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Abstract

This paper is concerned with a computationally efficient
suboptimal nonlinear predictive control algorithm. The non-
linear model of the plant is used to obtain a local linearisation
and to calculate, by means of an iterative procedure, the non-
linear response and future control moves. In comparison with
fully-fledged nonlinear algorithms, which hinge on non-
convex optimisation, the presented approach is more reliable
and less computationally demanding because it results in a
series of convex, constrained or unconstrained, quadratic
programming problems whereas its closed-loop performance
is similar. The algorithm implementation for feedforward
neural-network models is also discussed in the paper.

1 Introduction

Model predictive control (MPC) is recognised as the only
advanced control technique which has made a substantial
impact on industrial applications, largely due to its unique
ability to handle hard constraints [6,9,13]. Especially, the
algorithms based on linear models, mainly DMC and GPC,
are usually applied to on-line control, because they result in
quadratic programming problems to which there exist reliable
(convexity implies foreseeable computational time) and effi-
cient software packages. However, in the case of severe plant
nonlinearity such an approach is likely to lead to poor per-
formance. As far as nonlinear MPC algorithms are concerned
the real-time implementation is an issue of crucial impor-
tance. A nonlinear model used for both prediction and optimi-
sation purposes leads to a non-quadratic and, in general, non-
convex optimisation problem which should be solved at each
time instant on-line. Because gradient-based techniques may
terminate in local minima different global optimisation tech-
niques have been used, for example the modified simplex

method of Nelder-Mead [7], genetic algorithms [1,7], or even
branch-and-bound methods [1]. Although such approaches
inevitably increase the computational burden they still give no
guarantee that the global solution is found.

To circumvent the difficulties typical of nonlinear MPC a few
alternatives have been suggested. For example, the computa-
tional burden can be significantly reduced when only the first
control move is optimised, the remaining ones are obtained
using a linear MPC [14], yet the problem is still non-convex.
In the case of some models an appropriate structure exploita-
tion [2] or change of coordinates [12] leads to convexity. First
and foremost, as it is emphasised in [11], the linearisation-
based MPC algorithms [1,3,4,5,10,13] are the ones which
have found wide use in industry.

In this paper a control algorithm with Iteratively updated
Nonlinear Prediction and Linearisation (MPC-INPL) is pre-
sented. The nonlinear model of the plant is used to obtain a
local linearisation and to calculate the nonlinear free re-
sponse, as it is done in the algorithm originally suggested in
[4]. Moreover, to improve the overall performance, the non-
linear response and future control moves are calculated in an
iterative way, therefore a quadratic optimisation is repeated a
few times. Furthermore, the paper presents the algorithm
implementation for feedforward neural networks because
such models have the following advantages: (i) are able to
approximate strong nonlinearities, (ii) have simple, regular
structure, do not suffer from ''the curse of dimensionality''
phenomenon, which is troublesome in multivariable cases,
(iii) can be easily incorporated into the algorithm and effec-
tively used on-line.

The paper is organised as follows. In Section 2 the general
idea of the MPC-INPL algorithm is presented. Next, in Sec-
tion 3, the neural-network implementation is detailed. In
Section 4 simulation results of a highly nonlinear polymeri-
sation reactor are discussed, especially, the MPC-INPL algo-
rithm is compared to linear MPC and MPC-NO with Nonlin-
ear Optimisation. Finally, the paper is summarised in Section
5.



2 The MPC-INPL algorithm

Let the process under consideration be described by the fol-
lowing nonlinear discrete-time equation
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where 11: Cg ba nn ∈ℜ→ℜ +−+ τ , τ≤nb. The linear approxima-
tion of the model (1), obtained at time instant k, is
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Defining the vector x(k), which determines the linearisation
point
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the coefficients of the linear model (2) are calculated from
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Remark 1: The coefficient al(k), bl(k) are not influenced by
the most recent output value y(k), which is available. It may
be crucial in the case of fast processes. Therefore it is recom-
mended to use
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If τ=1 for linearisation purposes one may set u(k)=u(k–1) or
u(k)=u(k|k–1).

