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Abstract

The focus of this work is a study of the passive dynamic
walking of a kneeless biped robot with torso on inclined
slopes. We show that under a simple PD control applied
between the torso and the stance leg the biped robot
converges at a stable gait cycle.

1 Introduction

Biped robots form a subclass of legged or walking
robots. The models for such robots are necessarily hy-
brid, consisting of ordinary differential equations to de-
scribe the swing phase of the walking motion, and a
discrete map to model the impact when the leg touches
the ground.
Biped robots exihibit periodic behavior. Discrete

events, such as contact with the ground, can act to trap
the evolving system state within a constrained region
of the state space. Therefore even when the underlying
continuous dynamics are unstable, discrete events may
induce a stable limit set. Limit cycles (periodic behav-
ior) are often created in this way.
Proof of existence and stability of periodic cycles are

crucial problems for biped robots.
One can distinguish several approaches from the liter-

ature.Bipedal walking might be largely understood as a
passive mechanical process, as shown for part of a stride
by Mochon and MacMahon[2]. McGeer[1]demonstrated
by both computer simulations and physical model con-
struction, that some legged systems can walk in stable
gait cycles on a range of shallow slopes with no actua-
tion and no control (energy lost in friction and impact is
recovered from gravity). Since then, many researchers

have studied this topic.Goswami et al.[3][6], Coleman[5],
Garcia et al.[4], Mark.W.Spong[7][8], F.Asano et al.[9],
M.Haruna[10].

To date, for an under actuated biped robot with
torso, none of the various approaches have found ini-
tial conditions under which passive dynamic walking in
a downhill slope is generated.

In this paper we demonstrate that a kneeless biped
robot with torso can walk in a stable gait cycle, downhill
a slope, under a simple PD control applied between the
torso and the stance leg1.

Poincaré map is used to find periodic solution for the
biped robot (limit cycles). To analyze the stability of
such behaviours we use a recent generalization of tra-
jectory sensitivity[14] [15].

The rest of this paper is organized as follows. Sec-
tion 2 presents the dynamic model of a kneeless biped
robot with torso. The stability of a passive gait and
limit cycles is suggested in section 3. Simulation results
have been evaluated in section 4. Conclusions and fu-
ture work are presented in section 5.

2 The Model

The dynamic model of a simple planar biped robot is
considered in this section .It’s shown in figure (1). The
robot has five degrees of freedom. It consists of a torso,
two rigid legs, with no ankles and no knees, connected
by a frictionless hinge at the hip. Masses Mt and Mh of
the torso and the hip, respectively, are much larger than
the leg mass m (Mt, Mh >> m) so that the motion of
a swinging foot does not affect the motion of the hip
and the torso. This linked mechanism moves on a rigid
ramp of slope γ.

During locomotion, when the swing leg contacts the

1This work has been done in collaboration with L.R.V and the
Coordinated Science Laboratory- University of Illinois (USA)



ground (ramp surface) at heelstrike, it has a plastic (no
slip, no bounce) collision and its velocity jumps to zero.
The motion of the model is governed by the laws

of classical rigid body mechanics. Following McGeer,
we make the non physical assumption that the swing
foot can briefly passes through the walk surface when
the stance leg is near vertical. This concession is made
to avoid the inevitable scuffing problems of stiff-legged
walkers like the model analyzed in this paper. It’s as-
sumed that walking cycle takes place in the sagittal
plane and the different phases of walking consist of suc-
cessive phases of single support. With respect to this
assumption the dynamic model of the biped robot con-
sists of two parts : the differential equations describing
the dynamic of the robot during the swing phase, and
the algebraic equations for the impact (the contact with
the ground).
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Figure 1: A passive dynamic walking model of the knee-
less biped robot with torso

2.1 Swing phase model

During the swing phase the robot is described by differ-
ential equations written in the state space as follows:

ẋ = f(x) + g(x).u (1)

where x = (q, q̇).
(1) is derived from the dynamic equation between

successive impacts given by :

M(q)q̈ +H(q, q̇) = B.u (2)

where q = (θns, θs, θt) : θns parametrizes the non
support leg, θs the support leg, and θt the torso, u =
(u1, u2) : u1 and u2 are the torques applied between the
torso and the stance leg, and the torso and the swing
leg, respectively.
M(q) = [3 × 3] is the inertia matrix and H(q, q̇) =

