by keeping the adaptive parameter
within some a priori defined bounds. This can be accomplished
by projecting the parameter estimator into a given compact
convex set containing the true parameter vector. The general
definition of the projection can be found in e.g. [5]. In our
‘non-identifier-based’ case, the definition is as follows: Define

δθ = inf{ δ ≥ 0 | A− δ̃BC is Hurwitz∀δ̃ ≥ δ}, (8)

and letδmax be a strict upper bound forδθ. Define the convex
setΠ(δmax) := [0, δmax] and letTm be the first time instance
that δ̂ hit the boundaryδmax:

Tm = inf{t ≥ 0 | δ̂(t) = δmax}. (9)

1The function has domainRn × S × [0,∞), where S := {θ |
Σ(x0, θ, d(·)) satisfies C1,C2}.



Then the projection controller is defined by:

ΞP (δmax) : u(t) = −δ̂(t)y(t)

˙̂
δ(t) = y(t)2, δ̂(0) = 0, ∀t ∈ [0, Tm],

δ̂(t) = δmax, ∀t ∈ [Tm,∞).

(10)

We denote the respective closed loop system by
(Σ(x0, θ, d(·)),ΞP (δmax)). The stability of the closed
loop is examined in the following theorem.

Theorem 3.2. Consider the closed loop system
(Σ(x0, θ, d(·)),ΞP (δmax)) defined by (2), (10) where
C1,C2 hold andd(·) ∈ L∞. Assume thatδmax is such that
δθ < δmax. Then for anyx0 ∈ R

n, the following properties
hold:

P1. The solution(x(·), δ̂(·)) : R
+ → R

(n+1) exist.

P2. x(·), δ̂(·), u(·) are uniformly bounded as a continuous
function ofx0, θ, ‖d‖, δmax.

Proof. See Theorem 4.3 in [11].

4 Statement of the Main Results

4.1 Performance

The ultimate goal in control theory is to design control laws
which achievegood performancefor any member of a specified
class of systems. Consider a systemΣ ∈ S that belongs to a
set of all admissible systems. The performance of a controller
Ξ ∈ C is measured by a cost functionalJ of some measurable
signals (state/output/input). The cost functional can be either
singular (J : X → R

+), or non-singular(J : X × U → R
+),

whereX ,U are the function spaces representing the state and
input signal spaces respectively.

Performance also can be measured in either theworst caseor
theaverage case. The worst case singular performance is for-
mulated as a supremum of the cost functional overΥ , where
Υ is a set which contains all parameters (e.g. initial values,
uncertainty, solutions of the closed loop, etc.) that distinguish
one system from another:

P : P (S)× C → R
+, P(Σ,Ξ) = sup

Υ
J(·), (11)

whereP (S) is the power set ofS.

As well as the above cases, two other classes of performance
measure can be defined, namely asymptotic and transient per-
formance. Roughly speaking, asymptotic performance shows
the ultimate behaviour of a system, while transient performance
monitors its behaviour in time. There is no specific definition
for these costs and in general any measurement that satisfies
above can be used as a cost function.

The goal of this paper is to establish a comparison be-
tween dead-zone and projection methods. We will com-
pare the performances of the controllers with respect to the

following worst case non-singular transient cost functional
P (Σ (X0(γ),∆(δ),D(ε)),Ξ), defined as follows:

P (Σ (X0(γ),Λ,D(ε)),Ξ)

= sup
x0∈X0(γ)

sup
θ∈Λ

sup
d∈D(ε)

(‖x(·)‖L∞ + ‖u(·)‖L∞ +‖u̇(·)‖L∞) ,

(12)
where

X0(γ) := {x0 | ‖x0‖ ≤ γ}, γ > 0,

D(ε) := {d(·) | ‖d(·)‖L∞ ≤ ε}, ε ≥ 0,

∆(δ) := {θ ∈ R
2n | A− δBC is Hurwitz and C1, C2 hold},

(13)
andΛ is any compact subset of∆(δ). There are elements on
the boundary of∆(δ) which do not satisfy C1,C2 and for which
the closed loop is not stable, hence generating an infinite cost.
Therefore the second supremum cannot be taken over∆(δ).

