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Abstract

This paper addresses the problem of vision-based path follow-
ing control for a wheeled robot of the unicycle type. A non-
linear controller is derived that yields convergence of the vehi-
cle’s position to a straight line in the presence of model param-
eter uncertainty. Control design starts with a kinematic model
of the system that describes the relationship between robot in-
puts and the pose of the robot with respect to the path directly
in the camera plane, using selected path features. A kinematic
control is then derived to drive path following errors to zero.
The kinematic controller is further extended to cope with vehi-
cle dynamics by resorting to backstepping and Lyapunov based
techniques. Robustness to system parameter uncertainty is ad-
dressed by incorporating a parameter adaptation scheme. Sim-
ulations results illustrate the performance of the controller de-
rived.

1 Introduction

This paper addresses the problem of vision-based path follow-
ing control of a wheeled robot of the unicycle-type. The reader
is referred to [3], [6], [7], [8], [11] and the references for pre-
vious work on visual servoing. See also [1], [2], [5], [10] [14]
for important results on the general problem of path follow-
ing for wheeled robots. In the paper, basic concepts and tech-
niques from these two areas are used to derive an adaptive non-
linear controller that deals explicitly with vehicle dynamics and
yields convergence of the vehicle’s position to a straight line in
the presence of camera/robot model parameter uncertainty.

Control design starts with a kinematic model of the system that
describes the relationship between robot inputs (linear and rota-
tional speeds) and the pose of the robot with respect to the path
directly in the camera plane, using selected path features. A
kinematic control is then derived to drive path following errors
to zero. The kinematic control is further extended to cope with
vehicle dynamics by resorting to backstepping and Lyapunov

based techniques ([9], [12], [13],[14]). Robustness to camera
and plant parameter uncertainty is addressed by incorporating a
parameter adaptation scheme. In this set-up,the camera that is
mounted on the robot is simply viewed as a non-linear sensor
that provides information of the relative position and attitude
of the mobile robot with respect to an observed feature. The
relationship between robot inputs and feature-related path fol-
lowing errors is naturally catpured in the so-called Interaction
Matrix (see ([4], [6], [7] for examples of the computation of the
Interaction Matrix in a general setting). In this paper, this ma-
trix is found by direct derivation, thus allowing for an intuitive
interpretation of its structure using remarkable geometrical re-
lations.

The main contribution of the paper is threefold:

• controller design is done by using directly variables avail-
able in the camera plane (that is, no explicit transforma-
tion of variables from the camera to an inertial frame is
performed).

• the controller derived deals explicitly with vehicle dynam-
ics.

• an adpation scheme is included in the path following con-
trol law proposed, in order to cope with camera and robot
parameter uncertainty.

The paper is organized as follows: Section 2 formulates the
problem of path following of a wheeled robot using vision.
Section 3 derives an adaptive path following controller. Section
4 includes the results of simulations. Finally, Section 5 con-
tains the main conclusions and describes problems that warrant
further consideration.

2 Problem formulation

This section introduces some basic notation, presents the kine-
matic equations of motion of a mobile robot equipped with a
camera, and formalizes the problem of driving the robot along
a desired path. The first part (2.1) of the section summarizes
the notation that will be used throughout the paper. The second



part (2.2) summarizes the kinematic equations of a wheeled
robot of the unicycle type depicted in figure 1. The third part
(2.3) deals with the vision sensor and establishes the interaction
relation between the parameterization space and the Cartesian
space. Finally, the last part (2.4) formulates the problem of
finding a controller that yields convergence of the robot to the
path.

2.1 Notation

Throughout this paper, the following notation will be used.

• The symbol {RA} := {xA, yA, zA} denotes a reference
frame with origin OA. We let {R0}, {RB}, {RC} and
{RIm} be inertial, body axis, camera, and image frames,
respectively.

• P |A denotes the position of a point P in frame {RA}.

