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Abstract

There is increasing interest in the control of communication
networks. This paper reveas that a simple method, the dual-
locus diagram method, is very effectivein analyzing the robust
stability of simple time-delay systems, which are often met in
communication systems. As to a single connection studied in
[15], the same results as those obtained by Niculescu have been
obtained, but in a much simpler and clearer graphical way. As
to the web-based control system studied in [2], the results have
been extended to a much broader class of systems, i.e. from
aline in the parameter plane to the whole plane. The stability
region is divided into a delay-dependent stability region and a
delay-independent stability region, which offers a nice graphi-
cal view on the conservativeness of the delay-independent sta-
bility criteria.

1 Introduction

In recent years, there is increasing interest in the control of
communication networks [23] because communication net-
works are among the fastest-growing areas in engineering.
Thanks to high-speed networks, control-via-Internet is now
available [20, 11]. These controlled communication networks
and/or the systems controlled via network are frequently mod-
eled from the control point of view as time-delay systems be-
cause of the inherent propagation delays, see, for example,
[9, 12]. These delays are crucial to the stability of the conges-
tion control and the quality-of-service (QoS). Asiswell known,

*An abridged and expanded version of this paper can be found in [25].

the presence of delays makes the control design and system
analysis much more complicated. For details on the control of
communication networks, see [9, 12, 19, 4] and the references
therein. In this paper, we focus on the stability analysis of the
communication networks, specificaly, the systems studied in
two very recent papers[15, 2].

The robust stability analysis of time-delay systems is not well
established and has become a very active research field in re-
cent years. Current efforts can be divided into two categories:
delay-dependent stability criteria [5, 6, 13, 18] and delay-
independent stahility criteria [10]. Although delay-dependent
stability criteria are in general less conservative than delay-
independent criteria, they may till be quite conservative. One
reason is that delay-dependent stability criteriawere frequently
obtained by using a model transformation, which introduces
additional dynamics [7, 8]. An interesting case where the
delay-independent stability criteria are not conservative at all
will be shown.

The system studied in [15] is a high-speed network controlled
by a simple proportional control algorithm. More specifically,
it is a single connection between a source node (controlled by
an access regulator) and a distant node. The system model de-
rived in [9] and treated in [14] can be described by the second-
order delay differential equation:

System | : §j(t) +ay(t —7) +by(t — 7 —7) =0,

where y(t) is the congestion status of the remote node (if
y(t) > 0, then the remote node is said to be congested), 7
is the round-trip delay (equal to the sum of the forward prop-
agation delay and the backward propagation delay), r is the
control interval artificially introduced to stabilize the system,
and a and b are proportiona control gains. The stability crite-
ria proposed there are very elegant. However, the reasoning is
not very transparent and is difficult to follow.

The system studied in [2] is a specia case of a mass-spring-



damper system controlled over the network using a simple
proportional controller. The system can be described by the
second-order delay differential equation:

System Il = §j(t) + 2Cag(t) + a®y(t) — Kpy(t — 1) = 0,

where y(¢) is the position of the mass, ¢ > 0 is the damping
ratio, « > 0 is the natural frequency, K, > 0 is the propor-
tional control gain and 7 > 0 is the network communication
delay. The stability bound is obtained by using the Lambert
W function [3, 26, 1]. The approach is effective for high-order
systems with a delay as well. However, the assumption ¢ = 1

(equivalent to the condition b,,, = asz in the paper) or the as-
sumption having repeating poles for high-order systems con-
siderably limits the applicability of the results.

In this paper, the stability analysis of these two systemsisre-
considered using a very simple method — the dual-locus di-
agram (also called Satche diagram) method [21, 22, 17, 24],
which is an extension or variant of the well-known Nyquist
diagram [16, 25]. It is very effective in analyzing the stabil-
ity of simple time-delay systems. The advantages consist in
the simplicity of the approach and the easy understanding of
the reasoning, as demonstrated in Section 2, where the stabil-
ity of System | is analyzed. The stability of System Il is an-
alyzed in Section 3, where the assumption ( = 1 has been
removed and thus the result can be applied to systems hav-
ing various ¢ and/or «. The stability region of the system is
divided into a delay-dependent stability region and a delay-
independent stability region on the parameter plane % — (.
This offers a nice graphical view on the conservativeness of
the delay-independent stability criteria: the delay-independent
stability criteriaare not conservative at all when ¢ > %

2 Stability analysis of System |

The assumptionsin [15],i.e. b < 0 and a > |b|, are retained to
reduce the length of this paper.