4.2 Main Result

The following theorem is the main result of the paper:

Theorem 4.1. Consider the systemΣ(x0, θ, d(·)) and the con-
trollers ΞD′(dmax) andΞP (δmax) defined by(2), (7) and(10)
respectively where C1,C2 hold. LetΛ ⊂ ∆(δ) be compact.
Consider the transient performance cost functional(12). Then
∀dmax ≥ ε, ∃δ∗max ≥ δ such that∀δmax ≥ δ∗max,

P(Σ (X0(γ),Λ,D(ε)),ΞP (δmax) )

> P(Σ (X0(γ),Λ,D(ε)),ΞD′(dmax) ).
(14)

This theorem can be interpreted as stating that if the a-priori
knowledge of the parametric uncertainty levelδmax is suffi-
ciently conservative (δmax ≥ δ∗max), then the dead-zone based
design will out-perform the projection based design.

δmaxδ∗max

Projection

Dead-zone

P

Figure 1: Statement of the main result

5 Proof of Theorem 4.1

Firstly, we show thatP = ∞ for the unmodified design (5),
(Proposition 5.3). From this we can show that the projection
modification design,ΞP (δmax) (10) has the property thatP →
∞ asδmax →∞ (Proposition 5.4). Finally we show thatP <
∞ for the dead-zone design,ΞD′(dmax) (7) (Propositions 5.5).
This suffices to establish Theorem 4.1. We do not give full



details of the proof for brevity. The complete proof can be
found in [11].

In the following, we frequently use the coordinate transforma-
tion matricesS, S−1 defined by

S :=
[

B(CB)−1, T
]

, S−1 =
[

CT , NT
]T

,

N =
[

(bm−1/bm...b0/bm)T ; I(m−1)

]

.
(15)

whereT ∈ R
n×(n−1) is a basis matrix ofker C. Observe that

S, S−1 depend continuously onθ over∆(δ), and

x̄(t) := (y(t), z(t)T )T = S−1x(t), (16)

therefore
[

ẏ(t)
ż(t)

]

=

[

ā1 − bmk(t) Ā2

Ā3 Ā4

] [

y(t)
z(t)

]

(17)

whereā1 ∈ R, ĀT
2 , Ā3 ∈ R

n−1 andĀ4 ∈ R
(n−1)×(n−1). Note

that ā1 − bmk(t) < 0, ∀t > t∗ for sufficiently largek∗. It has
been shown that̄A4 is stable [3], i.e. there exists a positive
definite matrixR = RT > 0 satisfying the Lyapunov equation
RĀ4 + ĀT

4 R = −In−1.

We also frequently use the compact notationD(k) := A −
kBC for some k > 0, and D̄ := S−1DS. Note that
D̄(k∗)T P + PD̄(k∗) ≤ −Q, where the symmetric positive
definite matricesP,Q are defined as

P =

[

1
2 0
0 R

]

, Q =

[

1 0
0 1

2In−1

]

. (18)

This can be shown by considering the Lyapunov functionV =
x̄T P x̄ and observing that

V̇ = x̄T
(

D̄(k)T P + PD̄(k)
)

x̄

≤ −(bmk(t)−M)y(t)2 −
1

2
‖z(t)‖

2
≤ x̄T Qx̄

, (19)

for all k > k∗, whereM := |ā1|+
(

‖Ā2‖+ 2‖R‖ ‖Ā3‖
)2

/2,
andk∗ := (M + 1/2)/bm.

Lemma 5.1. Consider the systeṁz = f(z) wheref is contin-
uous. Thenlimt→∞ z(t) = z∗ implies thatz∗ is an equilibrium
point.

Proof. See Lemma 4.3 in [11].

Proposition 5.1. Consider the closed loop system
(Σ(x0, θ, d(·)),Ξ) defined by(2), (5), where C1,C2 hold
andd(t) = ε for someε 6= 0. Then

‖x(t)‖ → 0 as t→∞⇐⇒ δ̂(t)→∞ as t→∞. (20)

Proof.→ ) Suppose for contradiction̂δ(t) 6→ ∞. Then
δ̂(t)→ δ̂∗ <∞, sinceδ̂(t) is monotonic by (5). There-
fore (x(t), δ̂(t)) = (0, δ̂∗) is an equilibrium point of

closed loop(Σ(x0, θ, d(·)),Ξ) by Lemma 5.1. Hence
(0, δ̂∗) must be a solution of the following equations:

x2(t)− an−1x1(t) + bm(ε− δ̂(t)x1(t)) = 0,

...

