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Abstract

There is increasing interest in the control of communication
networks. This paper reveals that a simple method, the dual-
locus diagram method, is very effective in analyzing the robust
stability of simple time-delay systems, which are often met in
communication systems. As to a single connection studied in
[15], the same results as those obtained by Niculescu have been
obtained, but in a much simpler and clearer graphical way. As
to the web-based control system studied in [2], the results have
been extended to a much broader class of systems, i.e. from
a line in the parameter plane to the whole plane. The stability
region is divided into a delay-dependent stability region and a
delay-independent stability region, which offers a nice graphi-
cal view on the conservativeness of the delay-independent sta-
bility criteria.

1 Introduction

In recent years, there is increasing interest in the control of
communication networks [23] because communication net-
works are among the fastest-growing areas in engineering.
Thanks to high-speed networks, control-via-Internet is now
available [20, 11]. These controlled communication networks
and/or the systems controlled via network are frequently mod-
eled from the control point of view as time-delay systems be-
cause of the inherent propagation delays, see, for example,
[9, 12]. These delays are crucial to the stability of the conges-
tion control and the quality-of-service (QoS). As is well known,

∗An abridged and expanded version of this paper can be found in [25].

the presence of delays makes the control design and system
analysis much more complicated. For details on the control of
communication networks, see [9, 12, 19, 4] and the references
therein. In this paper, we focus on the stability analysis of the
communication networks, specifically, the systems studied in
two very recent papers [15, 2].

The robust stability analysis of time-delay systems is not well
established and has become a very active research field in re-
cent years. Current efforts can be divided into two categories:
delay-dependent stability criteria [5, 6, 13, 18] and delay-
independent stability criteria [10]. Although delay-dependent
stability criteria are in general less conservative than delay-
independent criteria, they may still be quite conservative. One
reason is that delay-dependent stability criteria were frequently
obtained by using a model transformation, which introduces
additional dynamics [7, 8]. An interesting case where the
delay-independent stability criteria are not conservative at all
will be shown.

The system studied in [15] is a high-speed network controlled
by a simple proportional control algorithm. More specifically,
it is a single connection between a source node (controlled by
an access regulator) and a distant node. The system model de-
rived in [9] and treated in [14] can be described by the second-
order delay differential equation:

System I : ÿ(t) + ay(t − τ) + by(t − τ − r) = 0,

where y(t) is the congestion status of the remote node (if
y(t) > 0, then the remote node is said to be congested), τ
is the round-trip delay (equal to the sum of the forward prop-
agation delay and the backward propagation delay), r is the
control interval artificially introduced to stabilize the system,
and a and b are proportional control gains. The stability crite-
ria proposed there are very elegant. However, the reasoning is
not very transparent and is difficult to follow.

The system studied in [2] is a special case of a mass-spring-



damper system controlled over the network using a simple
proportional controller. The system can be described by the
second-order delay differential equation:

System II : ÿ(t) + 2ζαẏ(t) + α2y(t) − Kpy(t − τ) = 0,

where y(t) is the position of the mass, ζ > 0 is the damping
ratio, α > 0 is the natural frequency, Kp > 0 is the propor-
tional control gain and τ > 0 is the network communication
delay. The stability bound is obtained by using the Lambert
W function [3, 26, 1]. The approach is effective for high-order
systems with a delay as well. However, the assumption ζ = 1
(equivalent to the condition bm = a2

m

4 in the paper) or the as-
sumption having repeating poles for high-order systems con-
siderably limits the applicability of the results.

In this paper, the stability analysis of these two systems is re-
considered using a very simple method — the dual-locus di-
agram (also called Satche diagram) method [21, 22, 17, 24],
which is an extension or variant of the well-known Nyquist
diagram [16, 25]. It is very effective in analyzing the stabil-
ity of simple time-delay systems. The advantages consist in
the simplicity of the approach and the easy understanding of
the reasoning, as demonstrated in Section 2, where the stabil-
ity of System I is analyzed. The stability of System II is an-
alyzed in Section 3, where the assumption ζ = 1 has been
removed and thus the result can be applied to systems hav-
ing various ζ and/or α. The stability region of the system is
divided into a delay-dependent stability region and a delay-
independent stability region on the parameter plane Kp

α2 − ζ.
This offers a nice graphical view on the conservativeness of
the delay-independent stability criteria: the delay-independent
stability criteria are not conservative at all when ζ ≥ 1√

2
.

