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Abstract 
This paper deals with fault detection and isolation (FDI) in a 
fed-batch penicillin fermentation process. The method is 
based on an empirical model developed using the multi-way 
partial least squares technique. The paper begins by 
demonstrating how this model can be used to provide FDI 
capabilities and then shows how this FDI scheme can be 
integrated within a model predictive controller to provide 
accurate control in the presence of fault conditions within the 
process. 

1. Introduction 
Due to the high demand for improved product quality and 
economic operation of industrial fed-batch fermentation 
processes, fault detection and isolation (FDI) has become an 
important topic of research. The early and accurate detection 
of fault conditions is of great benefit in fed-batch 
fermentation processes since the earlier that a fault can be 
detected and acted upon, the lower its impact will be on the 
process. In some situations this can be critical, for example, a 
drift on a pH sensor could have catastrophic results on 
biomass growth if this measurement is used within a feedback 
control scheme. The FDI approaches that have been proposed 
for application to fed-batch fermentation processes tend to fall 
into two categories: model-based and knowledge-based. 
In the model based approach, a mathematical model of the 
process is firstly established using data collected under 
normal operating conditions (NOC). The model is then used 
to predict the behaviour of the process and detect any 
abnormal change by comparing the predicted and actual 
sensor measurements. In the knowledge-based approaches, 
such as expert systems, prior process knowledge and 
diagnosis reasoning are encoded to build a knowledge-based 
system (KBS) in the form of facts, rules, and heuristics which 
are derived from a theoretical understanding of the process or 
observations of process behaviour. The developed KBS is 
then used to reason and derive conclusions which are 
provided to operations staff. A major drawback with this 
approach is that the acquisition of data for the KBS is not 
trivial [8]. 

Among the model-based approaches, a particularly promising 
approach is the application of multivariate statistical process 
control techniques, such as Principal Component Analysis 
(PCA) and Partial Least Squares (PLS). The benefits of using 
these approaches, rather than more traditional statistical 
methods, such as Statistical Process Control have been 
demonstrated through their application to fed-batch 
fermentation systems. These applications have exploited a 
variety of multivariate statistical routines to accurately detect 
and isolate fault conditions within a fermenter [6, 7]. 
In previous studies FDI and control of fed-batch fermentation 
processes have been viewed as independent problems. In this 
paper, however, these problems are considered together and 
an integrated fault detection and process control scheme is 
developed. This scheme employs a predictive control 
framework based on the soft-sensing capabilities of a PLS 
model. By utilising a PLS model within the predictive 
controller it is demonstrated that the controller can be used to 
provide fault detection and isolation capabilities. The 
integration of the predictive controller and FDI scheme is also 
shown to provide a useful diagnostic tool in the presence of 
fault conditions. 
In the following section, a brief description of the process that 
is investigated in this work is described. This is followed by 
an overview of the multi-way PLS (MPLS) algorithm. 
Section 4 demonstrates the ability of a PLS model to provide 
FDI capabilities when applied to a benchmark penicillin 
fermentation process. Section 5 then demonstrates how this 
PLS model can be integrated within a predictive control 
algorithm and applied to the simulation. Finally, the 
conclusions from this work are discussed. 

2. Benchmark fermentation process 
Secondary metabolites such as antibiotics, and in particular 
penicillin, have important added value, and therefore 
improvements in their production are of great interest to 
industry. For this reason there has been a great deal of 
research conducted during the last decade on all aspects of 
penicillin production [4, 11]. The work described in this paper 
is concerned with providing improved operating capabilities 
in the production of penicillin. To demonstrate the benefits of 
the algorithms proposed in this paper, the simulation of a 
penicillin fermentation process developed by the Process 
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Modelling, Monitoring and Control Research Group at the 
Illinois Institute of Technology [2] has been used. 
This simulator is based on the unstructured mechanistic 
model of Bajpai and Reuss [1] and is capable of simulating a 
controlled fed-batch fermentation system. The load variables 
are: aeration rate, agitator power, substrate feed rate and 
substrate feed temperature; the manipulated variables are: 
acid/base and heating/cooling water flow rates; the internal 
state variables are: culture volume, generated heat, carbon 
dioxide, dissolved oxygen, biomass, penicillin and substrate 
feed concentrations; and the controlled variables are: pH and 
bioreactor temperature. 