[3 × 1] is the coriolis and gravity term (i.e: H(q) =

C(q, q̇)q̇+G(q)) while B is a constant matrix such that
rank(B) = 2. The matrices M,C,G,B are developped
in [11] (see appendix)

2.2 Impact model

The impact between the swing leg and the ground (ramp
surface) is modeled as a contact between two rigid bod-
ies. The model used here is from[13], which is detailed
by Grizzle & al.in [11][12].
The collision occurs when the geometric condition

θns(t) + θs(t) + 2γ = 0 (3)

is met. Yet, from biped’s behaviour, there is a sudden
exchange in the role of the swing and stance side mem-
bers. The overall effect of the impact and switching can
be written as :

h : S → χ (4)

x+ = h(x−) =


θ−2
θ−1
θ−3

θ+1 (θ
−
1 )

θ+2 (θ
−
2 )

θ+3 (θ
−
3 )

 (5)

where

S = {(q, q̇) ∈ χ/ θns(t) + θs(t) = −2γ} (6)

with θ+1 , θ
+
2 , θ

+
3 are specified in [11] (see appendix).

The superscripts - and + denote quantities immedi-
atly before and after impact, respectively.

2.3 The overall model

The overall biped model is written as follows :

½
ẋ = f(x) + g(x).u x−(t) /∈ S
x+ = h(x−) x−(t) ∈ S

(7)
With

f(x)+g(x)u =
d

dt

·
q
q̇

¸
=

·
q̇

M−1(q)(−H(q, q̇) +B.u)
¸

3 Passive dynamic walking on
the downhill slope

3.1 Outline of procedure

At heelstrike, the impact is plastic, some energy is dis-
sipated and support is transferred instantaneously. Be-
cause the model has a torso then an impulsive torque
must be applied against the post-transfer stance leg to
hold the torso in a desired region[1]. Then we decide



to examine the possibility that a biped robot with torso
can exhibit a passive dynamic walking in a stable gait
cycle, downhill a slope, when torque is applied with a
simple PD control scheme given by :

u1 = Kp(θ
d
t − θt)−Kv θ̇t (8)

BothKp andKv are the control gain, θ
d
t is the desired

angle of θt, and u1 is the torque acting on the hip joint
between the torso and the stance leg. No torque acts
between the torso and the swing leg, that is, the free leg
is a completely passive link.
The walker’s motion can exhibit periodic behaviour.

Limit cycles are often created in this way. At the start
of each step we need to specify initial conditions (q, q̇)
such that after T seconds (T is the minimum period of
the limit cycle) the system returns to the same initial
conditions at the start.
A general procedure to study the biped robot model

is based on interpreting a step as a Poincaré map. Limit
cycles are fixed points of this function. And finally to
evaluate the stability of a gait limit cycle we use trajec-
tory sensitivity analysis.

3.2 Stability of limit cycles

In order to visualize the entire dynamics of the robot
over a gait cycle it is useful to represent the dynamics
by means of phase space trajectories.
In phase space, steady robot gaits are seen as stable

limit cycles. We consider the notion of orbital stability
to be the most appropriate in the context of biped robot
dynamics. In what follows we introduce some basic defi-
nitions which cope with orbital stability notion[3][6][17].
Let us consider a second order system with state vector
x ∈ Rn, initial conditions x0 and {tk} a sequence of time
instants with lim

k→∞
tk =∞

ẋ = f(x) (9)

Definition 1: For the system (9) a positive limit
set Ω of a bounded trajectory x(t) (kx(t)k < µ, ∀t > 0)
is defined as :

Ω = {p ∈ Rn,∀ε > 0,∃{tk} / kp− x(tk)k < ε,∀k ∈ N}
(10)

Ω is a closed orbit (limit cycle or non-static equilib-
rium) for the system trajectory. Note that for second
order systems the only possible types of limit sets are
singular points and limit cycles. Let us consider the
behavior of neighboring trajectories in order to analyze
the orbital stability.
Definition 2 : Orbital stability : the system trajec-

tory in the phase space Rn is a stable orbit Ω if ∀ε > 0
∃δ > 0 such that kx0 − Ω(x0)k < δ ⇒ inf

p∈Ω
kx(t)− pk <

ε,∀t > t0.

