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Keywords: Robust Adaptive control, Non-singular Perforically achieve convergence to zero, the convergence remain

mance. to the pre-specified neighbourhood of the origin. On therothe
hand, projection modifications generally achieve boundesin
Abstract of all signals, and furthermore have the desirable progbey

if no disturbances are present, then the output converges to
We consider robust adaptive control designs for relatigrete zero, however, an arbitrarily smadl>° disturbance can com-
one, minimum phase linear systems of known high frequenglgtely destroy any convergence of the output.

gain. _Thg designs are based on the dead-zone and PrOJECHAR jlustrates that in the case of asymptotic performance
mod|f|cat|o.ns, and we compare thelrpgrformance W.I.t. BWOL o e are some known characterisations of ‘good’ and ‘bad’
case transient cost functional pen_allsmg 1€ norm of the behaviour. However, there are many situations in which we
output, fc%ntrg_l andb contrql ierlvatlv_e._ If ?] bounﬁ onhlzb?é(; cannot definitively state whether a projection or dead-zome
norm of the disturbance Is known, .'t IS shown that the eaf?f)ller is superior even when only considering asymptoéc p
zone cgntroller gutperforms the projection controller wl!igae formance. Furthermore, the known results, as with mosttesu
a-priori information on the unknown system parameter i-suf; | adaptive control, are confined to singular performaniges,

ciently conservative. without any consideration of the control signal.

In this paper we aim to compare the dead-zone and projec-
tion based adaptive controllers for finite dimensional mimin

It is well known that adaptive control is suitable for phydic Phase linear systems with relative degree one. The compari-
systems whose mathematical model contains an uncertain $2 has been made with respect to a worst case non-singular
rameterd. A common feature of adaptive designs is the coffansient cost functiongP penalising both the stateand the
struction of a time Varying parametérwhose value is con- inputu of the plant. We W|” |dent|fy a Circumstance in Wh|Ch
trolled by an adaptive law. In contrast with most adaptive-cothe dead-zone controller is superior to the projection riet

trol mechanisms which would attempt to ‘identify’ or ‘esti-With respect taP.

mate’ the uncertain parametérof the plant, the objective of

a ‘non-identifier-based’ adaptive controller is to useaiertn- 2 System and Basic Control Design

formation about the plant to find suitable methods of system

regulation. In other words, the adaptive law has no inteestSupposer is a SISO linear time invariant plant described by
identify or estimate the unknown plant parametgbout merely

attempts to seek out a stabilising valugioSee eg. [1, 6, 7, 9]

and [3] for an overview. y =

1 Introduction
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However this method, like other adaptive controllers, is-su

ceptible to phenomena such as parameter drift even wheh smal

disturbances are present. To overcome such problems, a nuferea;,b;, 0 < i < n —1,0 < j < m, are unknown
ber of standard techniques are widely utilised, such as-deadnstants and(-) belongs to a class of bounded disturbances
zonesg modification, projection modification [8]. D C L>[0,00). We assume that only outpyf-) is available

. far measurement. A minimal state space realisation of thetpl
Each of these designs have advantages and drawbacks. i% b P

example, dead-zone modifications require a-priori knogéed @hnonical observer form can be obtained as follows:

of the disturbance level, and only achieve convergence of

the output to some pre-specified neighbourhood of the origin ~ X(z¢,0,d(-)) : @(t) = Az(t) + B(u(t) + d(t)),
(whilst keeping all signals bounded). In particular if this-d y(t) = Cxz(t), @)
turbance vanishes, then the dead-zone controller doegmot t



in whichz(¢), B,CT € R*, A € R**", and upper bound of the disturbance level. For SISO output feed-
back systems (2), the dead-zone redityid,,,.x) can be sim-

