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Abstract

On the basis of the Carleman linearization this contribution
presents a new approach to the design of observers with lin-
ear error dynamics for nonlinear systems. The presented ob-
server design is extended to a dynamic output feedback con-
troller achieving asymptotically exact input-output lineariza-
tion. A simple example demonstrates the proposed observer
and controller design procedure.

1 Introduction and problem formulation

Consider a single-input single-outputnth order nonlinear sys-
tem

ẋ � f �x��g�x�u (1)

y � h�x� (2)

Using theCarleman linearization[7, 9] system (1)-(2) can be
approximated by a bilinear system of ordernbil � n

ż � Az��b�Nz�u (3)

y � cTz (4)

Obviously the bilinear system (3)-(4) has a simpler structure
than system (1)-(2), such that the design of nonlinear con-
trollers for the nonlinear system (1)-(2) is simplified by using
the bilinear approximation model (3)-(4). The Carleman lin-
earization of the nonlinear system (1)-(2) to obtain the bilinear
approximation model (3)-(4) is based on a Taylor expansion
of the system nonlinearitiesf �x�, g�x� andh�x� in (1)-(2). The
multivariable monomials of this Taylor series are defined as the
statesz of the bilinear approximation model, i.e.

zk � x�k�� k� 1�1�M (5)

where the multivariable monomials are given by

x�i� � x� � � ��� �� �
i times

x (6)

and ”�” denoting theKronecker product(see e.g. [2]). Since
the state equation (3) of the bilinear approximation model of or-
dernbil �

�n�M
n

�
is determined by omitting higher order terms

the resulting bilinear system is a local approximation of the
nonlinear system under consideration. In this contribution the
simple structure of the bilinear approximation model is ex-
ploited in order to design nonlinear observers and controllers
for the nonlinear system (1)-(2). As far as observer design is
concerned the possibly high order of the bilinear approxima-
tion model to obtain an accurate system approximation seems
to lead to observers with an undesirable high order. This can
be circumvented by using the properties of the statesz of the
bilinear approximation model (3)-(4). On the one hand only
the firstn states of the bilinear approximation model need to be
estimated to reconstruct the whole system statex, sincez1 � x
holds (see (5)). On the other hand, all statesz of the bilinear
approximation model, that can be expressed by the outputy of
system (1)-(2) need not be estimated by the observer. Both
properties can be used to reduce the observer order signifi-
cantly. The application of the resulting nonlinear observer in
the closed loop system is problematic, since for nonlinear sys-
tems it is not easy to predict the effect of the estimation error
on the closed loop dynamics. However if the system has rel-
ative degree one and is minimum phase (i.e. has stable zero
dynamics) the design of the observer and the closed loop dy-
namics can be carried out independently usingasymptotically
exact input-output linearization(see [4]). This approach ex-
actly linearizes the input-ouput behaviour of the observer using
feedback of the observer states. The resulting control input is
also applied to plant, such that a linear input-ouput behaviour
is achieved for the closed loop system if the estimation error
decays to zero. Using the results in [4] the presented observer
is extended to a dynamic output feedback controller achieving
asymptotically exact input-output linearization. By way of an
simple example it is shown that the proposed nonlinear con-
trol design yields an exact observer or controller in the case
of systems with polynomial and measurable nonlinearities. If
nonpolynomial but measurable nonlinearities appear in (1)-(2),
the presented results can also be used by introducing the non-
polynomial nonlinearities as new states yielding a higher order
system with polynomial nonlinearities (see [6]).

The next section presents the new approach for the observer de-
sign along with a design procedure for solving the design equa-
tions. Section 3 contains the design of dynamic output feed-



back controllers achieving asymptotically exact input-output
linearization. In Section 4 the presented observer and controller
design procedure is demonstrated by means of simple example.