2.1 Casel: Round-trip delay 7 =0

In this case, System | can be reformulated as

s +a
-b
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The corresponding dual-locus diagram is shown in Figure 1(a).
In this paper, in order to simplify the exposition, the bounded
locus is denoted by L, and the unbounded one by L. When
w increases from 0 to +oo0, locus L1 = e~ " is the clockwise
unity circle starting at (1,0) and locus Lo = ‘Q_J;“ isagraight
lineoriginating at (%, 0), whichisat the right side of the unity
circle, and extending to (—oco, 0). Lo intersects with L, at
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Figure 1: The dual-locus diagram of System |

points A and B, at which the corresponding frequencies on
L, aredenoted by w4 and wp, respectively. Using magnitude
conditions, w4 and wp can be obtained as

wa=vVa+b and wg =+Va—b. (€N}

In order to guarantee the stability of the system, Lo (the lo-
cus which approaches oo faster) should arrive at B earlier than
L according to the dual-locus diagram method [22, 24]. This
means that the phase shift of ¢e~"¢ dueto wp should be larger
than —7 (i.e. —rwp > —), in other words,

O0<r<

This is the mgor branch of the delay stability bound. As a
matter of fact, if the control interval r is large, L1 may have
aready traveled several cycles aong the unity circle before L 5
arrives at A. In this case, in order to guarantee the stability
of the system, L, should have traveled from A to B while L
is still traveling from A to B during the same cycle, i.e. to



guarantee that Lo lies at the right side of L1[22, 24]. This
means that

—rwq < =24 2im e (20 + 1)
—rwp > —2UT—T Va+b Va—-=>b"'

wherei isthetraveled cyclesof L, before Lo arrivesat A. This
condition is exactly the same as Proposition 1 in [15], but quite
easily obtained here. It is worth noting that the admissible ¢
satisfies the following condition:

0.5
a—b '
Vars — 1
Hence, there only exists the major delay stability bound to
guarantee the system stability if —b < a < —2.60.

0<e<

2.2 Case2: Round-tripdelay 7 > 0

In this case, System | can be described as
—(a+be ") TS = 52,

The corresponding dual-locus diagramis shown in Figure 1(b).
When w increases from 0 to 400, locus L, = s is a straight
line originating at (0,0) and extending to (—oo, 0). Locus
L; = —(a+be ")e "%, startingat A(—(a+b),0), can beob-
tained by rotating the pointson thecircle (—a, 0, |b|) clockwise
with respect tothe origin O(0, 0) by an angle of wr. Hence, Lo
never exceeds the circle (0,0,a — b). The corresponding fre-
guenciesat A and B on L, are the same as those in the case
when 7 = 0 given in (1) and independent of the round-trip
delay 7.

The following sufficient condition for the system stability can
be obtained with ease [22, 24]: If L. arrives at B before L
intersects with Lo, then the system is stable. The latter part of
this condition can be divided into two sub-conditions:

(i) —(a + be~"9) is dtill traveling from A to B, say, at C”;

(if) L1 has not arrived at the would-be intersection C' on the
negative real axis.

At the would-be intersection C' (of which the corresponding
frequency is denoted by w), the following magnitude condi-
tion is satisfied:

wZ = /(a + beos(rwe))? + (bsin(rwe))?.

Thisisequivalent to

we = a? + b% + 2abcos(rwe).

As can be seen in Figure 1(b), the second sub-condition means
that the phase shift (absolute value) dueto e ~™* plus the phase
angle of point C’ should belessthan , i.e.

—bsin(rwe)

Twe + (T — arctan <,

a+ bcos(rwe)

while the first sub-condition means that

—rwp > —T.