—on—1 100 0(p— 1) ply defined byQo(dmax) = [—70,70] Whereny = o(dmax)
—ap—2 0 1 0 0 brm andg : Rt — R*. The standard definition of the modified
A= oo . . B= : » adaptive law i$) = Do, q,...)(y) y(t)?, whereDg (y) := 0 if
—a; 0 0 1 by y € ®andDg(y) := 1, elsewhere. However, as an alternative
—ag 0 0 0 bo — to avoid discontinuous switching, we use so-called ‘sitnoot
g
(3) dead-zone’ defined by
c=[10 - 0],
. . Oa S Q dmax
wherep = n — m is the relative degree of the system and Dg%(d () = Y of ) (6)
e =m0, Y & Qo(dmax)
9:(a()w"aa’nflab()w'wbm)v . e .
leading to the modified adaptive law of the form [3]
represents the uncertain system parameters. We emphzsise t _ .
by non-identifier-based control, we are not estimating amkm Ep/(dmax) : ult) = —6()y(t))
arametep. Consider the following assumptions: A 2
P 9 P 3(t) = Dlgy 4oy ) ly(®)], 50) =0, (D)
C1 The plant is minimum phase i.é,,s™ + by,_1s™ ' + Mo = dmax;

+++ bo Is Hurwitz. for which, the existence and uniqueness of the solution®f th

C2. The plant order: is known; the plant is of relative degreeclosed 100p(X(xo, 0, d(-)), Eps (dmax)) follows directly from
one (i.e.p = 1), and the high frequency gain is positivéhe classical theory of differential equations. The foliogy
(i.e.by =by_1 > 0). theorem establishes the properties of such controllers:

. Theorem 3.1. Consider the closed Iloop system
It was shown [1] that disturbance fré® = {0}) systems of (Z(20,0,d(-)), Ep (dmax)) defined by (2), (7), where

the form (2), i.e.X (o, 0, d(-)) which satisfyC1,C2 are sta- ¢1 c2 hold andi(-) is bounded. Assume thal., is such
bilised by the following simple adaptive high-gain conteol 1, |d(-)||z < dmax. Then for anyz, € R™, the following

Z:ou(t) = —6(t) y(t), properties hold:

1 . ©) .
Sty =y)*  6(0)=0. D1. There exist a unique solutigm(-),d(-)) : R — R(+1),

The above controller is a basis for ‘non-identifier-basetfig D2. z(-),d(-),u(-) are uniformly bounded as a continuous
tive controllers and§(-) is called ‘tuning function’. Special function ofzg, 6, diayx.*

features of such controllers are their simplicity and theesice

of any plant identification mechanism. For an early survey 23 y(t)

[3].

— Qg ast — oo.

Proof. See [3] for the proof of D1,D3, and [11] for the proof

3 Robust Modifications to the Control Design of b2. 0

Itis well known that even a small> disturbance can cause &3.2 Projection Modification
drift of the tunable function(-), see eg. [2]. To overcome this

problem, two distinct approaches have been propospdsifg The projection modification [4] is an alternative method to

an appropriate reference input, anid tnodifying the adapta- €liminate parameter drift by keeping the adaptive paramete
tion law. In the next section we briefly explain two commop{/ithin some a priori defined bounds. This can be accomplished
methods in modifying the adaptive law i.e. dead-zone modiflY Projecting the parameter estimator into a given compact

cation and parameter projection modification (see e.g. dg] fc°NVeX set containing the true parameter vector. The genera
definition of the projection can be found in e.g. [5]. In our

details). . o R .
‘non-identifier-based’ case, the definition is as followsfine

3.1 Dead-Zone Modification 6 = inf{d > 0| A— §BCis HurwitzVs > &},  (8)

Consider unmodified adaptive law of the forﬁ(t) = and letd,,.x be a strict upper bound fdp. Define the convex

y(t)2, 6(0) = 0. The idea of the dead-zone [10] is to modifisetI(dmax) := [0, dmax] and letT}, be the first time instance
the adaptive law so that the adaptive mechanism is ‘switchéaitd hit the boundary,,..:

off’ when system outpug(-) lies inside a regioif, where the .

disturbance has a destabilising effect on the dynamics. The T = inf{t >0 | 6() = Omax}- 9)
;ize of the disturbance is necessary a-.pri.ori knowledgefimd ~ 11he function has domai®™ x S x [0,00), whereS = {0 |
ing the dead zone. Let,,, be thea-priori knowledgeof the X(zo,6,d()) satisfies C1,CP




