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Abstract. The notion of locally positive nonlinear time-varying linear systems is
introduced. Necessary and sufficient conditions for the local positivity of nonlinear
time-varying systems are established. The concept of local reachability in the
direction of a cone is introduced and sufficient conditions for the local reachability in
the direction of a cone of this class of nonlinear systems are presented.

1. Introduction

Roughly speaking positive systems are systems whose trajectories are entirely in the
nonnegative orthant nR+  whenever the initial state and input are nonnegative. Positive
systems arise in modelling of systems in engineering, economics, social sciences,
biology, medicine and other areas [7,1-3,11,20,19]. The single-input single-output
externally positive and internally positive linear time-invariant systems have been
investigated in [7,2,3]. The notions of externally positive and internally positive
systems have been extended for singular continuous-time and discrete-time  and two-
dimensional linear systems in [11]. The reachability and controllability of standard
and singular internally positive linear systems have been analysed in [6,14,16,22].
The notions of weakly positive discrete-time and continuous-time linear systems have
been introduced in [11,12]. Recently the positive two-dimensional (2D) linear systems
have been extensively investigated by Fornasini and Valcher [23,22] and in [11].
Necessary and sufficient conditions for the external and internal positivities and
sufficient conditions for reachability of time-varying linear systems have been
established in [10,15]. The notion of the controllability of a dynamic system in the
direction of a cone was introduced by Walczak in [21] and a sufficient condition for
local controllability of nonlinear systems was established.
In this paper the notion of local positive in the neighborhood of zero of nonlinear
time-varying systems will be introduced and the necessary and sufficient conditions
for the local positivity will be established. The reachability of nonlinear time-varying
systems will be also investigated. To the best knowledge of the author this class of
locally positive nonlinear systems has not been considered yet.

2. Preliminaries

Let mnR ×  be the set of real matrices with non-negative entries and 1: ×= nn RR .
Consider a nonlinear system described by the equations
(1a) 00 )(),,,( xtxtuxfx ==&
(1b) ),,( tuxhy =
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where 
dt
dxx =& , nRx ∈ , mRu ∈  and  pRy ∈  are the state, input and output vectors,

respectively,  and
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are nR - and pR  - valued mappings defined on open sets. It is assumed that the
functions ),,(),...,,,(1 tuxftuxf n  and ),,(),...,,,(1 tuxhtuxh p  are smooth in their
arguments, i.e. they are real-valued functions of tuuxx mn ,,...,,,..., 11  with continuous
partial derivatives of any order, where [ ] [ ] T

m

T

n uuuuxxxx ...,,,...,, 2121 ==  and  T
denotes the transpose. It is also assumed that the system (1a) possesses a solution for
any admissible input  u.
Let
(3) 0),0,0( =tf  and 0),0,0( =th  for all  t   
and
(4a) ),,()()( tuxNutBxtAx f++=&

(4a) ),,()()( tuxNutDxtCy h++=
where
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),,(),,,( tuxNtuxN hf  are the nonlinear parts of ),,( tuxf  and ),,( tuxh , respectively
and
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The linear system
(7a) utBxtAx )()( +=&
(7b) utDxtCy )()( +=
is called a linear approximation of the nonlinear system (1) in the neighborhoad of the
zero  )0,0( == ux

Example 1. Consider the nonlinear system

(8a)
uxexx

uuxxtxx
x 2

sin

222

22
2211

1 ++=

++++=
&

&

(8b) 3
1 uutxy ++=

Using (5) we obtain
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It is easy to check that (10) satisfy the conditions (6).

Main result
Lemma
Let
(11) xtAx )(=&
be the linear approximation of the nonlinear autonomous system
(12) ),()(),( txNxtAtxfx f+==&
where
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If the components ),(),...,,(1 txftxf n of ),( txf  satisfy the condition
(15) 0),( ≥txfi  for 0,,0 =≠≥ ij xjix  and all 0≥t
then
(16) 0)( ≥taij  for ji ≠  and all 0≥t
where nji ,...,1, = .