−a0x1(t) + b0(ε− δ̂(t)x1(t)) = 0, (21)

x1(t)
2 = 0.

But b0 6= 0 since system is minimum phase. We also
haveε 6= 0. Therefore(x(t), δ̂(t)) = (0, δ̂∗) cannot be a
solution of (21), hence contradiction.

← ) Define the Lyapunov functionV (x̄(t)) = x̄(t)T P x̄(t),
wherex̄(t), P are defined by (16) and (18) respectively.
DenoteB̄ = S−1B andb̄ = (P + PT )B̄. Define

ϕ(t) :=x̄(t)T
(

PD̄(δ̂(t)− k∗)

+D̄(δ̂(t)− k∗)T P
)

x̄(t).
(22)

and note that aŝδ(t) → ∞ we haveϕ(t) → −∞ for all
x̄(t) 6= 0. A routine calculation of the time derivative of
V (x̄(t)) implies:

V̇ (x̄(t))≤ − x̄(t)T Qx̄(t) + x̄(t)
T
b̄ε + ϕ(t), (23)

≤ −λ(Q)‖x̄(t)‖
2

+ ‖x̄(t)‖ |b̄| |ε|+ ϕ(t). (24)

Applying Young’s inequality to (24), we observe thatV (·)
is decreasing if

λ(Q)‖x̄(t)‖
2

2
− ϕ(t) ≥

|b̄|2 |ε|2

2λ(Q)
. (25)

Now, we claim the convergence of̄x(·): if ‖x̄(t)‖ 6→
0 as t → ∞ then either 1. lim inf

t→∞
‖x̄(t)‖ > 0 or 2.

lim inf
t→∞

‖x̄(t)‖ = 0:

1. Supposelim inf
t→∞

‖x̄(t)‖ > 0. Then there existsε′ >

0 s.t. ‖x̄(t)‖ > ε′ ∀t > 0. Sinceϕ(t)→ −∞ as
δ̂(t) → ∞, it follows by (23) thatV̇ → −∞ as
t→∞, i.e. V → −∞. This contradicts the positive
definiteness ofV (·).

2. If lim inf
t→∞

‖x̄(t)‖ = 0, then there must existsε′ > 0,

and a positive divergent sequence{tk}k≥1 such that
V̇ (x̄(tk)) > 0 and‖x̄(tk)‖ > ε′. Sinceϕ(tk) →
−∞ ask →∞, it follows that (25) holds at timetk,
hence contradiction.

Therefore‖x̄(t)‖ → 0 as t → ∞; hencex(t) → 0 by
(16).

Proposition 5.2. Consider the closed loop system
(Σ(x0, θ, d(·)),Ξ) defined by(2), (5), where C1,C2 hold
andd(t) = ε for someε 6= 0. If x(t) is uniformly continuous,
then ast→∞

‖x(t)‖ → 0, δ̂(t)→∞. (26)



Proof. Firstly we show thaty(t) → 0 ast → ∞. From this
we will prove thatδ̂(t) → ∞ and finally by Proposition 5.1,
we conclude that‖x(t)‖ → 0 ast → ∞. Suppose for contra-
diction y(t) 6→ 0. Then there must exists a positive divergent
sequence{tk}k≥1 for which y(tk) ≥ M for someM > 0.
Sincex(t) is uniformly continuous, it follows thaty(t) is uni-
formly continuous, i.e. forε = M/2

∃ω > 0 s.t. ∀τ ∈ [0, ω], ∀t > 0, |y(t)− y(t + τ)| <
M

2
.

(27)
Therefore|y(tk)−y(tk+τ)| < M/2 and sincey(tk) ≥M , we
have thaty(tk+τ) > M/2 i.e. y(t) ≥M/2 for all t ∈ [ tk, tk+
ω ]. With no loss of generality, we may assumetk+1− tk ≥ ω.
It follows that

δ̂(tk + ω) =

∫ tk+ω

0

˙̂
δ(τ)dτ =

∫ tk+ω

0

y2(τ)dτ ≥
M2

4
kω,

(28)
so δ̂(tk + ω) → ∞ ask → ∞. It follows by Proposition 5.1
that‖x(t)‖ → 0 ast → ∞, thereforey(t) → 0 by (2), hence
contradiction.

