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duction. the unit ball inH., i.e. A € BH... The transfer functio’,
is a stable and minimum phase weighting, which describes how
Abstract the “size” of the plant uncertainty varies with The controller

is H. The sensitivity and complementary sensitivity functions
This paper shows that, in the SISO case, optimal mixedre, respectively,
sensitivity 2-norm controllers are also solutions to the optimal 1 GAH
robust disturbance attenuation problem (ORDAP). That is, they Sa = IEYEN& Ta = 11 Gal
deliver robust sensitivity reduction despite unstructured uncer- )
tainty at the optimal level. We explicitely identify one set of €€ functions depend ak (and also ors, of course). The
ORDAP weights for which such a controller is ORDAP 0ptin_o_m_lnal sen_smwty function and nominal complem_entary sen-
mal. Functional analysis duality theory is used to establish czifVity function will be denoted bys andT' respectively, so

i that
conclusions. - 1 _ GH
_ 1+ GH’ - 1+GH
1 Introduction These transfer functions are, respectivsly,and7 evaluated
. . . . . atA =0.
Let us begin by stating briefly the control problems with Wh|cﬁ 0
this paper deals. This paper inter-relates two mixed-sensitivity frequency-
domain optimal synthesis problem. We deal with the SISO case
1.1 Problem Statement only. We consider the standard 2-norm optimization problem
00
Consider the standard setup shown below in Figure 1. Ao = inf / ViS(jw)|> + |[VaT (jw)Pdw (1)
QeH> J_
with weightsV; and V5, and the so-called optimal robust dis-
d turbance attenuation problem
> WQA
Ar = inf WS (5 WoT(j 2
) - . y r= il [[WiSGw)[+ [W2T(w)l e ()
- with weightsWW; andW,. The motivation for the latter is the
fact that
[W1Sall, <1 VA€ BHs (3)
H |« . .
? & [ WS(jw) + [W2T (jw)| o< 1
. m Note that one needs the constraint?V;T ||.,< 1 for robust
Figure 1 stability. This is perhaps the “simplesti-synthesis problem

after the solved, control problem. There is a literature on
In the figure, signals entering a summer should be taken witfis problem, including [1,26,7, 8,11,14,16].
a positive sign unless indicated otherwise. All system blocks
are single-input single-output (SISO). The dependence on e \ain Result
Laplace transform variable or on angular frequency will
generally be suppressed in our notation. The plant model, #¥e show that a solution of the former problem (eqn. (1)) is
nominal plant, iS5, and the actual plant is necessarily a solution of the latter problem (egn. (2)), and we
identify one pair of weights for which it is optimal. Thus, start-
Ga=(1+W2A)G ing with a plantG and weightsl; and V5, consider obtaining
Here, W, A represents the (unstructured) uncertainty in tiBe optimal 2-norm controller (for egn. (1)). We show that this
plant model. SoG is Ga with A = 0. The value of the controller is also ORDAP optimal (for eqn. (2)) for the weights
transfer functiomA (jw) which corresponds to the actual phys- V2[Solo V2Tl
ical system is unknown, but it is internally stable and obeys Wi = )\R%, Wy = )\R% (4)



whereZ is defined by the spectral factorization 2.1 Notation

777 = ViVi558, + Vo VoI, T, (5)  The notation to be used is as follows. The parametehe

and wheres,, andT}, are the 2-norm optimal sensitivities. Here-@place transform variable, will generally be dropped in our
... Jop denotes the outer part of a transfer function. The parafitation. The subscript “o” denotes the optimal value of that

eter\p, is simply a scaling of the weights, and can be droppé@nsferfunction orvectorT. I4(s) is a transfer function matrix,
if desired. The author’s idea of using 2-norm theory to tackibenA*(s) denotesd(—3s) , i.e. the complex conjugate trans-

another synthesis problem owes something to [12]. pose ofA(—3). Hence, for real-rational scaldl(s), A*(jw) is
the complex conjugate oA(jw). Vector spaces and their sub-
1.3 Assumptions spaces will be denoted by upper case script letters. The prefix
B then means the unit ball of that space. The inner and outer
Next, we state our assumptions. factors of a transfer functiod will be denoted by{A4],, and

[A],p respectively.
The assumptions on the plant are as follows.