2 Observer design for nonlinear systems

2.1 Observer for a linear functional of the state

In the following a state observer for the nonlinear system (1)-
(2) is developed. The proposed observer uses the bilinear ap-
proximation model of ordernbil

ż � Az��b�Nz�u (7)

y � cTz (8)

as system description, which results from the Carleman lin-
earization of system (1)-(2) (see Section 1). The statesz� z�x�
of the bilinear approximation model (7)-(8) defined as func-
tions of the statesx of the nonlinear system (1)-(2) (see Section
1) can be subdivided intom measurable states̃y (i.e. the ele-
ments of ˜y are stateszµ, that satisfyzµ � zµ�y�) andnbil �m un-
measurable states̃z. The measurable states ˜y can be employed
to reduce the order of the observer to be designed. Using the
(nbil ,nbil ) permutation matrixU the state vectorz is subdivided
into the measurable and the unmeasurable states�

ỹ
z̃

�
�Uz�

�
C
C̄

�
z (9)

with the (m,nbil ) matrix C, such that the statesz can be ex-
pressed as

z�UT
�
ỹ
z̃

�
�
	
V1 V2


�ỹ
z̃

�
�V1ỹ�V2z̃ (10)

in which the propertyU�1 �UT of the permutation matrixU
is used andV1 is an (nbil ,m) matrix andV2 is an (nbil ,nbil �m)
matrix. Since one is interested in obtaining an estimate for the
statesxof the nonlinear system (1)-(2) it suffices to estimate the
first n states of the bilinear approximation model (see Section
1). To this end consider a linear functional of the stateszof the
bilinear system (7)-(8)

v� Ez� Gζ�Hỹ (11)

in which the (n̄,1) vectorζ � Tz is to be reconstructed by the
observer and the matrixE in (11) is chosen as

E �
	
In 0



(12)

such thatv� x in (11) holds. The following theorem shows un-
der which conditions an ¯nth order observer for the linear func-
tional (11) exists.

Theorem 1 The n̄th order observer for the linear functional
(11)

˙̂ζ � F ζ̂�T �b�NV1ỹ�u�Lỹ (13)

v̂ � Gζ̂�Hỹ (14)

has a linear and asymptotically stable error dynamics

ė� Fe (15)

with the estimation error e� Tz� ζ̂, such that

lim
t�∞

�v� v̂� � 0 (16)

if the following relations hold

Reλ�F� � 0 (17)

TA�FT � LC (18)

TNV2 � 0 (19)

GT�HC � E (20)

Proof. The differential equation for the estimation error

e� Tz� ζ̂ (21)

(see Theorem 1) reads

ė � Tż� ˙̂ζ
� TAz�T�b�Nz�u�Fζ̂�T�b�NV1ỹ�u�Lỹ (22)

in light of (7)-(8) and (13)-(14). By substituting (10) inTNz
and by a simple rearrangement the relation

TNz�TNV1ỹ� TNV2z̃ (23)

is obtained. AddingFTz�FTz to (22) and using ˜y�Cz (see
(9)) as well as (23) the error dynamics (22) can be rewritten as

ė� F�Tz� ζ̂���TA�FT�LC�z�TNV2z̃u (24)

giving (15) if (18) and (19) is satisfied. Next consider the error

v� v̂� Ez�Gζ̂�Hỹ (25)

following from (11) and from (14) and solve the estimation
errore (see (21)) for̂ζ yielding

ζ̂ � Tz�e (26)

Substituting (26) and ˜y�Cz(see (9)) in (25) leads to

v� v̂� �E�GT�HC�z�Ge (27)

If (20) is satisfied (27) takes the form

v� Ge (28)

With (17) follows

lim
t�∞

e� 0 (29)

from (15), such that

lim
t�∞

�v� v̂� � 0 (30)

in view of (28) and (29).�

Remark 1 The observer presented in Theorem 1 is remini-
scient of an unknown input observer (see e.g. [1]). In fact the
input nonlinearity ”Nzu” of the bilinear approximation model
(7)-(8) can be regarded as an unknown input, which has to be
decoupled from the error dynamics to obtain a linear error dif-
ferential equation (15).