Now we havey(t) = x1(t) → 0 and we claimδ̂(t) → ∞.
Suppose for contradiction̂δ(t) 6→ ∞. Thenδ̂(t) → δ̂∗ < ∞,
sinceδ̂(t) is monotonic by (5). Substitute this into (2), we have

ẋ1(t) = x2(t)− (an−1 + δ̂∗ bm)x1(t) + bmε, (29)
...

ẋn(t) = −(a0 + δ̂∗ b0)x1(t) + b0ε, (30)

where by minimum phase property of system,biε 6= 0, i ∈
[0,m]. As x1(t) → 0, equation (30) implies thatxn(t) → ∞,
sincex(·) is uniformly continuous. It follows thatxn−1(t) →
∞, and cascading the argument yields tox1(t) → ∞ ast →

∞, hence contradiction. Thereforêδ(t) → ∞. From this and
Proposition 5.1, the claim of the proposition follows.

Proposition 5.3. Consider the closed loop system
(Σ(x0, θ, d(·)),Ξ) defined by(2), (5) where C1,C2 hold.
Let Λ ⊂ ∆(δ) be compact. Consider the transient perfor-
mance cost functional(12). Then

P(Σ (X0(γ),Λ,D(ε)),Ξ) =∞. (31)

Proof. Let x0 ∈ X0(γ), θ ∈ Λ, and choosed(t) =
ε 6= 0. Denotelim sup

t→∞

by lim . Suppose for contradiction

P(Σ(x0, θ, d(·)),Ξ) <∞. Considerẋ(t). There are two cases
either 1.lim ‖ẋ(t)‖ =∞ or 2. lim ‖ẋ(t)‖ <∞:

1. Suppose lim ‖ẋ(t)‖ = ∞, i.e.
lim ‖Ax(t) + Bu(t) + Bε‖ =∞. Therefore either

(a) lim ‖x(t)‖ = ∞, which implies that‖x(·)‖L∞ =
∞, hence contradiction, or

(b) lim ‖x(t)‖ < ∞, thereforelim u(t) = ∞ i.e.
‖u(·)‖L∞ =∞. Hence contradiction.

2. Supposelim ‖ẋ(t)‖ < ∞ i.e. x(·) is uniformly continu-
ous. Therefore by Proposition 5.2

‖x(t)‖ → 0, δ̂(t)→∞ as t→∞. (32)

Consideringlim u̇(t), we observe that

lim u̇(t) =lim
[

−y(t)3−

δ̂(t)
(

CAx(t)− CB
(

δ̂(t)y(t)− ε
))]

.

(33)
Note thatCB 6= 0 since the relative degreeρ = 1. Now
there are two possible cases, either a)δ̂(t)y(t) 6→ ε (in-
cluding the possibility thatlimt→∞ δ̂(t)y(t) does not ex-
ist), or b)limt→∞ δ̂(t)y(t) = ε

(a) Suppose limt→∞ δ̂(t)y(t) does not exist or
δ̂(t)y(t) 6→ ε as t → ∞. It follows by (32) that
‖u̇(·)‖L∞ =∞; hence contradiction.

(b) Supposelimt→∞ δ̂(t)y(t) = ε. By (32) we have that

∀δ̂∗ > 0 ∃T > 0 s.t. ∀t > T δ̂(t) > δ̂∗. (34)

Now we choosed2(t) := ε, ∀t ≤ T , d2(t) :=
−ε, ∀t > T . Note thatd2(t) = d(t) for all t ≤
T . With this choice, by continuity and causality, we
have that

lim
t→T+

x(t) = x(T ), lim
t→T+

δ̂(t) = δ̂(T ) (35)

wherelimt→T+ denotelimt→T,t>T . It follows that
(

lim
t→T+

u̇(t)

)

− u̇(T ) = 2δ̂(T )CBε ≥ 2δ̂∗bmε.