All trajectories starting near the orbit Ω stay in its
vicinity. If all trajectories in the vicinity of Ω approach it
as t→∞ then the limit set Ω is said to be attractive[19]
[18].

Definition 3: Asymptotic orbital stability :the
system trajectory in the phase space Rn is asymptoti-
cally stable if it is stable and kx0 − Ωk < δ ⇒ lim

t→∞ infp∈Ω
kx(t)− pk = 0.

3.3 Poincaré map method

Since biped locomotion has periodic gaits, the idea of
Poincaré map can be used. A Poincaré map samples
the flow of a periodic system once every period [16].
The concept is illustrated in figure (2). The limit cy-
cle Γ is stable if oscillations approach the limit cycle
over time. The samples provided by the corresponding
Poincaré map approach a fixed point x∗. A non stable
limit cycle results in divergent oscillations, for such a
case the samples of the Poincaré map diverge.

Figure 2: Poincaré Map

Let:

P : Σ→ Σ
P (xk) = xk+1 = φx(xk, T )

(11)

where the Poincaré hyperplane is defined by :

Σ = {(q, q̇) ∈ χ /θns(t) + θs(t) = −2.γ, (12)

θt = θdt , θ̇t = 0, θ̇ns + θ̇s = 0
o

φx is the flow of (1), T is the time taken for the
trajectory to return to Σ.

Stability of the Poincaré map (11) is determined by
linearizing P around the fixed point x∗, leading a dis-
crete evolution equation :

∆xk+1 = DP (x
∗)∆xk (13)



The major issue is how to obtain DP (x∗).- The jaco-
bian matrix- .While the biped dynamic is rather com-
plicated, a closed form solution for the linearized map is
difficult to obtain. But one can be obtained by the use
of trajectory sensitivity analysis.

3.4 Trajectory sensitivity

Trajectory sensitivity analysis is based upon lineariz-
ing the system around a nominal trajectory rather than
around an equilibrium point[14][15]. It’s therefore pos-
sible to determine directly the change in a trajectory
due to (small) changes in initial conditions. Crucial to
this method is the development of jump conditions de-
scribing the behavior of sensitivities at discrete events
(impacts).
Away from events the dynamic of the biped robot is

described as follows :

ẋ = f(x) + g(x).u = F (x) (14)

The flow of x is defined as :

x(t) = φx(x
∗, t) (15)

where x∗ represents initial conditions :

φx(x
∗, t0) = x∗ (16)

Sensitivity of the flow φx to initial conditions is ob-
tained by linearizing (15) around the nominal trajectory
and can be expressed as :

∂φx(x
∗, t)

∂x∗
= xx∗(t) = Φx(x

∗, t) (17)

Away from events trajectory sensitivity xx∗ is given
by :

ẋx∗ = Fx(t)xx∗(t) (18)

where Fx(t) =
∂F
∂x is the jacobian matrix. Initial

conditions for xx∗ are obtained from (16) as :

xx∗(t) = I (19)

where I is the identity matrix.
These equations describe the evolution of sensitivity

between events (impacts). However at events, the sensi-
tivity is generally discontinuous. Let x(τ) be the point
where the trajectory encounters the triggering hypersur-
face Σ (θns+ θs+2γ = 0), i.e, the point where an event
is initiated. This point is called the junction time. Just
prior to the event we have :

x− = x(τ−) = φx(x
∗, τ−) (20)

Similarly x+ is defined for time τ+, just after the
event. It is shown in [16]that the jump condition for the
sensitivity is given by :

xx∗(τ
+) = hxxx∗(τ

−)− (f+ − f−)τx∗ (21)

where :
hx =

∂h
∂x is the jacobian of the transition matrix.