2.2 Design procedure

This section presents a procedure for solving the design equa-
tions (17)-(20) of the observer in Theorem 1. At first a para-
metric characterization of the solution�T�L� for given (C,A) of
the Sylvester equation (18) is provided in Theorem 2 .

Theorem 2 Assume that the (̄n,n̄) matrix F has distinct eigen-
valuesλ̄µ, µ� 1�1�n̄, which are different from the eigenvalues
of A, and let the matrix F be represented by

F �W�1diag
�
λ̄µ
�
W (31)

in which W is the matrix of left eigenvectors of F. Further
suppose, that the pair (C,A) is observable. Then the solution T
with rank�T� � n̄ of the Sylvester equation

TA�FT � LC (32)

for

L �W�1

�
�


p̄T
1
...

p̄T
n̄

�
�� (33)

is given by

T �W�1

�
�


p̄T
1C�A� λ̄1I��1

...
p̄T

n̄C�A� λ̄n̄I��1

�
�� (34)

with n̄ freely assignable (1,m) parameter vectorsp̄T
µ , µ� 1�1�n̄.

Proof. First it is shown, that any solution of (32) can be rep-
resented by (34) under the assumptions of Theorem 2. To this
end substitute (31) in (32) and premultiply the result withW
giving

WTA�diag
�
λ̄µ
�
WT�WLC (35)

By introducing the parameter vectors
�
�


p̄T
1
...

p̄T
n̄

�
���WL (36)

equation (35) can rewritten rowwise as

wT
µ T�A� λ̄µI� � p̄T

µC� µ� 1�1�n̄ (37)

Since the eigenvalues̄λµ are assumed to be different from the
eigenvalues ofA relation (37) is solvable forwT

µ T yielding

wT
µ T � p̄T

µC�A� λ̄µI�
�1 (38)

such that (34) follows from writing (38) in matrix form and
solving forT. The matrixL then results from solving (36) for
L. Next one has to prove, thatT given by (34) is a solution

of the Sylvester equation (32) forL in (33). This is readily
verified by substituting (34) and (33) in (32). The proof thatT
in (34) has full rank is implied by the fact, thatW is nonsingular
and that with the pair (C,A) observable the vectors ¯pT

µC�A�

λ̄µI��1 are the left eigenvector of the corresponding full order
observer, which are linearly independent for distinct observer
eigenvalues (see [8]).�

Remark 2 For conjugate complex observer eigenvaluesλ̄µ the
corresponding parameter vectors̄pT

µ have to be chosen also
conjugate complex, such that T is a real valued matrix.

Remark 3 If all observer eigenvalues̄λµ are real, the matrix
W can be chosen as W� I, which simplifies the parametriza-
tion of T in Theorem 2.

Theorem 2 provides a parametric solution to the design equa-
tions (17) and (18). The degrees of freedom contained in the
solutionT of the Sylvester equation have to determined, such
that condition (19) is satisfied. Inserting (34) in (19) yields
rowwise

p̄T
µC�A� λ̄µI�

�1NV2 � 0T
� µ� 1�1�n̄ (39)

after premultiplying withW, which does not change the result.
This is a condition to be met by the parameter vectors ¯pT

µ and

the corresponding observer eigenvaluesλ̄µ, such that (19) is
fullfilled assuring a linear error dynamics (15) (see (24)). Since
nbil �m� m holds in most cases, the observer eigenvaluesλ̄µ

can be assigned arbitrarily (but different from the eigenvalues
of A; see Theorem 2) if the (m,nbil �m) transfer matrix

F�s� �C�A�sI��1NV2 (40)

satisfies

rankF�s�� m �s (41)

If the transfer matrix (40) is not rank deficient for alls a so-
lution of (39) can be found by determining the zerosη j of the
transfer matrix (40). As a consequence the matrixF�η j� is rank
deficient, such that a nontrivial solution ¯pT

µ of (39) exists. But

in this case the observer eigenvaluesλ̄µ are fixed by condition
(39) and a stable observer only exists if the transfer matrix (40)
has all its zeros in the open left half plane.