3. Partial least squares 
To develop a predictive controller for application to the 
benchmark simulation, it is first necessary to develop a 
model, capable of predicting the required control variable. In 
this paper, the work focuses on the development of a 
controller capable of regulating the biomass concentration, 
which represents an important quality variable from the 
process. This model was developed using the regression 
technique referred to as partial least squares, which is now 
described. 
3.1 Basic algorithm of PLS 
PLS is a regression tool that is ideally suited for situations 
where high levels of correlation exist between cause 
variables. The approach works by selecting factors of the 
cause variables in a sequence that successively maximises the 
explained covariance between the cause and effect variables. 
The factors of the cause and effect variables are defined as 
follows: 
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where X and Y represent the cause and effect variables 
respectively (typically scaled to zero mean and unit variance); 
tk, and uk, represent the cause effect factors respectively; pk, 
and qk represent the set of orthogonal vectors, of length nx 
and ny respectively, referred to as loadings; E and F are 
residual matrices; np is the number of inner components that 
are used in the model; nx is the number of causal variables.  
The equations defined in (1) are referred to as the outer 
relationships. The tk vectors, which are mutually orthogonal, 
and uk are selected so as to maximise the covariance between 
each pair, (tk, uk). Linear regression is performed between the 
tk and the uk vectors to produce the inner relationship, defined 
as: 

kkkk b ε+= tu    (2) 

where bk is a regression coefficient, and εk  refers to the 
prediction error. The number of latent variables that are used 
in the model is an important specification and in this work is 
made through the use of cross-validation. Geladi [3] provides 
further details regarding the PLS algorithm. 
 
 
 

3.2 Multi-way partial least squares (MPLS) 
PLS is a linear regression tool and therefore its application to 
non-linear, time-varying processes, such as fed-batch 
fermentation systems is limited. To overcome this problem, 
Nomikos and MacGregor [10] developed a modified PLS 
approach, termed multi-way PLS. MPLS uses a technique 
referred to as unfolding to re-arrange the cause data collected 
from the batch, which can be considered to be a 3-
dimensional array of size mx × nx × nb, where mx is the 
number of samples taken during a batch, nx is the number of 
cause variables that are measured and nb is the number of 
batches for which data is available. This 3-dimensional array 
is unfolded into a 2-dimensional array, of size nb × (nx*mx), 
as shown in figure 1. The effect data is unfolded in a similar 
way to create a 2-dimensional array of size nb × (ny*my), 
where ny and my are the number of effect variables that are 
measured and the number of samples that are taken of the 
effect variables respectively. It is worth noting that mx does 
not need to be, and in most cases will not be, equal to my. 

 
Figure 1: Unfolding 

Following the unfolding of the data, the columns of both data 
sets are scaled to zero mean and unit variance and the 
standard PLS algorithm applied. 
The subsequent use of this model on-line poses the problem 
that it is necessary to know the values of all process 
measurements through to the end of the batch. This 
necessitates the need to estimate the future values of the 
measured variables as each batch progresses. The estimation 
of future process values is referred to as filling up the array. 
Nomikos and MacGregor [10] suggested three alternative 
methods for filling up the array and in this work, the most 
appropriate method was to assume that the values of all 
process measurements remain at their current offset from the 
mean trajectory through to the end of the batch. It is worth 
mentioning that a problem frequently encountered with the 
application of MPLS to fed-batch fermentation processes is 
that the run length of the batch can often vary. Fortunately, 
this was not a problem in the applications explored in this 
paper. However, various solutions exist to accommodate such 
conditions, see for example Lennox et al [8]. 
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3.3 MPLS for fault detection 
In addition to providing predictive capabilities, process 
models developed using the MPLS algorithm may also be 
used for detecting and isolating fault conditions. The 
approach for achieving this is very similar to that adopted 
when using Principal Component Analysis (PCA) [12]. 
Rather than attempting to detect the presence of any fault 
condition by monitoring each process variable independently, 
two univariate statistics, referred to as the SPE (Squared 
Prediction Error) and T2 statistics, are monitored. These 
statistics are defined as follows: 

2SPE = E                  (3a) 
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where 2

kσ  is the variance of the k-th principal component. 