2 Stability analysis of System I

The assumptions in [15], i.e. b < 0 and a > |b|, are retained to
reduce the length of this paper.

2.1 Case 1: Round-trip delay τ = 0

In this case, System I can be reformulated as

e−rs =
s2 + a

−b
.

The corresponding dual-locus diagram is shown in Figure 1(a).
In this paper, in order to simplify the exposition, the bounded
locus is denoted by L1 and the unbounded one by L2. When
ω increases from 0 to +∞, locus L1 = e−rs is the clockwise
unity circle starting at (1, 0) and locus L2 = s2+a

−b is a straight
line originating at ( a

−b , 0), which is at the right side of the unity
circle, and extending to (−∞, 0). L2 intersects with L1 at

(a) τ = 0

(b) τ ≥ 0

Figure 1: The dual-locus diagram of System I

points A and B, at which the corresponding frequencies on
L2 are denoted by ωA and ωB , respectively. Using magnitude
conditions, ωA and ωB can be obtained as

ωA =
√

a + b and ωB =
√

a − b. (1)

In order to guarantee the stability of the system, L2 (the lo-
cus which approaches ∞ faster) should arrive at B earlier than
L1 according to the dual-locus diagram method [22, 24]. This
means that the phase shift of e−rs due to ωB should be larger
than −π (i.e. −rωB > −π), in other words,

0 < r <
π√

a − b
.

This is the major branch of the delay stability bound. As a
matter of fact, if the control interval r is large, L1 may have
already traveled several cycles along the unity circle before L 2

arrives at A. In this case, in order to guarantee the stability
of the system, L2 should have traveled from A to B while L1

is still traveling from A to B during the same cycle, i.e. to



guarantee that L2 lies at the right side of L1[22, 24]. This
means that{ −rωA < −2iπ

−rωB > −2iπ − π
or

2iπ√
a + b

< r <
(2i + 1)π√

a − b
,

where i is the traveled cycles of L1 before L2 arrives at A. This
condition is exactly the same as Proposition 1 in [15], but quite
easily obtained here. It is worth noting that the admissible i
satisfies the following condition:

0 ≤ i <
0.5√

a−b
a+b − 1

.

Hence, there only exists the major delay stability bound to
guarantee the system stability if −b < a < −2.6b.

2.2 Case 2: Round-trip delay τ ≥ 0

In this case, System I can be described as

−(a + be−rs)e−τs = s2.

The corresponding dual-locus diagram is shown in Figure 1(b).
When ω increases from 0 to +∞, locus L2 = s2 is a straight
line originating at (0, 0) and extending to (−∞, 0). Locus
L1 = −(a+be−rs)e−τs, starting at A(−(a+b), 0), can be ob-
tained by rotating the points on the circle (−a, 0, |b|) clockwise
with respect to the origin O(0, 0) by an angle of ωτ . Hence, L2

never exceeds the circle (0, 0, a − b). The corresponding fre-
quencies at A and B on L2 are the same as those in the case
when τ = 0 given in (1) and independent of the round-trip
delay τ .

The following sufficient condition for the system stability can
be obtained with ease [22, 24]: If L2 arrives at B before L1

intersects with L2, then the system is stable. The latter part of
this condition can be divided into two sub-conditions:

(i) −(a + be−rs) is still traveling from A to B, say, at C ′;

(ii) L1 has not arrived at the would-be intersection C on the
negative real axis.

At the would-be intersection C (of which the corresponding
frequency is denoted by ωC ), the following magnitude condi-
tion is satisfied:

ω2
C =

√
(a + b cos(rωC))2 + (b sin(rωC))2.

This is equivalent to

ω4
C = a2 + b2 + 2ab cos(rωC).

As can be seen in Figure 1(b), the second sub-condition means
that the phase shift (absolute value) due to e−τs plus the phase
angle of point C ′ should be less than π, i.e.

τωC + (π − arctan
−b sin(rωC)

a + b cos(rωC)
) < π,

while the first sub-condition means that

−rωB > −π.

These two conditions can then be represented as{
0 < r < π√

a−b

0 ≤ τ < 1
ωC

arctan −b sin(rωC)
a+b cos(rωC)

.

This is the same as the major delay bound given by Proposition
2 in [15], but easily obtained here.