• OB|0 = [x0 y0 0]T is the position of the origin of {RB}
with respect with {R0} (i.e. inertial position of the robot).

• α denotes the orientation of {RB} with respect to {R0}
(i.e. yaw angle).

• v, w are the linear and angular velocities of the robot, re-
spectively, with respect to {R0}, resolved in {RB}.

• ppol
im = [ρ θ]T are polar parameters of a straight line as

seen in the image plane, resolved in {RIm}.

• pcart
im = [a b]T are cartesian parameters of the path, re-

solved in {R0}.

• Given two frames {A} and {B}, RB
A denotes the rotation

matrix from {A} to {B}.

Note that since the study is made in the horizontal plane, then
z = 0 for any point attached to the robot or the camera, and
z = −h for any point attached to the ground. Furthermore,
ż = 0.

2.2 Robot kinematic model

The vehicle has two identical parallel, non-deformable rear
wheels that are controlled by two independent motors, and a
steering front wheel. It is assumed that the plane of each wheel
is perpendicular to the ground and that the contact between the
wheels and the ground is pure rolling and non-slipping, i.e., the
velocity of the center of mass of the robot is orthogonal to the
rear wheel axis. By assuming that the wheels do not slide, a
non-holonomic constraint on the motion of the mobile robot of
the form ẋ sinα − ẏ cosα = 0 is imposed. It is further as-
sumed that the masses and inertias of the wheels are negligible
and that the center of mass of the mobile robot is located in
the middle of the axis connecting the rear wheels. Each rear
wheels is powered by a motor which generates a control torque
τi, i = 1, 2.
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Figure 1: A wheeled robot of the unicycle type

With the above notation, the kinematics of the mobile robot are
modeled by 
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ẏ0
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− sin α 0
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
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w

]
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2.3 Vision sensor: the interaction matrix

For the sake of simplicity we assume that the vehicle is
equipped with a camera that is rigidly attached to it and points
downwards. The image plane {xIm, yIm} is parallel to the
ground and the camera is mounted at the center of mass of the
vehicle. Assume the simple pin-hole model for the camera, see
figure (2), where {RC} and {Rim} denote the camera and im-
age frame, respectively.

2.3.1 Projective model

Define γ = f/h, where f is the camera focal length and h the
distance of the camera above ground. Let Π : �3 → �2 be a
projection operator defined as Π([x y z]T ) = [x y]T . Further
let P |C = [xP

C yP
C − h]T be the coordinates of a point on the

ground, expressed in the camera frame. Its projection P Im on
the image plane is the end point of vector

PIm = [xP
Im yP

Im]T = ΠγRC
0 (P |0 − OC |0)

where RC
0 is the rotation matrix from {R0} to {RC} and OC |0

is the position of the origin of {RC} with respect to {R0}.

2.3.2 Interaction matrix

Consider a straight line DT (path) on the ground. Then,
there exists a parameterization vector pcart

Terrain = [a b]T

such that for every M |0 = [xM
0 yM

0 0]T ∈ DT the equality
DT (M |0, pcart

Terrain) := axM
0 + b− yM

0 = 0 holds. In this case,
the camera image of DT is also a straight line DIm with two
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Figure 2: Coordinate frame for the vision system
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Figure 3: Image feature parameterization

possible parameterizations ppol
Im = [ρ θ]T and pcart

Im = [A B]T

such that for every point in the image plane such that M Im =
[xM

Im yM
Im]T ∈ DIm, the two following equalities hold:

MIm ∈ DIm ⇔(
DIm(MIm, pcart

Im ) := AxM
Im + B − yM

Im = 0
DIm(MIm, ppol

Im) := xM
Im cos θ + yM

Im sin θ − ρ = 0

)

As pointed out in [7] the parameterization pcart
Im is inadequate.