[A1] The nominal plan(s is SISO, real-rational and has no?-2 Youla Parameterization

hidden unstable poles (i.e. is stabilizable and detectablri\:)i.rst, we apply the Youla Parameterization [5]. We state the

The weight selection rules are as follows. result for the SISO case as an excuse to specify our notation.

[A2] V4, andV; are real-rational and have no open right half
plane poles or zeros. They have no finite imaginary axi®ieorem 1 (The Youla Parameterization) Consider the
zeros. They have no finite imainary axis poles (except agblem of the stabilization of the plait obeying Al by the
in A3). Their relative degrees are such thatl,S) = 1 feedback controlle#/, (as in Figure 1 withA = 0). Suppose
ands,.(VoT) = 1 (with any biproper controller) wherg.  that N, D, U andV are all stable transfer functions such that
denotes relative degree.

. : o o _ G=ND", 1=NU+ DV (6)
Care is needed in dealing with any finite imaginary axis poles

and zeros of the plant. Then, asQ ranges ovefH>°, all LTI controllers which yield a
[A3] The finite imaginary axis poles df; are exactly those Stable closed loop system are given by
of G and with the same multiplicity. The finite imaginary _QD+U

axis poles ofl; are exactly those off—! and with the =
same multiplicity. QN +V

()

These poles will be cancelled in the produdisS andV,7. Simple algebra using the above then shows that

From eqn. (4)1¥/; andW> will obey A3. (Imaginary axis poles

and zeros are put into the outer factor here.) Also, the ORDAP S = D(QN +V), T'=N(-QD+U) (8
weights will obey A2, but withy,.(V1.5) = 0 = §,.(VoT). A2 _

and A3 involve no loss of generality in the following sense. lt€t B, andB; denote the Blaschke products corresponding to
can be shown that if a controller is 2-norm optimal for any rea®ll the ORHP poles and zeros of the plant, respectively. Define

rational weights, then it is also optimal for weights obeying AX andY by N = B.X andD = B,Y. We use the fact that
and A3 [9,10]. Blaschke products have unit magnitude on the imaginary axis.

_ ] ) ) _ Hence, the ORDAP problem is to minimize over all stabilizing
Section 2 gives some background material which will bgyntrollers (i.e. ovel) € Ho)

needed. It describes the Youla parameterization, which will be

used to formulate both problems as approximation problems in Ar =| IWAS| + [WaT| ||s
certain Banach spaces. It also outlines some standard duality
theory for approximation problems on vector spaces. This the- =|| |B;'B; Wi S| + |B; 1B WL T |

z P z P o0

ory is used to identify the maximization problem which is the

dual of these minimization problems. Section 3 is devoted to =|| |[W; DV + W1 DNQ| + |WoNU — WaDNQ)| ||
the proof. It works by comparing the two sets of (alignment)

conditions for optimality. Section 4 contains a textbook exar|| [W1Y VB, '+ Wi XY Q|+ |WoXUB, ' =W XY Q| |
ple. Section 5 contains our concluding remarks. This duality

theory has been applied to optimal controller synthesis prab3 The 2-Norm Problem as a Vector Space Problem

lems before, for instance [3,4,6, 7,8,11,14,15,16].
The 2-norm problem of eqn. (1) can be cast as a vector space

blem. Th dedd$x L2 ipped with th
2 Background problem. The space needed$ x £? equipped with the norm

We begin with some necessary background. | (@) |lax2 = H\/ la|? + |b|2H2 , (a,b) € L2 x L* (9)



This is a Hilbert space. So the problem is equivalent to tlfle) A sufficient condition forn, € M to attain the minimum
following on the left is that there exist, € BM* which is aligned
with z — m,.

Ay = Qierg | (ViXYQ,-VaXYQ) +...
. . Theorem 3 Suppose that' is a normed vector space with sub-
+(VIYVB. S VaXUB, ) [l2x2 spaceM, that its dual space i&’?, and thatz? € X¢. Then
Now the set of vectors inC? x £2 which are of the form
(WM XYQ,-V,XYQ) for someQ) € H> constitutes a vec- (a)

tor space M, say, which is a linear subspace®t x £2,

min |27 —m?||= sup | <m,z?>| (12
Mo ={(a,b) € L? x L?|a = V1 XYQ,... mieM meBM
b=-1XYQ, Q € H®} and the minimum on the left is attained for somé <
M-+, say bymd.