Then the projection controller is defined by: following worst case non-singular transient cost funcion
P (2 (Xo(v),A(d),D(e)), E), defined as follows:
P(Omax) + u(t) = —0(t)y(t)
P (E (XO(V)v A7 D(e))7 E)

(0 =yt 0)=0, vt 0.T,), 10 (lellem + ()l + () e=)
. = sup sup sup (||z(-)|lgee + [[u() ||z +]|0()]2e),
0(t) = Omax, Yt € [Ty, 00). T0€EXy () BEA deD(e) ‘ “ ‘

(12)

[1]

We denote the respective closed loop system Ryhere
(X(20,6,d(-)),Ep(dmax)).  The stability of the closed
loop is examined in the following theorem. Xo(v) == A{wo | [lwoll <7}, v >0,

Theorem 3.2. Consider the closed loop system D(e) = {d() | 2”d(')”£°° = 6}_’ €2 _0’
(B(x0,0,d(-)),Zp(dmax)) defined by (2), (10) where A(d) :={0 e R*" | A— §BC is Hurwitz and C1, C2 holf
C1,C2 hold andi(-) € £>*. Assume thaf,,,, is such that (13)

8o < Smax. Then for anyz, € R", the following properties @ndA is any compact subset df(5). There are elements on
hold: the boundary ofA (&) which do not satisfy C1,C2 and for which

the closed loop is not stable, hence generating an infinge co
P1. The solutiorfz(-) 5(,)) R — RM+1D) exist. Therefore the second supremum cannot be takenAvyey.
P2. 2(-),8(-),u(-) are uniformly bounded as a continuous; 2 Main Result
function ofzo, 6, ||d||, dmax-
The following theorem is the main result of the paper:

Proof. See Theorem 4.3 in [11] - Theorem 4.1. Consider the systed(zy, 8, d(-)) and the con-
trollers Zp/ (dmax) aNAEp (dmax) defined by2), (7) and (10)
4 Statement of the Main Results respectively where C1,C2 hold. L&tC A(J) be compact.
Consider the transient performance cost functiofid). Then
4.1 Performance Vdmax > €, 367 > & such that/de. > 0%,

The ultimate goal in control theory is to design control laws —

which achieveyood performancéor any member of a specified P(3(X0(7), A, D(€)).EP (Omax) )

class of systems. Consider a syst&me S that belongs to a > P(E(X(7), A, D(€)), Ep (dmax) )-

set of all admissible systems. The performance of a coatroll (14)

= € C is measured by a cost functionalof some measurable

signals (state/output/input). The cost functional canibeee This theorem can be interpreted as stating that if the aiprio
singular(J : X — R*), ornon-singular(J : X x 4 — RT), knowledge of the parametric uncertainty levgl.. is suffi-
whereX', U/ are the function spaces representing the state aridntly conservatived,., > ¢ ..), then the dead-zone based

— max

input signal spaces respectively. design will out-perform the projection based design.
Performance also can be measured in eithemibiest caseor R

theaverage caseThe worst case singular performance is for- P

mulated as a supremum of the cost functional 6¥grwhere Projection

T is a set which contains all parameters (e.g. initial values,
uncertainty, solutions of the closed loop, etc.) that digtish
one system from another: Dead-zone

P:P(S)xC—R", P(8,Z) =sup J(-), (11)
e

>
>

whereP(S) is the power set af. Ommax Omax
As well as the above cases, two other classes of performance Figure 1: Statement of the main result

measure can be defined, namely asymptotic and transient per-
formance. Roughly speaking, asymptotic performance shows
the ultimate behaviour of a system, while transient pertoroe ©  Proof of Theorem 4.1
monitors its behaviour in time. There is no specific defimitio

above can be used as a cost function. modification designz p (dmax) (10) has the property thdt —

The goal of this paper is to establish a comparison bes asd,,.. — oo (Proposition 5.4). Finally we show th@ <
tween dead-zone and projection methods. We will come for the dead-zone desigBp/ (dmax) (7) (Propositions 5.5).
pare the performances of the controllers with respect to thkis suffices to establish Theorem 4.1. We do not give full



details of the proof for brevity. The complete proof can be
found in [11].