We therefore select the parameterization ppol
Im = [ρ θ]T , where

the ambiguity is partly overcome by fixing the sign of ρ. A
geometrical analysis of the figure (3) yields

(
ρ = sign(a)γ ax0+b−y0√

1+a2

θ = −[arctan 1
a + α]

(2)

It is now straightforward to compute the Jacobian Matrix L 0

that relates the inertial velocity of the robot with the rate of

evolution of the image feature parameters to obtain

[
ρ̇

θ̇

]
=

[
γ asign(a)√

1+a2 γ −sign(a)√
1+a2 0

0 0 −1

]
 ẋ0

ẏ0

α̇




Using (1) and noting that a sinα + cosα =
−sign(a) sin θ

√
1 + a2 allows for the computation of a

second Jacobian Matrix LC that relates the robot velocity in
body frame with the rate of evolution of the image feature
parameters, that is,

[
ρ̇

θ̇

]
= LC

[
v
w

]
(3)

with

LC =
[

γ sin θ 0
0 −1

]
(4)

Matrix LC , henceforth referred to as the Interaction Matrix,
will be used extensively and can be considered as the kinematic
model of the complete sytstem (robot + camera). Note that if
the camera is placed elsewhere, the interaction matrix becomes

LC =
[

γ sin θ h(θ)
0 −1

]

with h(θ) = γd sin (β + θ − φ), where d is the distance be-
tween the vehicle’s center of mass and the center of the camera,
β is the angle between xB and xim, and φ is the angle between
xB and

−−−−→
OBOC .

2.4 Path following: problem formulation

Equipped with this formalism, we now state the kinematic con-
trol problem C1 that is addressed in section 3.1.

C1: Given the robot model (3) where v : R+ → R is an arbi-
trary function such that limt→∞ v(t) �= 0, compute a feedback
control law for w such that ρ and θ converge to 0, as t goes to
∞.

This problem will be extended in the sub-section 3.2 to deal
with vehicle dynamics. The classic unicycle dynamic model is
given by {

v̇ = F
m

ẇ = Γ
I

(5)

where m is the mass of the vehicle, I its moment of inertia, and
F and Γ are the forward force and moment torque applied by
the wheel motors, respectively.

The dynamic control problem C2 is stated as follows.

C2: Given the robot models (1) and (5) and a set of camera and
robot related measurements, compute Udyn = [F (.) Γ(.)]T so
that ρ and θ converge to 0 as t goes to ∞.

Notice that the dynamic model does not include the influence
of unknown external disturbances. In fact this paper does not



include the problem of external disturbance attenuation. How-
ever, it deals explicitly in section 3.3 with the problem of ro-
bustness against parameter uncertainty, where the uncertainty
are confined to the parameters r (radius of the wheels), 2.l
(distance between the wheels), m (vehicle mass), I (vehicle
moment of inertia), and γ (camera aspect ratio). In order to
include these parameters in the dynamic model, (5) is rewritten
as {

v̇ = ucom

p2

ẇ = udif

p1

where
{

udif = τ1 − τ2

ucom = τ1 + τ2
(6)

with p2 = mr, p1 = rI/l, aand τ1 and τ2 are the left and
right wheel torques, respectively. The adaptive dynamic con-
trol problem C3 can now be stated as follows.

C3: Consider the kinematic model (3) together with the re-
lations (6). Assume that parameters p1, p2 and γ are un-
known. Compute an adaptive feedback control law Uadp =
[ucom udif ]T , so that ρ and θ converge to 0, as t goes to ∞.

A proposed solution of the Ci, (i=1, 2, 3) problems is described
in the following section.

3 CONTROLLER DESIGN

This section describes the solutions to problems C1, C2, and
C3 stated above. The proofs of the theorems to follow are omit-
ted in this paper. The interested reader is refered to [14] and
[15] for related results.

3.1 Kinematic Controller

A solution to problem C1 is stated next.