Confidence limits can be placed around these statistics, which 
if violated indicate deviations from the process conditions that 
were recorded in the data used to develop the PLS model. The 
character of these deviations will be reflected in the particular 
chart that is violating its confidence limit. Goulding et al [5] 
demonstrated that changes in the relationships between 
variables, such as would be experienced if for example a 
sensor failed, tended to be detected on the SPE chart, whilst 
changes in operating condition, for example a grade change, 
were typically identified on the T2 chart. There will be 
exceptions to this, for example a high impact fault which 
significantly affects a number of variables is likely to be 
detected on both the T2 and SPE charts. 

4. Application to fed-batch fermenter 
4.1 PLS model development 
The first stage in the development of the PLS model is to 
generate suitable training data. In this application data from 
30 batches was collected. For each batch a pseudo-random 
signal (PRS) was applied to the substrate feedrate to ensure 
the data was sufficiently rich. 20 of these batches were used 
to train the PLS model (training batches) with the remainder 
used to validate the model (validating batches).  
A PLS model, containing 3 latent variables, was then 
developed using this data. In this model the following 
measurements were used as input, or cause, variables: 
substrate feed rate aeration rate, agitator power, substrate feed 
temperature, substrate concentration, dissolved oxygen 
concentration, culture volume, pH, fermenter temperature and 
generated heat. The concentration of biomass and Penicillin 
were selected as ‘effect’ variables. The accuracy of this model 
has been tested in simulation batches to compare the actual 
biomass/Penicillin concentration with that predicted by the 
PLS model and it has been found to be satisfactory. 
The PLS model was then integrated within a relatively 
standard model predictive controller (MPC). By using the 
PLS model to predict the future behaviour of the process, the 
predictive control algorithm is able to determine suitable 
control moves that will minimise the value of a pre-

determined cost function. In this application, the following 
cost function was utilised: 
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where: t is the current sample time of the batch; N is the 
length of the prediction horizon, which in this application was 
set to 10; w is the desired biomass concentration at sample 

time, k; is the biomass concentration that is predicted by 

the PLS model at sample time k;  is the change in the 
manipulated variable (the substrate feed) made at sample 
time, k; λ is a tuning parameter.  

k

kŷ
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The intention of this work was to develop a model predictive 
control system that was tolerant to the introduction of process 
faults into the process. Therefore, following the development 
of the predictive controller, which was found to provide 
acceptable control performance, its ability to initially detect 
process faults and then to compensate for them so that their 
impact on the process was minimised was investigated. 
4.2 Fault detection and isolation 
To test the ability of the PLS model to detect and isolate fault 
conditions within the fermenter, a series of faults were 
introduced into the process, while it was under closed loop 
control. The faults that were introduced were those that were 
suggested and analysed by the authors of the simulation [11]. 
Online multivariate statistics for monitoring the batch in real 
time consist of the SPE and T2 charts as well as the individual 
variable contributions charts.  
Figure 2 illustrates the ability of the PLS model to correctly 
detect and isolate one process fault, a step fault of 5% applied 
to the aeration measurement between 50 and 100 hours. 
Figure 2a shows that the SPE chart violates the 95% 
confidence limit immediately after the fault condition occurs, 
while the T2 chart remains well below its limit. The inability 
of the T2 chart to detect this fault condition is consistent with 
the results of Goulding et al [5] who demonstrated that the 
SPE chart is much more sensitive to the detection of faults 
than the T2 chart. Figure 2b shows the SPE contribution chart 
that was produced immediately after the SPE limit was 
violated. This chart indicates that variable 1, which is the 
aeration measurement, is the likely cause of the fault 
condition. 
Figures 3 and 4 illustrate the control charts that were recorded 
during two further faults conditions. The first, figure 3, is the 
result of a ramp increase of 20% applied to the aeration 
measurement between 50 and 100 hours and figure 4 is 
produced when there is a 20% step increase in agitator power. 
These figures show that the PLS model is able to detect these 
faults. It is also evident from figures 3b and 4b (both at hour 
50) that the PLS model has correctly identified the two 
conditions as a fault with the aeration measurement (variable 
1) and agitator power (variable 2). In further tests it was 