In the following, we frequently use the coordinate transfar
tion matricesS, S~! defined by

S:=[B(CB), 1], S'=[cT NT]", as)
N = [(bw—1/bm--b0/bm)T; Tim—1)] -

whereT € R"*("—1) is a basis matrix oker C.. Observe that

S, S~ depend continuously ahover A(J), and

x(t) = (y(t), 2()")" = S~ a(t), (16)

therefore

#)-[+5 £)(h] e

wherea; € R, AT, A3 ¢ R*~' andA4, € R®~DUx(=1) Note
thata; — b, k(t) < 0, Vt > t* for sufficiently largek*. It has
been shown thatl, is stable [3], i.e. there exists a positive
definite matrixR = RT > 0 satisfying the Lyapunov equation
RA, + ATR = —1I,_,.

We also frequently use the compact notatiogk) = A —
kBC for somek > 0, and D := S~!'DS. Note that
D(k*)TP + PD(k*) < —Q, where the symmetric positive
definite matrices?, Q are defined as

L 1 0
— 2 —
r=[d n] e=lo )

This can be shown by considering the Lyapunov funciioa:
zT Pz and observing that

(18)

V =z" (D(k)"P + PD(k)) z
1 , .. (19)
< —(bmk(t) = M)y(t)” - S|z < 27 Qz

forall k > k*, whereM := |a1| + (|| Az] + 2| R|| ||[13||)2 /2,
andk* := (M +1/2)/by,.

Lemma 5.1. Consider the system= f(z) wheref is contin-
uous. Thefim;_,, z(t) = z* implies thatz* is an equilibrium
point.

Proof. See Lemma 4.3 in [11]. O

Proposition 5.1. Consider the closed loop system
(X(z0,6,d(+)),E) defined by(2), (5), where C1,C2 hold
andd(t) = e for somee # 0. Then

|z(t)]| — 0 ast — 0o <= 6(t) — oo as t — oo.  (20)

<)

Proposition

closed loop(X(x, d,d(+)),Z) by Lemma 5.1. Hence
(0,6*) must be a solution of the following equations:

x2(t) — an—121(t) + b (e — 0(t)x1(t)) = 0,
—aozy(t) + bo(e — d(t)z1 () = 0, (21)
T (t)z = 0.

But by # 0 since system is minimum phase. We also
havee # 0. Therefore(z(t),0(t)) = (0,0*) cannot be a
solution of (21), hence contradiction.

Define the Lyapunov functiol (z(t)) = z(t)T Pz(t),

wherez(t), P are defined by (16) and (18) respectively.
DenoteB = S~'B andb = (P + PT)B. Define

p(t) =a(t)" (PDE(L) — k)

(22)
+D(5(t) — k:*)TP) z(%).

and note that a8(t) — oo we havep(t) — —oo for all

Z(t) # 0. A routine calculation of the time derivative of

V(z(t)) implies:

V()< -2t Qz(t) + (1) be + o(t),  (29)

< = NQE@I + 12O Bl [e] + o (1)- (24)

Applying Young'’s inequality to (24), we observe tHat-)
is decreasing if

Az
2

b
20(Q)

Now, we claim the convergence af(-): if ||z(¢)| 4
0 ast — oo then either 1. li%ninf lz(t)]| > 0 or 2.

li{n inf ||Z(¢)|| = O:

12 Jef®

—p(t) = (25)

1. Supposéigninf |Z(¢)|| > 0. Then there exists' >
0s.t. ||z(t)|| > € Vt > 0. Sincep(t) —» —oco as
o(t) — oo, it follows by (23) thatV — —co as
t — 00, i.e.V — —o0o. This contradicts the positive
definiteness of/(-).

2. If litm inf ||Z(¢)|| = 0, then there must exists > 0,

and a positive divergent sequeniag }>1 such that
V(z(ty)) > 0 and||z(tg)|| > €. Sincep(ty) —
—o0 ask — oo, it follows that (25) holds at time,

hence contradiction.

Therefore||z(t)|| — 0 ast — oo; hencex(t) — 0 by
(16).