The performance index, the minimisation of which at each
time instant k yields the optimal input profile, is defined
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where )|( kpky ref +  – known or presumed output reference
trajectory, )|(ˆ kpky +  – predicted outputs, )|( kpku +∆  –
future control moves (decision variables), H, Hu – prediction
and control horizon, H1=τ, µp≥0, λp>0. The optimisation of
the cost-function (7) is carried out subject the following hard
constraints, although in practice it is advisable to use soft
output ones [6,13]
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The following vectors are defined
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It is also assumed that the superposition principle holds true,
as it is done in linear MPC, i.e.

)()()()(ˆ 0 kkkk uGyy ∆+= (10)

where the vector )(0 ky  is the free response and the matrix
G(k) contains step-response coefficients of the linearised
model (2)
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which are obtained from al(k) and bl(k) [13].

Although in the nonlinear case the suboptimal prediction
)(ˆ ky  calculated from (10) is different from that obtained

when a nonlinear model (1) is used, it leads to convexity of
the performance index (7)
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where the diagonal matrices M, ΛΛΛΛ are comprised of coeffi-
cients µp, λp, respectively.

In the simplest kind of a linearisation-based MPC algorithm,
i.e. successive linearisation approach, the coefficients al(k),
bl(k) of the linear model (2), which depend on the current
state of the plant (4) or (6), are obtained from the formulae (5)
and then used to calculate both free response )(0 ky  and the
matrix G(k), as it is done in linear MPC [6,13]. Much more
effective are the algorithms which use the nonlinear model (1)
to calculate the nonlinear free response [4,13]. Provided that
the model is reliable enough the accuracy of the prediction

)(ˆ ky  obtained from (10) is increased and thus the overall
performance can be improved.

The idea behind the MPC-INPL algorithm is to replace the
nonlinear free response )(0 ky  in (10) by an iteratively cal-
culated nonlinear response yn(k) which corresponds to future
input trajectory
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where )|1()|( kHkukpku u
nn −+=+  for p≥Hu, n indicates

the internal iteration. The initial input trajectory assumes no
changes in the manipulated variable from time instant k, i.e
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The prediction equation used in the INPL algorithm, assum-
ing the superposition principle (10), becomes
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where the vector ∆un+1(k) is calculated iteratively (in the
internal loop). It represents the increments from the trajectory
un(k). The performance index (12) has to take into account the
total increments from the initial trajectory u0(k), hence
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The control algorithm can be summarised as follows

1. Linearisation: obtain coefficients al(k), bl(k) and the matrix
G(k).
2. Initialise the internal loop: calculate the nonlinear free
response y0(k) using the initial input trajectory u0(k), set n=0,
∆u0(k)=0.
3. Solve the quadratic programming problem
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which yields the control moves ∆un+1(k), i.e. ∆un+1(k+p|k) for
p=0,...,Hu–1. The square matrix J, of dimension Hu, is
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whereas the constant vectors umin, umax, ∆umax, ymin, ymax result
from the constraints (8).

4. If
)|()|()|(1 kkukkukku nnn ∆<∆−∆ + ε (19)

where ε>0, or n=nmax, terminate the internal loop, apply
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set k=k+1, go to step 1.

5. Modification of the input trajectory un+1(k) taking into
account the first control move ∆un+1(k|k) calculated in step 3





















∆

∆
∆

+





















=





















−+

+
=

+

+

+

+

+

+

+

)|(

)|(
)|(

)|(

)|(
)|(

)|1(

)|1(
)|(

)(

1

1

1

1

1

1

1

kku

kku
kku

kku

kku
kku

kHku

kku
kku

k

n

n

n

n

n

n

u
n

n

n

n

"""
αu (21)

where )|1()|( 11 kHkukpku u
nn −+=+ ++  for p≥Hu, α>0.
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6. Calculate the nonlinear trajectory yn+1(k), to be used in the
next internal iteration, which results from the input trajectory
un+1(k). Set n=n+1, go to step 3 (continuation of the internal
loop).

