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Keywords: Carleman linearization, bilinear systems, nonlinand "®” denoting theKronecker produc{see e.g. [2]). Since
ear observers, input-output linearization, dynamic output feetthe state equation (3) of the bilinear approximation model of or-
back. dernpj = (”JEM) is determined by omitting higher order terms
the resulting bilinear system is a local approximation of the
Abstract nonlinear system under consideration. In this contribution the

simple structure of the bilinear approximation model is ex-

On the basis of the Carleman linearization this contributigploited in order to design nonlinear observers and controllers
presents a new approach to the design of observers with Ifar the nonlinear system (1)-(2). As far as observer design is
ear error dynamics for nonlinear systems. The presented gncerned the possibly high order of the bilinear approxima-
server design is extended to a dynamic output feedback céign model to obtain an accurate system approximation seems
troller achieving asymptotically exact input-output linearizato lead to observers with an undesirable high order. This can

tion. A simple example demonstrates the proposed obser€rcircumvented by using the properties of the statekthe
and controller design procedure. bilinear approximation model (3)-(4). On the one hand only

the firstn states of the bilinear approximation model need to be
. . estimated to reconstruct the whole system statincez; = x
1 Introduction and problem formulation holds (see (5)). On the other hand, all states the bilinear
Consider a single-input single-outmth order nonlinear sys- aPProximation model, that can be expressed by the oytptit
tem system (1)-(2) need not be estimated by the observer. Both
properties can be used to reduce the observer order signifi-
. cantly. The application of the resulting nonlinear observer in
x = f(X)+g(x)u (1) : C 2 ;
the closed loop system is problematic, since for nonlinear sys-
y = h(x () temsitis not easy to predict the effect of the estimation error
on the closed loop dynamics. However if the system has rel-
Using theCarleman linearizatiorj7, 9] system (1)-(2) can be ative degree one and is minimum phase (i.e. has stable zero

approximated by a bilinear system of oraigy > n dynamics) the design of the observer and the closed loop dy-
namics can be carried out independently usisgmptotically
z = Az+(b+N2u (3) exact input-output linearizatio(see [4]). This approach ex-
I, ) actly linearizes the input-ouput behaviour of the observer using

feedback of the observer states. The resulting control input is
) . _ also applied to plant, such that a linear input-ouput behaviour
Obviously the bilinear system (3)-(4) has a simpler structujg gchieved for the closed loop system if the estimation error
than system (1)-(2), such that the design of nonlinear cofacays to zero. Using the results in [4] the presented observer
troIIer.s_, for the nonl!nea_r system (1)-(2) is simplified by USINg extended to a dynamic output feedback controller achieving
the bilinear approximation model (3)-(4). The Carleman lingsymptotically exact input-output linearization. By way of an
earization of the nonlinear system (1)-(2) to obtain the bilineafmple example it is shown that the proposed nonlinear con-
approximation model (3)-(4) is based on a Taylor expansiqfy)| design yields an exact observer or controller in the case
of the system nonlinearitiex), g(x) andh(x) in (1)-(2). The  of systems with polynomial and measurable nonlinearities. If
multivariable mgnommls of tr_us Tgylor series are defined as t'ﬁ%npolynomial but measurable nonlinearities appear in (1)-(2),
statesz of the bilinear approximation model, i.e. the presented results can also be used by introducing the non-
polynomial nonlinearities as new states yielding a higher order

_ —
Z=x", k=1LYM ®) system with polynomial nonlinearities (see [6]).

where the multivariable monomials are given by
_ The next section presents the new approach for the observer de-
X =x®...0x (6) sign along with a design procedure for solving the design equa-

i times tions. Section 3 contains the design of dynamic output feed-



back controllers achieving asymptotically exact input-outpiitas a linear and asymptotically stable error dynamics
linearization. In Section 4 the presented observer and controller

design procedure is demonstrated by means of simple example. =Fe . (15)
with the estimation error e Tz— ¢, such that
2 Observer design for nonlinear systems lim (v—9) =0 (16)
2.1 Observer for alinear functional of the state if the following relations hold
In the following a state observer for the nonlinear system (1)- ReA(F) < 0 (17)
(2) is developed. The proposed observer uses the bilinear ap- TA_ET = LC (18)
proximation model of ordemy;
TNV =0 (29)
z = Az+(b+N2u 7 GT+HC = E (20)