So the optimal ORDAP synthesis problem is that of determin-

ing the (or a) vector in a subspace which best approxima(® A sufficient condition fom? € M- to attain the minimum
some fixed given vector. There is a well developed theory for on the left is that there exist, € BM which is aligned
handling such point/subspace approximation problems [13].  with z¢ — mZ.

2.4 ORDAP as a Vector Space Problem For the proofs, see [13]. They involve a straightforward appli-

cation of the Hahn-Banach Theorem.
The ORDAP problem can also be cast as a vector space pro%—

lem. The space neededds® x £> equipped with the norm To apply the above duality theory, we need to identify the vari-
ous subspaces required.
I (a,) [looxoo = |l lal +[b] oo, (a,b) € L> x L= (10)

So the problem is equivalent to 2.6 2-Norm Duality

Being a Hilbert spacef? x £? is its own dual, and with the

A= ot | (XY Q,=W2XYQ) + ... same norm.

Qe

-1 -1
HWAY VB, WoXUB,T) [looxoo Theorem 4 Assume that A1-A3 are obeyed. Consider the sub-

Now the set of vectors irL> x £ which are of the form space of£? x £2 given by
(W1 XY Q,-W,XY Q) for someQ € H> constitutes a vec-
tor space/\ say, which is a linear subspace®&® x £, M = {(a,b) € L2 x £2| ay = Vz*lz[;F V1h§’_“
v
No ={(a,b) € L= x L=®| a = W1 XYQ,...
Vi'ly — Vahs
b= —WXYQ, someQ € H®} b2 = "4,

So the problem is again in the form of finding a vector  Thenmt = {(z,y) € £ x £L?|z = V1 XYQ,...
(W1 XY Q,—-W,XYQ) in the subspacd/, that best approxi- -
mates a given vector (W, Y VB, WoUX B 1). y=-12XYQ,Q e H*} =My

whereAy, comes from the spectral factorization

o € L% hy € H?}

2.5 Duality Theory

- , AvAv =Vi'Vi+ Vo' Vs
Vector space duality theory provides a powerful methodology
for tackling many optimization problems. The following two .
theorems treat point/subspace optimal approximation probleﬁﬁz ORDAP Duality

[13]. The norm of interest o> x £ is that of eqn. (10). Define
Theorem 2 Suppose that’ is a normed vector space with sub- | (a,b) l1x1= /max{‘% 16|} dw
spaceM, that its dual space ig’¢, and thatz € X. Then

which is a norm on the spac&* x £!. These two normed
spaces are related as follows.

(@)
inf |[z—ml= max |<z,m?>| (12)
meM mldeBM-+

and the maximum on the right is attained for somé ¢ Theorem 5 The space&™ x £ with norm|| (z,y) [Jecx oo IS
BM™*, say bym¢. the dual of the spac&! x £ with norm|| (a,b) [J1x1



Theorem 6 Assume that A1-A3 are obeyed. Consider the sudnd
space ofC! x L£! given by  Aply, = B-1B-1 (V1V2> (14)
o z D

A*
N ={(a,b) € L' x LY a = (Wil + Wih*)/Aw, ... i’

Under our assumptions, there is a unique choic€ afthich
b= (Wil — Wah*)/Aw, | € L1 h e HY} makes the right hand side of eqn. (13) anti-stable and strictly
proper, and this is the optimé). Thenhy, andl,, are easily
whereAy, comes from the spectral factorization constructed to yield alignment. So this condition is necessary

" " " and sufficient for 2-norm optimality.
2w = WiW, + WiWs ptimatity

ThenNt = {(z,9) € L>® x L®|z = W, XYQ, ... 3.2 ORDAP Alignment Conditions

—WaXYQ),Q e H™} =N Our treatment here is modeled after [11]. The analysis is little
more than the conditions for equality in Holder’s inequalities.
The proofs of the previous three theorems are strmghtforwa&,t to = WiXYQ, + W, YVB.

see [13,11]. and Yo = —WaXYQ,+ WoXUBY)

Note that if the plant has finite imaginary axis poles or zeroso (o,Y0) = (WSoB. ' B, " WoT,B; ' B, )

then the weights have finite imaginary axis poles. Howevethere(, attains the minimum in Theorem (3). Existence is
the multiplicity of such poles iV, and W3 W, will be assurred. Suppose that;,, b1,) € £! x £! attains the supre-
even, so they present no difficulties when doing the spectralim in Theorem (3). Here, existence is not guaranteed in gen-
factorization. Such poles will then be poles/of also. eral. Normalizgas,, b1,) W..0.g. so that