Theorem 1: Consider the kinematic model (3) and let δ(ρ) be
a desired approach angle defined by

δ(ρ) = −sign(v)θa
e2kδρ − 1
e2kδρ + 1

(7)

where kδ is a positive gain and θa ≤ π/2. Further assume that
measurements of [ρ θ]T are available from the camera. Then
the control law described by

Ukin : w = Kθ(θ − δ) − δ̇ (8)

solves the C1 problem.

The proof relies on the use of the Lyapunov function

V1 =
1
2
(θ − δ)2 (9)

and the fact that V̇1 = −Kθ(θ − δ)2 ≤ 0 (see [14] and [15]).
Note : the approach angle is instrumental in shaping the ap-
proach to the path (see [10])

3.2 Dynamic Controller

The dynamic controller aims at driving the actual values of
variables v and w to vd and the ”desired kinematic” profile

specified by (8), respectively. Its design relies on standard
backstepping techniques and leads to the controller structure
described below.

Theorem 2: Consider models (3) and (5). Let δ(ρ) be a desired
approach angle defined in (7). Let vd and v̇d be the desired for-
ward velocity and acceleration, respectively. Further assume
that measurements of [ρ θ]T are available from the camera
and measurements of [v w]T are available from robot sensors.
Then, the control law

Udyn =


 Γ = I

[ −δ̈ + (Kθ + Kc)(θ̇ − δ̇)
+(1 + KθKc)(θ − δ)

]
F = mv̇d − Kv(v − vd)

(10)

solves the C2 problem. Furthermore limt→∞(v − vd) = 0.

Notice that the control law naturally blends camera with robot
motion measurements.

3.3 Adaptive Dynamic Controller

The derivation of the adaptive controller is done in a sequence
of steps that start with the kinematic controller of (8). This
controller is first modified to deal with camera parameter uncer-
tainty, leading to a kinematic control law denoted U adp

kin . This
control law is then extended to deal with vehicle dynamics, us-
ing the strategy that allows transition from Ukin in theorem 1
to Udyn in theorem 2. Finally the dynamic controller is modi-
fied to deal with vehicle parameter uncertainty. To perform the
first step, define ∆γ = γ − γR, where γR and γ are the actual
and estimated value of the fundamental camera parameter, and
rewrite the kinematic controller in (7) as

w = Kθ(θ − δ) − δ′ sin θvγ ; δ′ =
∂δ

∂ρ

Consider the Lyapunov function V1 in (9). Then,

V̇1 = −Kθ(θ − δ)2 + δ′ sin θv∆γ

that is, V̇1 is indefinite. To overcome this problem, construct
the new candidate Lyapunov function

V2 = V1 +
1
2

(∆γ)2

λγ
; λγ > 0.

Straightforward computations show that the control law

Uadp
kin =

{
w = Kθ(θ − δ) − δ′ sin θvγ
γ̇ = −λγ(θ − δ)δ′ sin θv

(11)

yields V̇2 ≤ 0. It can be shown that ρ and θ converge to 0 as
t goes to ∞. The next step produces a dynamic controller that
is robust with respect to error in parameter γ. To obtain it, start
by defining

V3 =
1
2
(w − wr) +

1
2
(v − vd)2 + V2 (12)

with {
wr = Kθ(θ − δ) − δ′ sin θvγr

γ̇r = −λγ(θ − δ)δ′ sin θv



where w is the actual value of rotational speed, wr is the desired
profile for w defined in (10), and vd the desired velocity profile
for v. The equation for updating γr is simply a re-writing of
the second equation in (10) in the new dynamic setting. Then
the choice {

udif = p1(ẇr − Kw(w − wr))
ucom = p2(v̇d − Kv(v − vd))

yields V3 ≤ 0. In the above development, it is assumed that
the values of pi, i = 1, 2 are known exactly. To tackle the
problem of robustness against parameter uncertainty, assume
pi, i = 1, 2 are ”estimated” values for the actual values pR