=c'z (8)
Proof. The differential equation for the estimation error

as system description, which results from the Carleman lin- ,_ TZ—Z (21)
earization of system (1)-(2) (see Section 1). The stateg(x)
of the bilinear approximation model (7)-(8) defined as fundsee Theorem 1) reads
tions of the stateg of the nonlinear system (1)-(2) (see Section -
1) can be subdivided intm measurable states(i.e. the ele- e =Tz-(
ments ofy’are stateg,, that satisfyz, = z,(y)) andnyj —m un- = TAz+T(b+N2u— F{— T(b+NVijlu—Ly (22)
measurable states The measurable statggdn be employed
to reduce the order of the observer to be designed. Using thdight of (7)-(8) and (13)-(14). By substituting (10) ihNz
(npir,Npi1) permutation matrixJ the state vectaris subdivided and by a simple rearrangement the relation
into the measurable and the unmeasurable states

TNz— TNWY = TNWZ (23)
m =Uz= [C— z (9) is obtained. Adding=Tz—FTzto (22) and usiny = Cz(see
z c (9)) as well as (23) the error dynamics (22) can be rewritten as
with the (mny;) matrix C, such that the statescan be ex- e=F(Tz— )+ (TA-FT —LC)z+ TN\Zu (24)
pressed as y . giving (15) if (18) and (19) is satisfied. Next consider the error
z=UT m =1 V3 [)Z/] = V1§ + Vo7 (10) V—0=Ez— Gl —HY (25)

following from (11) and from (14) and solve the estimation

in which the property) 2 =UT of the permutation matri¥)  grrore (see (21)) for yielding

is used and/y is an f;,m) matrix andVz is an i ,Npii — M)
matrix. Since one is interested in obtaining an estimate for the {=Tz—e (26)

statescof the nonlinear system (1)-(2) it suffices to estimate thgpstituting (26) angt = Cz (see (9)) in (25) leads to
first n states of the bilinear approximation model (see Section

1). To this end consider a linear functional of the statekthe v-V=(E-GT-HC)z+Ge (27)
bilinear system (7)-(8) If (20) is satisfied (27) takes the form

v=Ez=G{+HY (11) v=_Ge (28)
in which the (1) vector = Tzis to be reconstructed by the With (17) follows
observer and the matrk in (11) is chosen as lime=0 (29)

t—o0

E=[ln O (12)  from (15), such that

such thav = xin (11) holds. The following theorem shows un- tlm (v—V)=0 (30)

der which conditions anth order observer for the linear func-

tional (11) exists. in view of (28) and (29)«

Remark 1 The observer presented in Theorem 1 is remini-

Theorem 1 Thenth order observer for the linear functional scient of an unknown input observer (see e.g. [1]). In fact the

(11) input nonlinearity "Nzu” of the bilinear approximation model
2 - (7)-(8) can be regarded as an unknown input, which has to be
{ = F{+T(b+NViju+Ly (13) ' decoupled from the error dynamics to obtain a linear error dif-
¥ = G{+HYy (14) ferential equation (15).



2.2 Design procedure of the Sylvester equation (32) far in (33). This is readily

] ] ) . verified by substituting (34) and (33) in (32). The proof tiat
This section presents a procedure for solving the design eqya34) has full rank is implied by the fact, that is nonsingular
tlons_ (17)-(20) o_f th(_a observer in 'I_'heorem 1._ At first a paragng that with the pair@,A) observable the vectonsIC(A—
metric characterization of the solutiéh, L) for given C.A) of A 1Y~1 are the left eigenvector of the corresponding full order
the Sylvester equation (18) is provided in Theorem 2 i ; 9 . ponding

' observer, which are linearly independent for distinct observer
_ eigenvalues (see [8]x
Theorem 2 Assume that then(n) matrix F has distinct eigen- B
valuesAy, k= 1(1)n, which are different from the eigenvaluesRemark 2 For conjugate complex observer eigenvalagshe
of A, and let the matrix F be represented by corresponding parameter vectof, have to be chosen also
= conjugate complex, such that T is a real valued matrix.
F =W~ Ldiag(A,) W @y MY P

in which W is the matrix of left eigenvectors of F. Furthe|Remark 3 If all observer eige_nvalluetg are real, the matrix
suppose, that the pair (C,A) is observable. Then the solutionw ca? b? chr?sen as W1, which simplifies the parametriza-
with rankT) = n of the Sylvester equation tion of T in Theorem 2.