With the matrixT resulting from (34) the matricesG andH in
(20) have to be computed by solving the linear equation

	
G H


�T
C

�
� E (42)

Remark 4 Since a solution of equation (42) only exists if

rank
	
TT CT


T
� rank

	
TT CT ET


T
(43)

a lower bound for the observer order is attainable, since from
(43) follows m� n̄� n in view ofrankE� n (see (12)) implying
n̄� n�m. This result shows, that even though the bilinear
approximation model is of high order nbil the corresponding
observer order may be considerably smaller.



Remark 5 If no solution to the design equations (17)-(20) ex-
ists, at least an observer with approximately linear error dy-
namics

ė� Fe�O�q���x�u� (44)

may be attainable with O�q���x�u� denoting nonlinear terms in
x and u of order strictly larger than q. Condition (39) then
takes the form

p̄T
µC�A� λ̄µI�

�1NV21� 0T
� µ� 1�1�n̄ (45)

where the (nbil ,nbil �m�q) matrix V21 is given by

V21�V2

�
Inbil�m�q

0

�
(46)

(see (10)). The differential equation (44) is implied by the defi-
nition of the states z in (5).

3 Asymptotically exact input-output
linearization

In this section a dynamic output feedback controller for rela-
tive degree one and minimum phase systems is derived, which
asymptotically input-output linearizes the resulting first order
transfer behaviour of the closed loop system. The proposed
input-output linearization approach is based on the results in
[4], where an extended Luenberger observer is employed to ob-
tain the dynamic output feedback controller.

3.1 Exact input-output linearization of the observer

For the derivation of the output feedback controller, which
asymptotically exact input-output linearizes the transfer be-
haviour of the closed loop system, consider the observer of
Theorem 1 in the form

˙̂ζ � F ζ̂�T �b�NV1ỹ�u�Lỹ (47)

ŷ � gT ζ̂�hTỹ (48)

with the row vectorsgT and hTand ŷ being an estimate for
y � cTz in (8). The basic idea of the input-output lineariza-
tion approach in [4] is to linearize the input-output behaviour
of the observer (47)-(48) yielding

˙̂y� ã0ŷ� ã0w (49)

wherew is the reference input of the closed loop system. If the
estimate ˆy of the observer (47)-(48) converges with the linear
observer dynamics (15) asymptotically to the value of the real
outputy, i.e.

lim
t�∞

�y� ŷ� � 0 (50)

then also the input-output behaviour of the closed loop system
with respect to the real ouputy satisfies

ẏ� ã0y� ã0w (51)

asymptotically. An important advantage of this approach is,
that the linear dynamics of the input-output behaviour and the
linear dynamics of the related estimation error can be assigned
independently for the closed loop system.

The input-output linearizing feedback for the observer (47)-
(48) is obtained by differentiating the output ˆy in (48) with re-
spect to time yielding

˙̂y� gT ˙̂ζ�hT ˙̃y (52)

Substituting the right hand side of (47) for˙̂ζ and the right hand
side of (7) forż in ˙̃y�Cż (see (9)) leads to

˙̂y � gTF ζ̂�
�
�gTT�hTC�b��gTT�hTC�NV1ỹ

�
u

�gTLỹ�hTCAV1ỹ�hTC�AV2�NV2u�z̃ (53)

after a simple rearrangement and using (10). Since the observer
(47)-(48) estimates the linear functionaly� cTz of the statesz
the relation

gTT�hTC� cT (54)

results from (20) in Theorem 1 withE� cT (see (11) and (48)).
Using (54) expression (53) simplifies to

˙̂y � gTF ζ̂�
�
cTb�cTNV1ỹ

�
u

��gTL�hTCAV1�ỹ�hT �CAV2�CNV2u� z̃ (55)

Thus the observer has relative degree one at ˜z0 (see [5]) if

cTb�cTNV1ỹ0 �� 0 (56)

holds. Note that condition (56) implies, that the system (7)-(8)
has relative degree one atz0, i.e. with (10)

cTb�cTNz0 � cTb�cTNV1ỹ0�cTNV2z̃0 �� 0 (57)

if cTb�cTNV1ỹ0 ���cTNV2z̃0.