Remark 2: The linearisation (step 1) is usually performed at
each time instant k. However, it can be repeated less fre-
quently, especially when the process is close to its steady-
state.

Remark 3: In the presented algorithm the single-step lineari-
sation technique is used, i.e. one set of coefficients al(k), bl(k),
is used to calculate the matrix G(k) through the entire predic-
tion horizon. It is also possible to apply a multi-step lineari-
sation, in which different linear approximations of the nonlin-
ear model will be used for each instant of the prediction hori-
zon.

Remark 4: If the MPC-INPL algorithm is implemented in its
unconstrained version, the input moves ∆un+1(k) in step 3 are
calculated analytically from
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Alternatively, more computationally reliable least-squares
method can be used









∆

−








−

=∆
+

+

)(
))()(()(

)(1

k
kkk

k n

nref
n

uS
yyS

S
GS

u MM

ΛΛΛΛΛΛΛΛ

(24)

where ΛΛΛΛΛΛΛΛΛΛΛΛ == SSMSS MM
TT ,  and “+” denotes Moore-

Penrose pseudo-inverse.

Remark 5: In the simplest case the coefficient α (step 5) is
constant, e.g. α=1. To prevent the algorithm from the lack of
convergence the following approach is recommended: having
obtained the solution to the optimisation problem (17) in step
3 corresponding value of the performance index Jn+1(k) is
evaluated, using the nonlinear model. The internal loop is
continued provided that the additional condition Jn+1(k)<Jn(k)



is fulfilled. Yet another technique is to calculate the value of
α by means of a line-search procedure.

Remark 6: The nonlinear trajectory yn+1(k) is calculated (step
6) using input trajectory un+1(k) (obtained in step 5) which is
updated taking into account only the first input move
∆un+1(k|k). Instead, in step 6 the whole sequence ∆un+1(k+p|k),
p=0,...,Hu–1 can be used, it may improve the overall perform-
ance. In such a case
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and (22) becomes
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Remark 7: The initial input trajectory (14) may be chosen
differently. It is advisable to use the control sequence found at
previous time instance, i.e.
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3 Neural MPC-INPL algorithm

The MPC-INPL algorithm presented in previous section can
be used with different structures of the model: first-principles
(fundamental) or empirical. In the sequel it is assumed that
the feedforward neural network with one hidden layer con-
taining K nonlinear nodes and linear output is used as the
function g in (1). Output of the model is given by
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where zi(k) and vi(k) denote the sum of inputs and the output
of the i-th hidden node, respectively, ϕ is the nonlinear trans-
fer function, 2

iw  are the weights of the second (output) layer.
Recalling the input arguments of the general nonlinear model
(1) one has
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where 1
, jiw  are the weights of the first (hidden) layer and

Nu=nb–τ+1.

The coefficients of the linearised model (2) are obtained on-
line from equations (5), which lead to
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From (28) the output prediction for time instant k+p|k is
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In (31) the ''DMC type'' disturbance model is used, in which
the unmeasured disturbance d(k) is assumed to be constant
over the prediction horizon. Its value is estimated from the
equation

)1|()()( −−= kkykykd (34)

where y(k) is the actual output of the plant, )1|( −kky  is
calculated from the nonlinear model (1) using the measured
input and output values up to time instant k–1.

The nonlinear response is calculated recursively from the
prediction equation (31) and (32) using the trajectories un+1(k)
and yn+1(k)

)())|(()|(
1

122
0

1 kdkpkzwwkpky
K

i

n
ii

n +++=+ ∑
=

++ ϕ (35)

where (36)