(36)
By choosing a suitablêδ∗, it follows that δ̂(T ) can
be made arbitrarily large and hence the difference
(36) is arbitrarily large. Then eitheṙu(T ) is large
or limt→T+ u̇(t) is large, therefore‖u̇(·)‖L∞ can be
made arbitrarily large. Hence contradiction.

Therefore at least one component of (12) diverges, hence

P(Σ (X0(γ),Λ,D(ε)),Ξ) ≥ P(Σ(x0, θ, d(·)),Ξ) =∞.
(37)

Proposition 5.4. Consider the closed
(Σ(x0, θ, d(·)),ΞP (δmax)) defined by (2), (10) where
C1,C2 hold. LetΛ ⊂ ∆(δ) be compact. Consider the
transient performance cost functional(12). Then

P(Σ (X0(γ),Λ,D(ε)),ΞP (δmax))→∞ as δmax →∞.
(38)

Proof. It is convenient to define

P[0,T ] (Σ(x0, θ, d(·)),Ξ)

=
(

‖x(·)‖L∞
[0,T ] + ‖u(·)‖L∞

[0,T ] + ‖u̇(·)‖L∞
[0,T ]

)

(39)



Now let M > 0. By Proposition 5.3 there existsx0 ∈ X0,
d(·) ∈ D(ε), θ ∈ Λ so that

P[0,∞)(Σ(x0, θ, d(·)),Ξ) ≥ 2M. (40)
It follows that ∃T > 0 s.t. P[0,T ](Σ(x0, θ, d(·)),Ξ) ≥ M .

Sinceδmax diverges, by choosingδmax = 2δ̂(T ), we have that
δmax > δ̂(T ), i.e. the unmodified and the projection designs
are identical on[0, T ], therefore

P(Σ (X0(γ),Λ,D(ε)),ΞP (δmax))

≥ P[0,T ](Σ(x0, θ, d(·)),ΞP (δmax)) ≥M.
(41)

Since this holds for allM > 0, this completes the proof.

Proposition 5.5. Consider the closed loop
(Σ(x0, θ, d(·)),ΞD′(dmax)) defined by (2), (7) where
C1,C2 hold. LetΛ ⊂ ∆(δ) be compact. Consider the
transient performance cost functional(12). Then

P(Σ (X0(γ),Λ,D(ε)),ΞD′(dmax)) <∞, ∀dmax > ε. (42)

Proof. Let x0 ∈ X0(γ), θ ∈ Λ andd ∈ D(ε). A direct ap-
plication of Property P2 of Theorem 3.1 guarantees the uni-
formly boundedness ofx(·), δ̂(·), u(·) as a continuous function
of V ∗(x0, θ, dmax). It follows that

u̇(t) = −D′
Ω0
|y(t)|y(t)2

− δ̂(t)C
((

A− δ̂(t)BC
)

x(t) + Bd(t)
)

,
(43)

is uniformly bounded in terms of a continuous function of
V ∗(x0, θ, dmax). Therefore

P(Σ(x0, θ, d(·)),ΞD′(dmax)) ≤M(V ∗(x0, θ, dmax)), (44)

for some continuousM(V ∗(x0, θ, dmax) < ∞. Taking the
supremum over system parametersx0, θ, d implies that for all
dmax ≥ ε,

P(Σ (X0(γ),Λ,D(ε))ΞD′(dmax))

≤ sup
x0∈X0(γ)

sup
θ∈Λ

sup
d∈D(ε)

M(V ∗(x0, θ, dmax)) <∞. (45)

Proof of Theorem 4.1.
This is a simple consequence of Proposition 5.4 and Proposi-
tion 5.5.

6 Conclusion

In this paper we have established a rigourous result which
demonstrate a situation in which we can compare the transient
performance of projection and dead-zone based controllersof
non identifier based adaptive designs. There are a number of
directions in which the result can be generalised, for example:
generalisation of the result for higher relative degrees and es-
tablishing whether the same results can be given for the alter-
native costs, for example,P = ‖x(·)‖L∞ + ‖u(·)‖L∞ . Sim-
ilarly we have developed results to demonstrate the contrary
relationship between the controllers, ie. the results which show
when the projection controllers outperform the dead-zone con-
trollers, [11].
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