These two conditions can then be represented as

s
0<r<7=
0<1t< —wl arctan
C

—bsin(rwc)
a+bcos(rwe)

Thisisthe same as the major delay bound given by Proposition
2in[15], but easily obtained here.

As can be seen in Figure 1(b), there always exists an intersec-
tion C between A and B, which means there always exists a
solution we > 0. Moreover, C moves towards A when the
control interval r decreases and moves towards B when the
round-trip delay ~ decreases.

The other possible branches can be obtained in a similar way
and are thus omitted in this paper.

3 Stability analysisof System ||
System 1 studied in [2] can be represented in s-domain as

52 + 2Cas + o
K,
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of which the dual-locus diagramis shown in Figure 2(a). When

w increases from 0 to +oo, locus L; = e~ "¢ is the clockwise
2 N 2,

unity circle starting at (1,0) and locus L, = £128e5te jgg

parabolaoriginating at (I";.—i, 0), whichisat theright side of the
unity circle, and extending towards the |eft. It is assumed that
¢(>0,a>0and K, > 0asin[2] but ¢ isnot limited to 1.

When decreasing K, and/or increasing o, L, (denoted as L'2
in Figure 2(a)) moves towards the outside of the unity circle
in parallel and, when ]";—i is large enough, no longer intersects

with L. Hence, for some large "‘—2, Lo aways stays at the
right side of L, and the system is del ay-independently stable.
When increasing the damping ratio ¢, the intersection of L,
(denoted as L., in Figure 2(a)) with the imaginary axis moves
up, but the starting point of L, remains still. Hence, the system
is delay-independently stable for large (.

If K, > o2, then the starting point (;‘(—Z,O) of L, liesinside
L, and the system is not stable because the tota rotation of
the spider-web vector is —360° [22]. Hence, the proportional
gain guaranteeing the system stability is limited by «?, i.e.
K, < . In order to simplify later expositions, the propor-
tional control gain K, isnormalized as

Ky

7’:—
a?’

and then it isassumed that 0 < 1 < 1 inthe sequel.
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(b) the stability region
Figure 2: Analysisof System |

The parabola L, may have two intersections or no intersection
with Ly, corresponding to the solution condition of the follow-
ing equation with respect to w:

(0® — w?)® + (20ow)?

~1.
Ky

Assuming that there exist two positive solutions w 4 and wp,
which are actually the corresponding frequencies on L, at the
two intersections A and B respectively, thenw 4 andwp canbe
solved from the last equation as

wa=ay/1-2¢2 - iF—AC 140, (@

wpg :a\/l—ZCQ—l— n% — 4¢2 + 4¢4. ©)]

The conditions on the existence of w 4 and w g will now be an-
alyzed and the delay-dependent and/or delay-independent sta-
bility criteriawill be developed as follows:

(i) If ¢ > 1, then n? — 4¢% + 4¢* is aways positive. How-
ever, 1 — 2¢%2 — /n?2 —4¢2+4¢* < 0 and 1 — 2¢2 +
V1?2 —4¢2 +4¢* < 0forany 0 < < 1. Hence, either w 4
or wp does not exist (hereafter, “to exist” means the existence
of a positive solution) and the system is delay-independently
stable. The corresponding stability regionis denoted as R¢ in
Figure 2(b).

(iNIf0o< ¢ <landn < 2(+\/1— (2, thenn? —4¢% +4¢* <
0. Either w4 or wp does not exist and the system is delay-
independently stable. This stability region is denoted as R 4
in Figure 2(b). When ¢ = % the delay-independent stability
region reaches the maximum because L, never intersects with
L, and the systemisstableforany 0 < n < 1.

@iiyIfo<¢<landn>2¢y/1—¢?(andn < 1 by assump-
tion), n? — 4¢ 4 4¢* > 0. Either w4 or wp does not exist

when \/% < ¢ < 1 but both exist when 0 < ¢ < . Hence,

7
when0 < ¢ < % andn > 2¢+/1 — (2, there are two inter-
sections. As can be seen later, this provides the unique delay-
dependent stahility region, denoted as R p, in Figure 2(b); when
\/% <(< .1 and n 2 2¢/1 — (2, thereisnginterg@tion gnd
the system is delay-independently stable. This stability region
isdenoted as R in Figure 2(b).