τx∗ =
−sxxx∗(τ−)

sxf−
; sx = θns + θs + 2γ

f− = f(x(τ−))
f+ = f(x(τ+)).
The trajectory sensitivity Φx(x

∗, t) is closely related
to DP (x∗) [16] as :

DP (x∗) = (I − f(x∗)σT

hσ, f(x∗)i)Φx(x
∗, T ) (22)

where σ is a vector normal to Σ, Φx(x
∗, T ) is the

trajectory sensitivity after one period of the limit cycle,
i.e, starting from x∗ and returning to x∗. This matrix is
called the monodromy matrix.
For an autonomous system [16], one eingenvalue of

Φx(x
∗, T ) is always 1. The remaining eigenvalues of

Φx(x
∗, T ) coincide with the eingenvalues ofDP (x∗), and

are known as the characteristic multipliers λi of the pe-
riodic solution.Three cases can be notified:
1. |λi| < 1,∀i. The map is stable, so the periodic

solution is stable.
2. All λi lie outside the unit circle. The periodic

solution is unstable.
3. Some λi lie outside the unit circle. The periodic

solution is non-stable.

4 Numerical procedure

A numerical procedure is used to test the walking cycle
via the poincaré map, it’s resumed as follows :
1. With an initial guess we use the multidimentional

Newton-Raphson method to determine the fixed point
x∗ of P+ (immediatly prior the switching event).
2. Based on this choice of x∗, we evaluate the eigen-

values of the poincaré map after one period by the use
of the trajectory sensitivity.

5 Simulation results

Consider the model (1), with the following values :
m = 5kg, Mh = 10kg, Mt = 10kg, r = 1m, l = 0.5m
γ = 3◦, Kp = 99, Kv = 79, θdt =

π
6 .

We choose the hyperplane Σ as the event plane.
Starting with a suitable initial guess we obtain the fixed
point 2:

x∗ = [−0.254973, 0.359693,−0.012109, (23)

0.961480, 0.089247, 0.847713]

2The fixed point x∗ can be located by the use of multidimen-
tional Newton-Raphson Method



Figure 3: Algorithm of the numerical analysis

on the limit cycle before the impact event.
Based on this choice for x∗, the eigenvalues of the

monodromy matrix Φx(x
∗, T ) after one period of the

limit cycle are :

0.987,−0.1245± 0.6723, (24)

−0.3245± 0.1241, 0.1578
The figure (4) shows the behavior of the stance leg in

the phase space through a full cycle where T=3.2s.

Figure 4: Nearly passive limit cycle of the stance leg

The figure (5) shows the behavior of the swing leg
through a full cycle where T=3.2s.the control vector u
is illustrated in figure(6), u1 is the PD control applied
between the torso and the stance leg, u2 is the torque
between the torso and the swing leg which is a passive
link.
The figure (7) represents the stick diagram of the pas-

sive walking biped robot with torso.

Figure 5: Nearly passive limit cycle of the swing leg
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6 Conclusion

A kneeless biped robot with torso is an underactuated
system. It is shown in this paper that such system can
exihibit a passive dynamic walking downhill a slope, un-
der a simple PD control applied between the torso and
the stance leg in order to stand the torso up.

An approach based on numerical optimization have
been proposed and used to find appropriate and stable
cycle for passive walking.

Poincaré map results are used to analyze the stability
of limit cycle. The monodromy matrix is obtained by
evaluating trajectory sensitivities over one period of the
limit cycle.

Future research intends to examine a control law
which realizes a robust continuous walking on the level
ground to imitate a nearly passive dynamic walking on
the downhill slope
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Figure 7: Stick diagram of the walking behavior
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Appendix
In this appendix we give the equations of the biped

model (2), in the following :

ω : = θ̇

snsj : = sin(θns − θj), j ∈ {s, t}
cnsj : = cos(θns − θj), j ∈ {s, t}



The mechanical model

M =

 ( 54m+Mh +Mt)r
2 −1

2 mr
2cnss Mtrlcnst

−1
2 mr

2cnss
1
4mr

2 0
Mtrlcnst 0 Mtl

2


(25)

C =

 0 −1
2 mr

2snssωs Mtrlsnstωt
−1
2 mr

2snssωns 0 0
Mtrlcnst 0 0


(26)

G =

 −1
2 g(2Mh + 3m+ 2Mt)r sin(θs)

−1
2 gmr sin(θns)−gMtl sin(θt)

 (27)

B =

 −1 0
0 −1
1 1

 (28)
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