TA—FT =LC (32) Theorem 2 provides a parametric solution to the design equa-
tions (17) and (18). The degrees of freedom contained in the
for solutionT of the Sylvester equation have to determined, such
- that condition (19) is satisfied. Inserting (34) in (19) yields
. Py rowwise
L=wW ;T:’ (33) PRC(A—A) NV, =0T, p=1(1)n (39)
n

after premultiplying with//, which does not change the result.
is given by This is a condition to be met by the parameter vectsand
the corresponding observer eigenvaldgs such that (19) is
fullfilled assuring a linear error dynamics (15) (see (24)). Since

T=w P (34) Ny —m> mholds in most cases, the observer eigenvalyes
PLC(A—Apl) L can be assigned arbitrarily (but different from the eigenvalues
of A; see Theorem 2) if thargnyi — m) transfer matrix
withn freely assignable (1,m) parametervectpﬁs p=1(1)n. F(s) = C(A—s) "INV, (40)
Proof. First it is shown, that any solution of (32) can be repsatisfies
resented py (34) unt_jer the assumption; of Theorem 2. To this rankF(s) <m Vs (41)
end substitute (31) in (32) and premultiply the result vilth
giving If the transfer matrix (40) is not rank deficient for alla so-
_ lution of (39) can be found by determining the zerpgsof the
WTA-diag(A,) WT =WLC (35) transfer matrix (40). As a consequence the mafig ;) is rank

deficient, such that a nontrivial solgtiqnl of (39) exists. But

By introducing the parameter vectors in this case the observer eigenvalugsare fixed by condition

=T (39) and a stable observer only exists if the transfer matrix (40)
Py ) :
has all its zeros in the open left half plane.
D =WL (36)
pL With the matrixT resulting from (34) the matriceS andH in
n

(20) have to be computed by solving the linear equation

equation (35) can rewritten rowwise as

.
- 6 H || =E (42)
WIT(A=N) = pLC, =11 37) H

Since the eigenvalues, are assumed to be different from thdiemark 4 Since a solution of equation (42) only exists if
eigenvalues oA relation (37) is solvable fow ), T yielding rank[TT CT]T = rank[TT CT ET]T (43)
wiT = QC(A_)_\HD—l (38) @ lower bound for the observer order is attainable, since from
(43) follows mt-n> n in view ofrankE = n (see (12)) implying
such that (34) follows from writing (38) in matrix form andn > n—m. This result shows, that even though the bilinear
solving forT. The matrixL then results from solving (36) for approximation model is of high orderyf the corresponding
L. Next one has to prove, that given by (34) is a solution observer order may be considerably smaller.



Remark 5 If no solution to the design equations (17)-(20) exasymptotically. An important advantage of this approach is,
ists, at least an observer with approximately linear error dythat the linear dynamics of the input-output behaviour and the
namics linear dynamics of the related estimation error can be assigned

_ independently for the closed loop system.
é=Fe+ 0 (x,u) (44) _ o
The input-output linearizing feedback for the observer (47)-
may be attainable with @"/(x,u) denoting nonlinear terms in (48) is obtained by differentiating the outpuin’(48) with re-
x and u of order strictly larger than q. Condition (39) thenspect to time yielding
takes the form . R )
- - . _ y=g'¢+h'y (52)
PuC(A—Au) "NV =0", p=1(1)n (45) .
) L Substituting the right hand side of (47) frand the right hand
where the (Bii,Noil —M— q) matrix \1 is given by side of (7) forZin § = Cz (see (9)) leads to

I —m— ; 5
Vo1 =V { o q} (46) § = g'Fi+ ((@"T+hTC)b+ (g"T + hTC)NViY) u
"Ly +h"CAAY+ hTC(AV2 + NVou)Z 53
(see (10)). The differential equation (44) is implied by the defi- ron W (A N2 )

nition of the states z in (5). after a simple rearrangement and using (10). Since the observer