O

5.2. Consider the closed loop system

(X(z0,0,d(-)),E) defined by(2), (5), where C1,C2 hold
andd(t) = e for somee # 0. If z(t) is uniformly continuous,

Proot. —) Suppose for contradiction(t) /4 oo. Then then ast — oo

5(t) — 6* < o0, sinced(t) is monotonic by (5). There-

fore (z(t),46(t)) = (0,6*) is an equilibrium point of 2] =0, 6(t) — oo (26)



Proof. Firstly we show thay(t) — 0 ast — oco. From this
we will prove thaté(t) — oo and finally by Proposition 5.1,
we conclude thallz(¢)|| — 0 ast — co. Suppose for contra-
diction y(t) 4~ 0. Then there must exists a positive divergent
sequencgty }r>1 for which y(t;) > M for someM > 0.
Sincez(t) is uniformly continuous, it follows thag(t) is uni-
formly continuous, i.e. foe = M /2

Jw > 0s.t.V7r €[0,w], VE>0, |yit) —ylt+7)| < %
(27)
Thereforgy(t)—y(tx+7)| < M/2and sinceg(t;) > M, we
have thay(t,+7) > M/2i.e.y(t) > M/2forallt € [k, tp+
w]. With no loss of generality, we may assume — tx > w.
It follows that
dr > —kuw,

tk-ﬁ—w.A tet+w
terw)= [ dnar= [T e Y -

S04(t, +w) — oo ask — oo. It follows by Proposition 5.1
that||z(t)|| — 0 ast — oo, thereforey(t) — 0 by (2), hence
contradiction.

2

0

Now we havey(t) = z1(t) — 0 and we claimj(t) — ooc.
Suppose for contradictiof(t) 4 oco. Thend(t) — 0* < oo,
sinced(t) is monotonic by (5). Substitute this into (2), we have

a1 (t) (1) — (an—1 + 0" by)x1(t) + bme, (29)

n(t) = —(ag+ 8" bo)x1(t) + boe, (30)
where by minimum phase property of systely, # 0, ¢ €
[0,m]. Asx1(t) — 0, equation (30) implies that,, (t) — oo,
sincex(+) is uniformly continuous. It follows that, 1 (t) —
oo, and cascading the argument yieldsitdt) — oo ast —
o0, hence contradiction. Therefosét) — oo. From this and

Proposition 5.1, the claim of the proposition follows. [

Proposition 5.3. Consider the closed loop system
(X(z0,6,d(-)),E) defined by(2), (5) where C1,C2 hold.
Let A C A(S) be compact. Consider the transient perfo
mance cost functiondll2). Then

r_

P(Z(XO(7>7A7D(€))’E) = 00. (31)

Proof. Let zp € Ap(y), ¢ € A, and choosed(t) =

e # 0. Denotelimsup by lim. Suppose for contradiction (2

Proposition

2. Supposéim ||i(t)| < oo i.e. z(-) is uniformly continu-
ous. Therefore by Proposition 5.2

|z(t)|| — 0, 0(t) > o0 as t —oo.  (32)

Considerindim u(t), we observe that
lim a(t) =lim [—y(t)*—

5(t) (CAx(t) —CB (5(t)y(t) - e))} .
(33)
Note thatC' B # 0 since the relative degrge= 1. Now
there are two possible cases, eitheb(@)y(t) /4 € (in-
cluding the possibility thalim,_, . 4(¢)y(t) does not ex-
ist), or b)limy .. 6(t)y(t) = €

(a) Suppose lim;_,», 0(t)y(t) does not exist or
d(t)y(t) #» east — oo. It follows by (32) that
|li(-)]| c= = oo; hence contradiction.

(b) Supposéim;_,, 0(t)y(t) = €. By (32) we have that
V6* >0 3T >0 s.t. VE>T §(t) > 6. (34)

Now we choosely(t) = €, Vi < T, da(t) :
—e, Vt > T. Note thatds(t) = d(t) for all t <
T'. With this choice, by continuity and causality, we
have that

lim §(t) = 6(T)

t—T+

lim z(t) = «(T), (35)

t—T+
wherelim; 7+ denotelim;_,7 ¢~ 7. It follows that
( lim u@)) — (T = 26(T)CBe > 26*bpe.
t—
(36)

By choosing a suitablé*, it follows thaté(7’) can

be made arbitrarily large and hence the difference
(36) is arbitrarily large. Then either(T) is large
orlim,_, 7+ u(t) is large, therefordu(-)|| z can be
made arbitrarily large. Hence contradiction.