Itistrivial thet the system is stable when K, = 0 because the
open-loop system is stable. The ¢ — n plane shown in Fig-
ure 2(b) is then divided into an unstable region (R /), a delay-
dependent stability region (R p) and a delay-independent sta-
bility region (including R 4, Rp and R¢). This offers a nice
view on the conservativeness of the delay-independent stabil-
ity criteria. For % < (¢ < 1, the delay-independent region
consists of two complementary parts: Rz and the right portion
of R4. When( > \/% the delay-independent stability criteria
are not conservative at all: the system is stable for all possible
gainsin0 < K, < o?.

Inregion Rp, 0 < ¢ < % and 2¢\/1—(¢2 < n < 1, Ly
intersects with L; at points A and B. The system is stable if
Lo arrives a B before L [22, 24]. In other words, the phase
shift of L; should be less than the phase angle of point B on
Lo. This providesthe major delay bound as

0< < 1 /3 + arct o? —w
T < — | — +arctan .
- wp \ 2 2Cawp

Similarly asin the previous section, L.; may have already trav-
eled severa cycles along the unity circle before Lo arrives at
A, then the following condition is required:

2 2 .
{ Twp > —5 +arctan gga:}f + 24
2 .
3T & —Wp ;
Twp < <5 + arctan aws + 2im

This providesthe following theorem:

Theorem 1. If0 < ¢ < % and2¢+/1 — (2 <n < 1, Sygtem
Il is delay-dependently stable. The stability delay bounds (7 >
0) are given by



w2 2

1 x h A ; 1 3m "‘2""5 ;
Y 72+arctan 2Cawa +2i7 <T<G TJrarctan m+22ﬂ‘

wherei = 0, 1, 2, ..., until theright sideisnolonger larger than
theleft, and w4 and wp are givenin (2) and (3) respectively.

The delay-independently criteria can be summarized as:

Theorem 2. System Il is delay-independently stable: (i) for
0 < K, <a?if (> 7, (i) for 0 < K, < 2¢a®\/1 - (?if
0<(< \/%

Remarks:

(i) The damping ratio ¢ is a crucial parameter for the system
stability. The larger the damping ratio ¢, the better the stabil-
ity (but, of course, the slower the system). If ¢ istoo small,
then the delay-independent stability regionis very narrow. For
example, the damping ratio in System | is 0. Hence, there is
no delay-independent stability region and the control interval r
is (very likely, has to be) artificially introduced to stabilize the
system.

(i) The network communication delaysimpose very strict lim-
itations on the system performance. The control gain is con-
siderably limited (although the system may <till be delay-
independently stable). Thisis one of the reasons why control-
via-Internet reguires a reliable high-speed communication net-
work.

(i) When 0 < ¢ < % the delay-dependent stability criteria
offer alarger control gain and, hence, a better dynamic perfor-
mance but the allowable communication delaysare limited. On
the other hand, the delay-independent stability criteria offer a
smaller control gain but allow abroad range of communication
delays (theoretically, 0 ~ +o0). Hence, the compromise be-
tween the network requirements and the control performance
requirements is necessary when designing a system to be con-
trolled via network. The delay-dependent stability criteria are
suitable for the control over a high-performance communica-
tion network, e.g. alocal area network (LAN), and the delay-
independent stability criteria are suitable for the control over a
lessreliable and/or low speed communication network, e.g. the
Internet.

4 Conclusions

In this paper, the stability analysis of two time-delay systems
related to communication networks are re-considered using a
simple method — the dual-locus diagram method. Both delay-
independent and delay-dependent stability criteria for a mass-
spring-damper system which is controlled via Internet are de-
rived. A nice graphical view on the conservativeness of the
delay-independent stability criteriais obtained. In some cases

€= %), the delay-independent stability criteria are not con-
servative at all. It is revealed that the dual-locus diagram
method is very effectivein the robust stability analysis of sim-
pletime-delay systems.
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