) _ (47)-(48) estimates the linear functionyak c 'z of the stateg
3 Asymptotically exact input-output the relation

linearization
g'T+h'C=c" (54)

In this section a dynamic output feedback controller for rela- ) ) -
tive degree one and minimum phase systems is derived, wh[&5UItS from (20) in Theorem 1 wis=c" (see (11) and (48)).
asymptotically input-output linearizes the resulting first order "9 (54) expression (53) simplifies to
transfer behaviour of the closed loop system. The proposed . o5 T Triy e
input-output linearization approach is based on the results in ¥ = 9 F{+ (c'b+c'NViF)u
[4], where an extended Luenberger observer is employed to ob- +(g"L+h"CAL)Y+hT (CAL+CNWU)Z  (55)
tain the dynamic output feedback controller.

Thus the observer has relative degree orm §€e [5]) if

3.1 Exact input-output linearization of the observer b+ cTNVAJip 0 (56)

asymptotically exact input-output linearizes the transfer b olds. Note that condition (56) implies, that the system (7)-(8)

For the derivation of the output feedback controller, whic
3s relative degree oneay, i.e. with (10)

haviour of the closed loop system, consider the observer

Theorem 1 in the form c"b+c"Nz = c"b+c"NVijo + "Nz # 0 (57)
¢ = F{+T (b+NWu+Ly (47) if cTb+cTNViYo # —cTNVoZh.
y = g'(+h'y (48)

Remark 6 If the order nyy of the bilinear approximation
with the row vectorsg™ and hTandy being an estimate for mpdel (7)-(8) (i.e_. the approximation d_egree) is chosen appro-
y=c'zin (8). The basic idea of the input-output Iinearizap”at‘?l_)" the relative degree of th_e- nonlinear system (1)-(2) and
tion approach in [4] is to linearize the input-output behaviodf€ Pilinear system (7)-(8) coincide.

of the observer (47)-(48) yielding
If condition (56) is fulfilled, the exact input-output linearizing

¥+ 80y = dow (49) feedback
wherew is the reference input of the closed loop system. Ifthe ,— 1 , (_gTFZ —(@'L+ hTCAV1)37+J) (58)
estimatey of the observer (47)-(48) converges with the linear cTb+cTNWiy

observer dynamics (15) asymptotically to the value of the ref?JIIows from (55). The feedback law (58) compensates the

outputy, i.e. nonlinearities in the direct input-ouput channel of the observer
tILm (y—9)=0 (50) achieving the linear input-output behaviour
_ . y=0 (59)
then also the input-output behaviour of the closed loop system
with respect to the real oupytsatisfies if a vectorh” can be found satisfying

y+ 8oy = 8w (51) h" [CAL CNV| =0" (60)



Condition (60) assures that the unmeasurable statesriot Since the stat&, is measurable (see (65)) one obtains the fol-
effect the input-output behaviour (see (55)). The expressitowing subdivision of the states (see (66)) into measurable
(@"L+h"CAW)Y in (58) can be regarded as a feedforward ddtatesyand unmeasurable states ~
the measurable "disturbancg’such thaty does not effect the
input-ouput behaviour of the observer. The closed loop eigen- 7 — v,
valuel = —&p, & > 0, is assigned to the dynamics (49) of the
input-output behaviour by the feedback portion o

[Ze] (67)

z

in (58). Note that the feedback (58) is directly implementable
since only the measurable stafesf the observer and the mea-
surable statey 6f the bilinear approximation model are fegSince two states of the bilinear approximation model are mea-
back. surable n = 2) and since the transfer matrix (40) satisfies
rankF (s) = 1 < m, for all s (NV> contains two zero columns)
the observer eigenvalues can be assigned arbitrarily. By choos-
ing the observer eigenvalde= —6 the corresponding param-
For the design of the dynamic output feedback controller dgter vectorp™ = [0.9950 00995 results from solving (39),
rived in this section the design equations (17)-(19) for the ouch that the matricdsandT are given by (33) and (34). The
server of Section 2 have to be solved using the results of S@¢itput equation (14) of the observer is obtained by computing
tion 2.2. The only difference is equation (20), which is replacelfie solution of (42) yielding the reduced order observer of order