Therefore at least one component of (12) diverges, hence

P(E(Xo(7),A,D(e)), E) = P(E(o,0,d(")), E) = <.
37)
O

5.4. Consider the closed
(1.07 97 d())v E‘P((smaX)) defined by (2)| (10) where

t—00 . C1,C2 hold. LetA C A(0) be compact. Consider the
P(X(xo,0,d(-)),Z) < oo. Consideri(t). There are two casesyransient performance cost function@?). Then
either 1.lim ||&(¢)|| = oo or 2.1im ||£(t)]| < oc:
,P(Z (Xo(’}/),A,D(E)), EP(émaX)) — &0 as 6max — OQ.
1. Suppose lim ||&(t)]| = 00, ie. (38)
lim || Az(t) + Bu(t) + Be|| = oo. Therefore either
- Proof. Itis convenient to define
(@) lim ||z(t)|] = oo, which implies thatl|z(-)|| z~ =
o0, hence contradiction, or Pro,1) (X(z0,0,d(-)), Z)
(b) Tim [l2()]| < oo, thereforelim u(t) = oo ie. = (I lle o1y + 18Ol 0,27 + 1) L2 o 1)

l[u(-)||ze = o0o. Hence contradiction.

(39)



Now let M > 0. By Proposition 5.3 there existgy € Aj,
d(-) € D(e), 0 € A so that

Plo,00) (X(20,0,d(-)), Z) = 2M. (40)
It follows that 37" > 0 s.t. Py ry(X(w0,0,d(-)), =) > M.
Sinced .y diverges, by choosingy, .. = 20 (T'), we have that

Omax > 5(T), i.e. the unmodified and the projection designs[z]
are identical o0, T, therefore

P(Z (XO(,Y)a A7 D(C)), EP(émaX))
> P[O,T](Z(xoae»d('))>EP(§maX)) > M.
Since this holds for all/ > 0, this completes the proof. [

(41)

Proposition 5.5. Consider the closed loop [4]
(X(z0,60,d(+)),Ep/(dmax)) defined by (2), (7) where
C1,C2 hold. LetA C A(d) be compact. Consider the

transient performance cost function@2). Then

7)(Z (XO('Y)’A7D(€))7 ED’ (dmax>) < 00, Vdmax > €. (42)

5]
Proof. Let zy € Xy(7), 6 € A andd € D(¢). A direct ap-
plication of Property P2 of Theorem 3.1 guarantees the uni-

formly boundedness af(-), 6(-), u(-) as a continuous function [6]
of V*(xg, 0, dmax). It follows that

u(t) = =D, ly(t)y(t)*

e ((A - 5@)30) o(t) + Bd(t)) ,
is uniformly bounded in terms of a continuous function of
V*(zg, 0, dmax). Therefore

P(S(0.0,d()). Ep () < M(V* (00,0, ), (@4)

for some continuous\ (V*(xo, 0, dmax) < oo. Taking the
supremum over system parametegsd, d implies that for all
dmax = €,

P(E (XO('V)v Av D(E))ED’ (dmax))

< sup sup sup M(V*(zo,0,dmax)) < 00.
zo€Xo(y) OEA dED(e)

(43)

9]

(45) [10]

O
(11]
Proof of Theorem 4.1.
This is a simple consequence of Proposition 5.4 and Proposi-
tion 5.5. O

6 Conclusion

In this paper we have established a rigourous result which
demonstrate a situation in which we can compare the transien
performance of projection and dead-zone based contralfers
non identifier based adaptive designs. There are a number of
directions in which the result can be generalised, for examp
generalisation of the result for higher relative degreeast est
tablishing whether the same results can be given for the- alte
native costs, for exampl® = ||z(-)|| g + ||u(-)| gee. Sim-
ilarly we have developed results to demonstrate the contrar
relationship between the controllers, ie. the results tvklwow
when the projection controllers outperform the dead-zame c
trollers, [11].
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