Proof. From (13) we have
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Remark 1. In particular case when ),( txf  is explicitly independent of time
)(),(, xftxft =  then AtA =)(  and the time-invariant matrix (13) is a Metzler matrix

satisfying the condition
nnAt Re ×

+∈ for all 0≥t
Definition 1.  The nonlinear system (1) is called locally positive in the neighborhood
of zero ),0( 0ux = if there exists a neighbourhood of the zero 0U  such that for any

nRUx +∩∈ 00  we have nRUtx +∩∈ 0)(  for (or at least [ )ε,0∈t  for some 0>ε ).

Theorem 1.  The nonlinear system (1) is locally positive in the neighborhood of zero
)0,0( == ux if and only if
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Proof. Note that the condition (18a) is equivalent to

(19) ∫ ≥
t

ij da
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In [10] it has been shown that the linear approximation (7)  is positive if and only if
the conditions (19) and (18b) are satisfied. Under the assumptions and (6) it is easy to
show that the nonlinear system (1) is locally positive in the neighborhoad of zero if
and only if the linear approximation (7) is positive. ڤ

Example 2. (continuation of Example 1)

We shall show that the nonlinear system (8) is locally positive in the neighborhoad of
zero ( 0,0 == ux ).
The nonlinear system (8) satisfies the conditions (18) since
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Therefore, by Theorem 1 the nonlinear system (8) is locally positive in the
neighborhoad of zero.
Let nRC ++ ∈   be a cone in the neighborhoad of zero ( 0,0 == ux ). Following Walczak
[21] the notion of the local reachability in the direction of a cone will be introduced.

Definition 2.  The nonlinear system (1) is called locally reachable in the cone
direction of a +C  if for every state  +∈ Cx f  there exists a time 00 >− tt f  and input

],[,)( 0 f

m tttRtu ∈∈ +  such that ff xtx =)(  for 0)( 00 == xtx .
A matrix is called the monomial matrix if its every row and its every column contains
only one positive entry and the remaining entries are zero.
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The inverse matrix 1−A  of a positive matrix nnRA ×

+∈  is the positive matrix if and only
if  A  is the monomial matrix [11].

Theorem 2.  The nonlinear system (1) is locally reachable in the direction of a cone
nRC ++ ⊂   if the matrix

(20) ∫ >ΦΦ=
ft

t
ff

TT

ff ttdtBBtR
0

0,),()()(),( τττττ

is a monomial matrix.
The input that steers the state of the system (1) in time 0tt f −  from 0)( 0 =tx  to the
final state fx  is given by
(21)                fff

T xRtttBtu 1),()()( −Φ=  for ],[ 0 fttt ∈

Proof.  If  fR  is a monomial matrix then there exists the inverse matrix nn

f RR ×

+
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which is also monomial. Hence the output (21) is well defined and mRtu +∈)(  for
],[ 0 fttt ∈ .

Substituting of (21) into the solution
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of (7a) for ftt =  and 00 =x  we obtain
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If the matrix (20) is a monomial matrix then the linear approximation (7a) of the
nonlinear system (1) is reachable. Under the assumptions and (6) it is easy to show
that the nonlinear system (1) is locally reachable in the cone +C ڤ .
In particular case if the system (1) is linear then from Theorem 1 and Theorem 2 we
obtain the known results given in [10,11,14,15].

3. Concluding remarks.

The notion of local positive in the neighborhood of zero nonlinear time-varying
system has been introduced. Necessary and sufficient conditions for the local
positivity have been established by the use of the linear approximation (7) of the
nonlinear system (1). The concept of local reachability in the direction of a cone of
the positive nonlinear systems (1) has been introduced and sufficient conditions for
the local reachability in the direction of a cone by the use of the linear approximation
(7) have been also derived.
With minor modifications the considerations can be extended to nonlinear discrete
time-varying systems. Open problem are the extensions of the considerations to
singular nonlinear systems and to 2D nonlinear systems.
I wish to thank very much to Professor Stanisław Walczak for his valuable remarks
and suggestions.
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