i of
the plant parameters and let ∆pi = pi − pR

i . Define

q1 = p1 ; q2 = p1/γ ; q3 = p1/p2 ; q4 = p2

and let qR
i ; i = 1, 2, 3, 4 be defined accordingly. Using (3) and

(6), and expanding ẇr yields

udif =
∑3

i=1 qifi = uopt
dif + ∆udif

ucom = q4f4 = uopt
com + ∆ucom

with ∆udif =
∑3

i=1 ∆qifi and ∆ucom = ∆q4f4, where
∆qi = qi − qR

i and

f1 = −Kθw + δ′w cos θvγr

−δ′ sin θvγ̇r − Kw(w − wr)
f2 = −Kθδ

′ sin θv − δ”[sin θv]2γr

f3 = −δ′ sin θγrq4(v̇d − Kv(v − vd))
f4 = v̇d − Kv(v − vd)

Computing the derivative of V3 yields

V̇3 = −Kw(w − wr)2 − Kv(v − vd)2

+ (w − wr) 1
pR
1

∑3
i=1 ∆qifi

+ (v − vd) 1
pR
2

∆q4f4

which is indefinite. To overcome this problem, consider the
new candidate Lyapunov function

V4 = V3 +
1

2pR
1

3∑
i=1

(∆qi)2

λi
+

(∆q4)2

2pR
2 λ4

It can be shown that the control law{
udif =

∑3
i=1 qifi

ucom = q4f4

and the adaptation scheme(
q̇i = −λi(w − wr)fi; i = 1, 2, 3
q̇4 = −λ4(v − vd)f4

(13)

make V̇4 ≤ 0. The proof that the complete adaptive path fol-
lowing system yields convergence of the robot to the path fol-
lows from standard method that resort to the Barbalat’s lemma.
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Figure 4: Desired and acutal paths

In summary, the adaptive control law is given by

Uadp =




udif =
∑3

i=1 qifi

ucom = q4f4

q̇i = −λi(w − wr)fi ; i = 1, 2, 3
q̇4 = −λ4(v − vd)f4

wr = Kθ(θ − δ) − δ′ sin θvγr

γ̇r = −λγ(θ − δ)δ′ sin θv

(14)

where Kj , j = θ, w, v and λi , i = 1, 2, 3, 4, γ are positive
gains.

4 SIMULATION RESULTS

The objective of the simulation is to drive the vehicle to the
path, designed as a straight line. We consider that ppol

im is ex-
tracted from the image and actualized each T im (the camera ac-
quisition and image treatment period). Measurements of [vw]T

are available every Ts second. The control action is output ev-
ery Tcontrol second. The robot parameters are: m = 10Kg,
I = 1N.m−1, l = 0.5m, r = 0.25m. The terrain feature
parameters : a = 1 and b = 0m. The camera parameter
γ = z/h is set to 1. The different system periods adopted
are Tim = 0.1s, Ts = 0.02s, and Tcontrol = 0.01s. The con-
trol gains were set to Kθ = Kv = Kw = 1, λi = 10, ; i =
1, 2, 3, 4, γ. The results are shown in figures (4), (5), (6), and
(7), for the case where estimates of the real parameters were
off by as much as 50%.

From figure (5), we note that the system converges to the de-
sired path while the estimation of the parameters converges to
a different value than the real one. This is a well known behav-
ior of adaptive systems. Figure (4) compares the performance
of the dynamic controller without the adaptation scheme (dot-
ted line) and the adaptive one that clearly reduces the effects of
parameter misestimation.

5 CONCLUSIONS

The paper proposed an adaptive vision based controller to steer
a wheeled robot along a reference path. The resulting control
law is robust against camera and plant parameter uncertainty.
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Figure 5: Evolution of parameters in the image plane

Future work will address the extension of the algorithm to deal
with actuator saturation and camera misalignment. The exten-
sion of this circle of ideas to aerial robots deserves also further
research.
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