 



found that the PLS model was able to detect and isolate all the 
faults that were investigated by Undey et al [11]. 
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Figure 4 PLS monitoring and contribution charts for 20% step 

agitator fault 

5. Intelligent fault detection and process control Figure 2: PLS monitoring and contribution charts for 5% step 
aeration fault A weakness of most process control and FDI schemes is that 

following the detection of a fault condition, such as a drift on 
a sensor, the scheme is rendered useless until the particular 
fault is resolved. This is of particular concern if there is likely 
to be a delay between the fault being detected and it being 
repaired. 
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This problem is highlighted in the following example, where 
a step increase of 0.5 is applied to the pH sensor 
measurement, 100 hours into a batch. This fault creates a 
major disturbance to the process as the pH measurement is 
used in two automatic control loops. The pH measurement is 
firstly used in a single loop feedback, PID control scheme that 
regulates the pH in the fermenter to 5. Since there is a drift of 
0.5 on the pH sensor then this controller will actually 
maintain the pH within the reactor at 4.5, which could result 
in an adverse response by the bio-organisms inside the 
fermenter. This is illustrated in figure 5 which shows the 
actual pH in the fermenter. It can be seen from this figure that 
when the drift is introduced into the sensor measurement at a 
time of 100 hours, the pH control system gradually reduces 
the pH in the fermenter to 4.5. Figure 6 shows the 
corresponding acid and base flow rates during this fault. A 
further concern is that the pH measurement is used by the 
PLS model to predict the biomass concentration and this 
prediction is used within the predictive controller to regulate 
the production of biomass. Since the pH measurement is 
incorrect then so too will be the biomass prediction made by 
the model. As a consequence the predictive controller will 
operate poorly and the productivity of the batch may be 

Figure 3 PLS monitoring and contribution charts for 20% 
ramp aeration fault 

 

 



affected. This is reflected in figure 7 which shows that if the 
MPC controller uses the raw pH measurement, the penicillin 
production reduces significantly. 

 

The ideal solution for this problem is for the pH sensor fault 
to be quickly detected and isolated and a mechanism put in 
place so that the two control loops that utilise the pH 
measurement can function normally in spite of this fault. 
Figure 8 displays the PLS monitoring charts produced by the 
PLS model during this fault. The charts clearly show that the 
fault has been detected following its introduction after 100 
hours. Figure 8b, the contribution chart, shows the fault is 
caused by variable 9, which is the pH measurement. 
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Figure 7 Penicillin production 

(a) Figure 5 Actual pH in the fermenter during a pH fault 
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Figure 8: PLS monitoring and contribution charts during a pH 
fault 

An advantage in using a PLS model is that it if a sensor 
measurement is in question then it can be used to infer this 
measurement, using the techniques proposed by Nelson et al 
[9], until the fault is resolved. In [9], several methods are 
presented - single component projection, projection to the 
model plane and data replacement by the conditional mean, to 
estimate scores from an existing PCA or PLS model when 
new observation vectors are incomplete. In this work the 
following procedure is adopted following the detection of a 
fault condition on the pH sensor: 

Figure 6 Acid and base flow rate during a pH fault • The local PID controller is switched to manual until the 
sensor fault can be confirmed. The reason for switching the 
controller to manual is to prevent the PID algorithm from 
reacting to a sensor fault. 

• Following the confirmation that the sensor is at fault then 
the PLS model is used to infer the pH sensor measurement. 
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The inference capabilities of the PLS model were found to be 
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which compares the actual pH measurement with that 
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