As can be seen in Figure 1(b), there always exists an intersec-
tion C between A and B, which means there always exists a
solution ωC > 0. Moreover, C moves towards A when the
control interval r decreases and moves towards B when the
round-trip delay τ decreases.

The other possible branches can be obtained in a similar way
and are thus omitted in this paper.

3 Stability analysis of System II

System II studied in [2] can be represented in s-domain as

e−τs =
s2 + 2ζαs + α2

Kp
,

of which the dual-locus diagram is shown in Figure 2(a). When
ω increases from 0 to +∞, locus L1 = e−τs is the clockwise
unity circle starting at (1, 0) and locus L2 = s2+2ζαs+α2

Kp
is a

parabola originating at ( α2

Kp
, 0), which is at the right side of the

unity circle, and extending towards the left. It is assumed that
ζ > 0, α > 0 and Kp > 0 as in [2] but ζ is not limited to 1.

When decreasing Kp and/or increasing α, L2 (denoted as L
′
2

in Figure 2(a)) moves towards the outside of the unity circle
in parallel and, when α2

Kp
is large enough, no longer intersects

with L1. Hence, for some large α2

Kp
, L2 always stays at the

right side of L1 and the system is delay-independently stable.
When increasing the damping ratio ζ, the intersection of L 2

(denoted as L
′′
2 in Figure 2(a)) with the imaginary axis moves

up, but the starting point of L2 remains still. Hence, the system
is delay-independently stable for large ζ.

If Kp > α2, then the starting point ( α2

Kp
, 0) of L2 lies inside

L1 and the system is not stable because the total rotation of
the spider-web vector is −360◦ [22]. Hence, the proportional
gain guaranteeing the system stability is limited by α2, i.e.
Kp < α2. In order to simplify later expositions, the propor-
tional control gain Kp is normalized as

η =
Kp

α2
,

and then it is assumed that 0 < η < 1 in the sequel.



(a) the dual-locus diagram

(b) the stability region

Figure 2: Analysis of System II

The parabola L2 may have two intersections or no intersection
with L1, corresponding to the solution condition of the follow-
ing equation with respect to ω:

(α2 − ω2)2 + (2ζαω)2

K2
p

= 1.

Assuming that there exist two positive solutions ωA and ωB ,
which are actually the corresponding frequencies on L 2 at the
two intersections A and B respectively, then ωA and ωB can be
solved from the last equation as

ωA = α

√
1 − 2ζ2 −

√
η2 − 4ζ2 + 4ζ4, (2)

ωB = α

√
1 − 2ζ2 +

√
η2 − 4ζ2 + 4ζ4. (3)

The conditions on the existence of ωA and ωB will now be an-
alyzed and the delay-dependent and/or delay-independent sta-
bility criteria will be developed as follows:

(i) If ζ ≥ 1, then η2 − 4ζ2 + 4ζ4 is always positive. How-
ever, 1 − 2ζ2 −

√
η2 − 4ζ2 + 4ζ4 < 0 and 1 − 2ζ2 +√

η2 − 4ζ2 + 4ζ4 < 0 for any 0 < η < 1. Hence, either ωA

or ωB does not exist (hereafter, “to exist” means the existence
of a positive solution) and the system is delay-independently
stable. The corresponding stability region is denoted as RC in
Figure 2(b).

(ii) If 0 < ζ < 1 and η < 2ζ
√

1 − ζ2, then η2 − 4ζ2 + 4ζ4 <
0. Either ωA or ωB does not exist and the system is delay-
independently stable. This stability region is denoted as RA

in Figure 2(b). When ζ = 1√
2

the delay-independent stability
region reaches the maximum because L2 never intersects with
L1 and the system is stable for any 0 < η < 1.

(iii) If 0 < ζ < 1 and η ≥ 2ζ
√

1 − ζ2 (and η < 1 by assump-
tion), η2 − 4ζ2 + 4ζ4 ≥ 0. Either ωA or ωB does not exist
when 1√

2
< ζ < 1 but both exist when 0 < ζ < 1√

2
. Hence,

when 0 < ζ < 1√
2

and η ≥ 2ζ
√

1 − ζ2, there are two inter-
sections. As can be seen later, this provides the unique delay-
dependent stability region, denoted as RD in Figure 2(b); when
1√
2

< ζ < 1 and η ≥ 2ζ
√

1 − ζ2, there is no intersection and
the system is delay-independently stable. This stability region
is denoted as RB in Figure 2(b).