∑∑

∑∑

+=
+

=

+
+

+==

+

+

+−++−+

++−+−++−+−+

+=+

a

y
u

y

u

u

un

un

n

pNj
jNi

pN

j

n
jNi

N

pNj
ji

pN

j

n
ji

i
n
i

pjkywkpjkyw

pjkuwkpjkuw

wkpkz

1)(

1
,

)(

1

11
,

1)(

1
,

)(

1

11
,

1
0,

1

ˆ

ˆ

)()|(

)1()|1(

)|(

ττ

4 Simulation results

In this section the MPC-INPL algorithm is applied to a po-
lymerisation reaction taking place in a jacketed continuous
stirred tank reactor [8]. The reaction under consideration is



the free-radical polymerisation of methyl methacrylate with
azo-bis-isobutyronitrile as initiator and toluene as solvent.
The output m, which is the number average molecular weight
(kg/kmol), is controlled by manipulating the inlet initiator
flow rate F (m3/h).

Introducing the system parameters into the first-principles
equations the following model is obtained
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The nominal operating conditions are: x10=5.506774,
x20=0.132906, x30=0.0019752, x40=49.38182, F0=0.016783,
m0=25000.5. The following bound constraints are put on
manipulated variable: mmin=0,0035, mmax=0,033566.
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Fig. 1. Simulation results: linear MPC algorithm

For comparison purposes three different algorithms were
simulated: linear MPC, MPC-INPL and MPC-NO with Non-
linear Optimisation. During the experiments carried out the
plant was simulated using the fundamental model (37) while
the control algorithms based on black-box models. The linear

model used in linear MPC was obtained taking into account
the nominal operating point. Nonlinear algorithms, i.e. MPC-
INPL and MPC-NO, based on the same neural model with 6
hidden nodes. Both empirical models, i.e. linear and nonlin-
ear, had the same inputs:  u(k–2), y(k–1), y(k–2),  where
 u(k)=100(F(k)–F0), y(k)=0.0001(m(k)–m0).  The horizons
were set to: H1=2, H=10 and Hu=3, the weighting matrices
were M=I, ΛΛΛΛ=λI, where λ=0,2, the sampling time was set to
1.8 min. The linearisation point in the MPC-INPL algorithm
was defined by (6).

1 5 10 15 20 25

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
F

1 5 10 15 20 25
2.5

2.8

3.3

3.8

x 104 mref, m

Fig. 2. Simulation results: nonlinear MPC-INPL algorithm

Selected simulation results are depicted in Fig. 1, Fig. 2 and
Fig. 3. The reference trajectory is changed at time instant k=1
from its nominal value to 28000 kg/kmol, 33000 kg/kmol and
38000 kg/kmol, respectively. The linear MPC algorithm is
stable only in the case of the smallest change. Both MPC-
INPL and MPC-NO algorithms works well, their closed-loop
performance is fairly similar, yet one can notice that the con-
trol increments in the MPC-NO algorithm are bigger, which
leads to faster output responses and slightly bigger overshoot.
On the other hand, the MPC-NO algorithm, in which the
nonlinear model is used both for prediction and optimisation
purposes, is far more computationally demanding and, in
general, vulnerable to local minima. In the case of the MPC–
INPL algorithm such a problem does not exist.
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Fig. 3. Simulation results: nonlinear MPC-NO algorithm

5 Summary

Computational efficiency and ability to handle nonlinear
processes are the advantages of the suboptimal MPC-INPL
algorithm. It results in closed-loop behaviour comparable to
that obtained when the MPC-NO algorithm, with nonlinear,
in general non-convex, optimisation is applied. The proposed
approach leads to a series of convex quadratic programming
problems, the solution to which can be found within foresee-
able time frame, it does not suffer from the false local minima
problem. In comparison with existing linearisation-based
iterative algorithms [3,5] the structure and implementation of
the presented approach is much simpler.

Although the general MPC-INPL algorithm can be used with
wide class of nonlinear models, for example fundamental
ones which rely on first-principles equations, in this paper the
emphasis is put on feedforward neural-network implementa-
tion. As far as practical applications are concerned it is im-
portant that such models have simple, regular structure and do
not suffer from ''the curse of dimensionality'' phenomenon
(crucial in multivariable cases). They can be easily incorpo-
rated into the described algorithm and used to on-line control.
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