Remark 6 If the order nbil of the bilinear approximation
model (7)-(8) (i.e. the approximation degree) is chosen appro-
priately, the relative degree of the nonlinear system (1)-(2) and
the bilinear system (7)-(8) coincide.

If condition (56) is fulfilled, the exact input-output linearizing
feedback

u�
1

cTb�cTNV1ỹ

�
�gTF ζ̂� �gTL�hTCAV1�ỹ� ū

�
(58)

follows from (55). The feedback law (58) compensates the
nonlinearities in the direct input-ouput channel of the observer
achieving the linear input-output behaviour

˙̂y� ū (59)

if a vectorhT can be found satisfying

hT 	CAV2 CNV2


� 0T (60)



Condition (60) assures that the unmeasurable states ˜z do not
effect the input-output behaviour (see (55)). The expression
�gTL�hTCAV1�ỹ in (58) can be regarded as a feedforward of
the measurable ”disturbance” ˜y, such that ˜y does not effect the
input-ouput behaviour of the observer. The closed loop eigen-
valueλ̃ ��ã0, ã0 � 0, is assigned to the dynamics (49) of the
input-output behaviour by the feedback portion

ū��ã0ŷ� ã0w (61)

in (58). Note that the feedback (58) is directly implementable
since only the measurable statesζ̂ of the observer and the mea-
surable states ˜y of the bilinear approximation model are fed
back.

3.2 Design procedure

For the design of the dynamic output feedback controller de-
rived in this section the design equations (17)-(19) for the ob-
server of Section 2 have to be solved using the results of Sec-
tion 2.2. The only difference is equation (20), which is replaced
by (54). Equation (54) and (60) can be written in one equation
as

	
gT hT


�T 0 0
C CAV2 CNV2

�
�
	
cT 0T



(62)

In view of the discussion in Remark 4 the order ¯n of the dy-
namic output feedback controller obviously may be smaller
than the observer order, since the matrix at the right hand side
of (62) has rank 1 yielding the lower bound ¯n� 1.

4 Example

Consider the following nonlinear second order system

ẋ1 � x2�x2
2�2u (63)

ẋ2 � �2x1�3x2�u (64)

y � x2 (65)

with relative degree one. First a state observer for the system
(63)-(65) is designed using the Carleman linearization [7, 9].
To this end introduce the new states

z�
	
z1 z2 z3 z4 z5


T
�
	
x1 x2 x2

1 x1x2 x2
2


T
(66)

yielding a bilinear approximation model (see (7)-(8)) of order
5 with the matrices

A �

�
����


0 1 0 0 1
�2 �3 0 0 0
0 0 0 2 0
0 0 �2 �3 1
0 0 0 �4 �6

�
����� � N �

�
����


0 0 0 0 0
0 0 0 0 0
�4 0 0 0 0
1 �2 0 0 0
0 2 0 0 0

�
�����

b �
	
�2 1 0 0 0


T

cT �
	
0 1 0 0 0




Since the statex2 is measurable (see (65)) one obtains the fol-
lowing subdivision of the statesz (see (66)) into measurable
states ˜y and unmeasurable states ˜z

z � V1ỹ�V2z̃

�

�
����


0 0
1 0
0 0
0 0
0 1

�
�����
�
z2

z5

�
�

�
����


1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

�
�����
�

z1

z3

z4

�
� (67)

Since two states of the bilinear approximation model are mea-
surable (m� 2) and since the transfer matrix (40) satisfies
rankF�s� � 1� m, for all s (NV2 contains two zero columns)
the observer eigenvalues can be assigned arbitrarily. By choos-
ing the observer eigenvaluēλ � �6 the corresponding param-
eter vector ¯pT �

	
0�9950 0�0995



results from solving (39),

such that the matricesL andT are given by (33) and (34). The
output equation (14) of the observer is obtained by computing
the solution of (42) yielding the reduced order observer of order
one

˙̂ζ � �6ζ̂�0�0995u�
	
0�9950 0�0995


�x2

x2
2

�
(68)

x̂ �

�
10�0499

0

�
ζ̂�

�
�3 0
1 0

��
x2

x2
2

�
(69)

Figure 1 shows the simulation of the observer with initial con-
dition ζ̂�0� � 0�2985 and step inputu� 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

→ t

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

→ t

x̂1

x1

x2� x̂2

Figure 1: States of the system and the corresponding estimates.

Obviously the observer (68)-(69) yields an exact estimate for
x1 asymptotically, whereas the system ouputy is directly used
to reconstruct the statex2 without error. These results are due
to the fact, that the nonlinearity ”x2

2” of the system under con-
sideration is measurable and a polynomial. As a consequence
an exact observer with linear error dynamics and the nonlin-
earity ”x2

2” as input exists, which is reproduced exactly by the
proposed approach though a bilinear approximation model is
employed in the design.



Next a dynamic output feedback controller, which achieves an
asymptotically exact input-output linearization of the system
(63)-(65), is designed. Since the design equation (62) is not
solvable for the previous first order observer, one has to in-
crease the observer order. Thus a second order observer with
eigenvalues̄λ1 � �12 and λ̄2 � �10 is investigated yield-
ing the parameter vectors ¯pT

1 �
	
0�9998 0�0182



and p̄T

2 �	
0�9996 0�0278



by evaluating (39). The matricesT and L

are determined by (33) and (34) withW � I . For the result-
ing second order observer the design equation (62) is solvable,
such that by assigning the closed loop eigenvalueλ̃ ��3 to the
closed loop input-output behaviour the dynamic output feed-
back controller

˙̂ζ �

�
�12 0

0 �10

�
ζ̂�

�
0�0727
0�0833

�
u�

�
0�9998 0�0182
0�9996 0�0278

��
x2

x2
2

�

ŷ �
	
55�0091 �36�0139



ζ̂

with the feedback law

u��
	
�660�1091 360�1389



ζ̂�

	
19�0000 0


�x2

x2
2

�
�3ŷ�3w

(70)

is obtained. Note that the feedback (70) is also applied to the
plant (63)-(65).

Figure 2 depicts the step response of the resulting closed loop
system.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→ t

y

ylin

Figure 2: Step response of the closed loop system (solid line).
The dashed line shows the linear reference behaviourylin .

The simulation verifies the convergence of the closed loop
input-output behaviour (solid line) to the linear reference be-
haviour (dashed line)

ẏlin �3ylin � 3w (71)

5 Conclusions

In this contribution a new observer design procedure is pre-
sented on the basis of the Carleman linearization. By way of

a simple example it is shown, that the proposed approach re-
produces the exact observer with linear error dynamics if all
nonlinearities are polynomial and measurable. An extension of
this result to nonpolynomial nonlinearities is possible by intro-
ducing nonpolynomial nonlinearities as new states yielding a
higher order polynomial system (see [6]). However, it is in-
teresting to investigate the observer design for systems with
unmeasurable nonlinearities. This will be addressed in future
work usingL2-optimal bilinearization (see [3]), which different
from the Carleman linearization yields a system approxima-
tion on a prespecifiedn-dimensional interval in the state space.
The proposed observer was also extended to the design of dy-
namic output feedback controllers for relative degree one and
minimum phase systems. The dynamics of the resulting lin-
ear reference input-output behaviour and the dynamics of the
convergence to the reference behaviour can be assigned inde-
pendently. An additional advantage of the presented observer
and controller design is, that it can be carried out using nu-
merical software packages, since the design procedures only
involve the manipulation of constant matrices.
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