3 Proof ” (aloyblo) Hlxlz 1

In this section, we establish the main result in a nhumber 'gpen
steps. The characterization of optimality by the alignment con-
dition is investigated for both synthesis problems. Then, these = | < (a10,b10), (%o, Yo) > |
two sets of alignment conditions are compared. 00
_ ‘ / (2o, + yob,)cko
—0o0

Ar = [W1iSo| + [WaTh| [l

3.1 2-Norm Alignment Conditions

(o)
. . < X0, + Yobl,|0w
Under our assumptions, we know how to explicitely com- /_Oo| 0010+ Yobi|

pute the minimizingQ, and the maximizing(az,, b2,) €
BM. Hence, they exist. Then, letzoo, y2o)

(B;'B,'ViS,, B ' B, ' Vo T,,), and(x20, y2,) is aligned with
(a20, bao). The details are as follows. < /°°

with equality holding when either (i¥(x,a}, + yobi,) = 0,
or (ii) z,aj, + yobj, =0, a.e.

(|xoalo| + |yob10|)dw
—oo

/\2 = | < (-r2oay2o)a (a2oab2o) > |
with equality holding when either (iiYz,a}, = Zy,bj,, or

< | (@20, 920) ll2x2 || (a20,b20) [l2x2 (iv) z,a7, = 0, or (V) y,b%, = 0, a.e.
The alignment condition (i.e. the condition for equality above) 0o
is easy in the 2-norm case. Equality holds < / max{|a1,], [b1o|}(|To] + |yo|)dw

& Az(a20,b20) = (%20, 20) with equality holding when either (viji1s| — [bo], or (vii
o AQCLQO _ VlYVB;1 + VlXYQ, and |a10| > ‘blol andyo = 0, or (V|||) ‘b10| > \a10| andl’o = 0,
a.e.
Aobyo = —Vo XY Q + Vo XUB,

<1 2] + o] lloc / masc{|asol, [bro|}do
& Asag, = BB, 'WiS,, and Asby, = B ' B, VAT, —oo

with equality holding when either (iX}z = |z,| + |yo|, OF (X)

Viloy + ViR
e N2 7120 I "2 — B71BV; S, and max{|a,|, [b1o|} = 0, a.e.
174
Vitloy — Vohi =|| [W1So| + [WaTo| |ee= Ar
)\2 142 2190 :B_IB_1V2TO H ‘ H
Ay = 7p

since the norm ofa1,, b1,) has been normalized to one.
Solving forh%_ and giveds,,, . )
g 20 g 2 Since the above expressions are of the fodp < ... < Ag”,

we conclude that the alignment condition implies that each of
the inequalities must, in fact, be an equality.

(13)

ViviS, — Vi Vo T,
& Ay ;O:Bz—pr—l<1 ! 220)

Ay



It is clear that sufficient conditions for alignment are then (ijggn. (13) shows thdi;, is anti-stable, and so is iH;. Hence

(iii), (vi) and (ix). These may be written as (a10,b10) € N as required.
ZW1S,B; "B tat, =0 (15) Ean. (19) gives
—1np-—1 * * *
AWQTOBngglb’{O =0 (16) WiB; B, S.ai, = Vi'Vi5;5,
|ato| = [b1o] (17) and L
|W150| + |W2To| = )\R (18) WQBZ Bp Toblo = ‘/Z*VQTO*TO

showing that egn. (15) and egn. (16) are obeyed. Using
3.3 Comparing the 2-norm and ORDAP Alignment Con- €dns. (19) and (4) shows that
ditions
Given the weightd/; andV;, suppose that we have found the 1ofto A* A

solution of the 2-norm problem of eqn. (1). We claim that thi P ; :

solution of eqn (1) S,, T, ) is then the solution of a certain OR-iﬁfE“smng eqn. (17). Using eqn. (4) to substitutelfgrand
DAP problem, namely that of eqn. (2) with weighid’;, W5)

as defined in eqn. (4). This is established by using the 2-norm
solution to construct vectors;, and b1, which achieve OR- and then using eqgn. (5) establishes eqn. (18). This shows that
DAP alignment, so that part (b) of Theorem 3 then establishiée conditions for alignment are obeyed.