by (54). Equation (54) and (60) can be written in one equatidi®
as

+Voz

AR

<@

U= —&oy+ dow (61)

|
[cNoNoN Ne)
= O O O O
[cNeoNeoNeN 3
[oNeol S NeoNe]
Ok O O O

3.2 Design procedure

A A~ X2
= —6(+0.0995u+ [0.9950 00995 { 2] (68)
CH PSR B (62) %
C CA% CNV, 10.0499 30
- . 5 — X2
I P )
In view of the discussion in Remark 4 the ordeof the dy- 2

namic output feedback controller obviously may be smaller _ ) o
than the observer order, since the matrix at the right hand siggure, 1 shows the simulation of the observer with initial con-

of (62) has rank 1 yielding the lower bound>1. dition {(0) = 0.2985 and step input=1.
3
4 Example iy /il
Consider the following nonlinear second order system : /
-1+ Xl
- 2
X = Xetp-Al (63) 2% 05 1 15 2 25 3 35 a
Xo = —2X1—3%+Uu (64) ‘ ‘ -t ' .
Yy = X (65) o1

1 X2, %2
with relative degree one. First a state observer for the system| ost N
(63)-(65) is designed using the Carleman linearization [7, 9]. .

To this end introduce the new states

z=a 2 zz % 25]T =[x % X X% x%]T (66)

yielding a bilinear approximation model (see (7)-(8)) of orde'r:'gure 1: States of the system and the corresponding estimates.
5 with the matrices

Obviously the observer (68)-(69) yields an exact estimate for

0O 1 0 0 1 O 0 00 Q0 x asymptotically, whereas the system ouypig directly used
-2-30 0 O O O OO0 o toreconstructthe state without error. These results are due
A= |0 0 0O 2 0|, N=|-4 0 00 0 tothefact, thatthe nonlinearitks" of the system under con-
0 0 -2 —_3 1 1 —2 0 0 0| siderationis measurable and a polynomial. As a consequence
0O 0 0O -4 —6 O 2 00 0 anexactobserver with linear error dynamics and the nonlin-
T earity ’x% as input exists, which is reproduced exactly by the
b = [_2 100 q proposed approach though a bilinear approximation model is

¢ =/0100¢( employed in the design.



Next a dynamic output feedback controller, which achieves ansimple example it is shown, that the proposed approach re-
asymptotically exact input-output linearization of the systemroduces the exact observer with linear error dynamics if all
(63)-(65), is designed. Since the design equation (62) is mabnlinearities are polynomial and measurable. An extension of
solvable for the previous first order observer, one has to ithis result to nonpolynomial nonlinearities is possible by intro-
crease the observer order._Thus a second order observer witicing nonpolynomial nonlinearities as new states yielding a
eigenvalues\; = —12 andA, = —10 is investigated yield- higher order polynomial system (see [6]). However, it is in-
ing the parameter vectons] = [0.9998 00182] and pJ = teresting to investigate the observer design for systems with
[0.9996 0027@ by evaluating (39). The matricé andL unmeasurable nonlinearities. This will be addressed in future
are determined by (33) and (34) wit = |. For the result- work usingL,-optimal bilinearization (see [3]), which different
ing second order observer the design equation (62) is solvalftlem the Carleman linearization yields a system approxima-
such that by assigning the closed loop eigenvalee—3 to the tion on a prespecified-dimensional interval in the state space.
closed loop input-output behaviour the dynamic output feed+e proposed observer was also extended to the design of dy-
back controller namic output feedback controllers for relative degree one and
minimum phase systems. The dynamics of the resulting lin-
;- {—12 0 }2 [0-0727} y {0-9998 00182] {Xz} ear reference input-output behaviour and the dynamics of the
0 -10 0.0833 0.9996 00278 |X5| convergence to the reference behaviour can be assigned inde-
[55.0091 —36.0139 4 pendently. An additional advantage of the presented observer
and controller design is, that it can be carried out using nu-
merical software packages, since the design procedures only
involve the manipulation of constant matrices.

with the feedback law

u=—[-6601091 3601389 {— [19.0000 { Kg} —3y+3w
(70)
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