It is trivial that the system is stable when Kp = 0 because the
open-loop system is stable. The ζ − η plane shown in Fig-
ure 2(b) is then divided into an unstable region (RU ), a delay-
dependent stability region (RD) and a delay-independent sta-
bility region (including RA, RB and RC ). This offers a nice
view on the conservativeness of the delay-independent stabil-
ity criteria. For 1√

2
< ζ < 1, the delay-independent region

consists of two complementary parts: RB and the right portion
of RA. When ζ ≥ 1√

2
, the delay-independent stability criteria

are not conservative at all: the system is stable for all possible
gains in 0 < Kp < α2.

In region RD, 0 < ζ < 1√
2

and 2ζ
√

1 − ζ2 ≤ η < 1, L2

intersects with L1 at points A and B. The system is stable if
L2 arrives at B before L1 [22, 24]. In other words, the phase
shift of L1 should be less than the phase angle of point B on
L2. This provides the major delay bound as

0 ≤ τ <
1

ωB

(
3π

2
+ arctan

α2 − ω2
B

2ζαωB

)
.

Similarly as in the previous section, L1 may have already trav-
eled several cycles along the unity circle before L2 arrives at
A, then the following condition is required:

{
τωA > −π

2 + arctan α2−ω2
A

2ζαωA
+ 2iπ

τωB < 3π
2 + arctan α2−ω2

B

2ζαωB
+ 2iπ

.

This provides the following theorem:

Theorem 1. If 0 < ζ < 1√
2

and 2ζ
√

1 − ζ2 ≤ η < 1, System
II is delay-dependently stable. The stability delay bounds (τ ≥
0) are given by



1
ωA

(
−π

2 +arctan
α2−ω2

A
2ζαωA

+2iπ

)
<τ< 1

ωB

(
3π
2 +arctan

α2−ω2
B

2ζαωB
+2iπ

)

where i = 0, 1, 2, ..., until the right side is no longer larger than
the left, and ωA and ωB are given in (2) and (3) respectively.

The delay-independently criteria can be summarized as:

Theorem 2. System II is delay-independently stable: (i) for
0 < Kp < α2 if ζ ≥ 1√

2
, (ii) for 0 < Kp < 2ζα2

√
1 − ζ2 if

0 < ζ < 1√
2

.

Remarks:

(i) The damping ratio ζ is a crucial parameter for the system
stability. The larger the damping ratio ζ, the better the stabil-
ity (but, of course, the slower the system). If ζ is too small,
then the delay-independent stability region is very narrow. For
example, the damping ratio in System I is 0. Hence, there is
no delay-independent stability region and the control interval r
is (very likely, has to be) artificially introduced to stabilize the
system.

(ii) The network communication delays impose very strict lim-
itations on the system performance. The control gain is con-
siderably limited (although the system may still be delay-
independently stable). This is one of the reasons why control-
via-Internet requires a reliable high-speed communication net-
work.

(iii) When 0 < ζ < 1√
2

, the delay-dependent stability criteria
offer a larger control gain and, hence, a better dynamic perfor-
mance but the allowable communication delays are limited. On
the other hand, the delay-independent stability criteria offer a
smaller control gain but allow a broad range of communication
delays (theoretically, 0 ∼ +∞). Hence, the compromise be-
tween the network requirements and the control performance
requirements is necessary when designing a system to be con-
trolled via network. The delay-dependent stability criteria are
suitable for the control over a high-performance communica-
tion network, e.g. a local area network (LAN), and the delay-
independent stability criteria are suitable for the control over a
less reliable and/or low speed communication network, e.g. the
Internet.

4 Conclusions

In this paper, the stability analysis of two time-delay systems
related to communication networks are re-considered using a
simple method — the dual-locus diagram method. Both delay-
independent and delay-dependent stability criteria for a mass-
spring-damper system which is controlled via Internet are de-
rived. A nice graphical view on the conservativeness of the
delay-independent stability criteria is obtained. In some cases

(ζ ≥ 1√
2

), the delay-independent stability criteria are not con-
servative at all. It is revealed that the dual-locus diagram
method is very effective in the robust stability analysis of sim-
ple time-delay systems.
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