ORDAP optimality. Part (b) of Theorem 3 now establishes that thiss an optimal
Define the Blaschke products; and B by solution of the ORDAP problem of egn. (2).

= bTob10

(WS, (jw)| + [WoT, (jw)|

Bpr = [So]ip7 BZBZ = [To]ip 4 Example
So B; and B, are the Blaschke products for the ORHP p°|e§uppose that the plant@ = 1/s. Solving egn. (6)
and zeros of the controller respectively. Let ' e

* —1n-1 * —1np-—1 — L — L — —
a1o:V1V1S;£f B, blO:VngTaiZ B, (19) N—S+1,D—S+1,U—17D—1
' ? Suppose that the 2-norm weights (obeying A2 and A3) are
Formally, two things must be established. First, we show = 2/s andV, = 1. Then, a spectral factorization gives
that this vector(ai,,b1,) has the required structure, viz.Ay = (s + 2)/s. Finally, Q, must be such that the right hand
(a10,b10,) € N. Secondly, we show that thigai,,b1,) side of eqn. (13) is anti-stable. It is
achieves alignment. ORDAP optimality then follows from part

(b) of Theorem 3. p-1p-1 <V1*V1$o - VQ*VQTO)
. =P A%

Solving v

Wil + Wik Wil — Waht Simple algebra confirms that it may be written as

2010 1o 1%lo ™ lo
a1p=——"——=2 and bj,= ——->2
A A *ViDV — Vi ViN
v v :Bz‘pr‘1 (QONDAV+V1V1 V-V U)

for h}, andly, gives Ay

Waar, + Wibi, Wiar, — Wibi, The only unknown in the above is no@,, so inserting the

ho=—————, and hj, = ———=— other terms,
w w
Using eqgn. (19) then gives =Q, (s+2) - (s +4)
(s+1)2 (s+1)(s—2)
B;1B! . . . .
hi, = 27*1’ (VViS, — Vs VaT,) Compute the partial fraction expansion of the term on the right.
Ajy This quantity must be anti-stable. It is easily checked that the
and (unique) optimal),, must be
+1)2 1 (s+1)
BB TWL W . . G _
= (B (e ) R T T R )
w 11 2 VV2
Using eqn. (8) gives

It is easily checked that A1-A3 ensure that, and Iy, s 9

are strictly proper, and have no finite imaginary axis poles. So = 512 1, = PR



and the optimal controller i = 2. Then egn. (4) gives (with

Ar =1)

We may then conclude that (from egn. (3))

or

(s+2) W, — (s+2)

W:
! 25 4

[6] S.M. Djouadi, “Exact Solution to the Non-standektt®

Problem”,Proc. IEEE Conf. on Decision and Contr@,
pp. 2843-2848, 1998.

[7] S.M. Djouadi and G. Zames, “On Optimal Robust Distur-

bance Minimization”,Proc. American Control Conf3,
pp. 1531-1535, 1998.

[8] J.A. Donnellan and A.M. Holohan, “Tight Bounds for

2
(5;8 )SA(S)’g V= jw, VA EBH.
1S ()| < |22 ‘v VA e BH
w —_ w o
AW = (jw+2) ’

Robust Sensitivity Reduction from Functional Analysis”,
Proc. European Control Conf2001, pp. 1548—-1552.

Of course, the above fact is easily checked separately. TI'[g] A.M. Holohan and G. Meinsma. “Inverse Problems in 2-
non-trivial point is that no other controller can do better, in the

above ORDAP sense.

5 Conclusion and Discussion

The following has been established.

Theorem 7 Suppose that the plant(s) obeys Al and that the

2-norm weightg'V;, V,) obey A2 and A3. L«tS,, T,,) denote [11]

the optimal solution of the 2-norm problem of egn. (1). Then,
this(S,, T,) is also the optimal solution of the ORDARP problem
of eqn. (2) with weight§lVy, W5) given by eqgn. (4).

It should now be possible to design ORDAP optimal controlle[;z
e

for the SISO case. However, one would have to rely on iterati
trial and error to find howV;, 5) should be chosen to obtain
the desired Wy, Ws).

Of course, the real motivation for this line of research is to sol
the ORDAP problem by reversing the above analysis. Th

we should like to begin with the ORDAP weights, and then

identify the 2-norm weights for which the same controller i 4] 3.G. Owen and G. Zames, “Duality Theory of Robust Dis-
optimal. Research along these lines is at an advanced stage.
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