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Abstract

In this paper, the problem of designing reduced-
order H™ controllers is studied for mnonlinear
continuous-time systems with sampled measurements.
Using the concepts of dissipativity and differential
gain, sufficient conditions are derived for the exis-
tence of such reduced-order H® controllers. These
conditions are expressed in terms of the solutions
of two Hamilton-Jacobi inequalities, comprising a
standard Hamilton-Jacobi inequality and a differen-
tial Hamilton-Jacobi inequality with jumps. These
Hamilton-Jacobi inequalities are exactly the one used
in the construction of full-order H® controllers.
When these conditions hold, state-space formulae are
also given for such reduced-order controllers.

I. INTRODUCTION

Over the last two decades, much attention has been
given to the extensions of the results of linear H> con-
trol theory [3], [8] to nonlinear settings; see, e.g., [2],
(12, (13], [14], [21], [26], [27], [28], [29], [33], and [33].
In particular, Van der Schaft [26] has shown that the
solution of the H> state feedback control problem for
affine nonlinear systems can be obtained by solving
one Hamilton-Jacobi equation, which is the nonlinear
version of the Riccati equation considered in the cor-
responding linear H® control theory (see [3]). On the
other hand, Ball et al. [2], Isidori [12], and Isidori
and Astolfi [13] have presented sufficient (or neces-
sary) conditions based on two Hamilton-Jacobi equa-
tions (or inequalities) for the solution to the H* con-
trol problem for affine nonlinear systems in the case of
output feedback. Furthermore, Isidori and Kang [14],
Van der schaft [28], and Yung et al. [36] have studied
the H® control problem for general nonaffine non-
linear systems. Moreover, Lin and Byrnes (see [19]
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and [20]) have obtained some corresponding results
for discrete-time nonlinear systems. Recently, extend-
ing the results obtained by Sun et al. [25] for linear
systems, Suzuki et al. [24] and Guillard [5] have con-
sidered the H® control problem with sampled mea-
surements for nonlinear systems.

The controllers obtained from the aforementioned
papers have a state dimension greater than or equal to
that of the system model which is built from the phys-
ical plant and some of its weighting functions, thus
have limited use in practical applications, since a high
order controller usually incurs a high implementation
cost and is prone to be numerically ill conditioned.
Therefore, a lower order controller should be sought
when the resulting performance degradation is kept
within an acceptable magnitude. Recently, a number
of papers have appeared that deal with reduced-order
(or fixed-order) H® controller design for linear sys-
tems (see, e.g., [4], [6], [7], [9], [10], [11], [15], [16],
[17], [18], [22], [23], [30] and [31]) and nonlinear sys-
tems (see, e.g., [32] and [34]).

The purpose of this paper is to continue this line
of research to address the H® controller reduction
problem for nonlinear systems with sampled measure-
ments. By extending the technique developed by Yung
and Wang [34] for nonlinear H® controller reduction,
we present sufficient conditions for the existence of
H™ controllers with a state dimension less than that
of the plant for nonlinear sampled-data systems. The
conditions obtained are expressed in terms of the solu-
tion to two Hamilton-Jacobi inequalities, which com-
prise a standard Hamilton-Jacobi inequality and a dif-
ferential Hamilton-Jacobi inequality with jumps. The
Hamilton-Jacobi inequalities are exactly the one used
in the construction of the full-order H* controller
for nonlinear sampled-data systems obtained in [5].
When these conditions hold, state-space formulae are
also given for such controllers.



II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a time-invariant nonlinear sampled-data
system (Figure 1) described by the dynamic equations:

E(t) = flz)+a(x)wt)+ gz (x)u(t),
G:< z(t) = hi(z)+ kiz(2)u(t),
y(ih) = ha(x(iT)) +0(iT), i=1,2,3,..,

(1)
where z represents the state defined on a neighbor-
hood of the origin in IR", w € IR™" a continuous-time
noise process which is assumed to be a member of
L?[0,1, R™] := {w : ||w|3, := fo [w(t)]|?dt < oo for
a fixed T' > 0}, u € IR™ a continuous control input
to achieve the prescribed performance specifications,
z € IRP* a controlled output, y € IRF the measured
variable which is available at sampling instants T
with the sampling period T, and v € IRP? represents
measurement noise which is assumed to be a member
of 12[0, T, IR¥] := {v : [[o]% := IO [lo(iD)1? < oo
for a fixed T' > 0}. Here |€] denotes the integer part
of e € IR. Throughout, we assume that the origin is
an equilibrium, i.e. f(0) = 0; without loss of gener-
ality, we assume also that h1(0) = 0, h2(0) = 0, and
that f, g1, g2, k12, h1 and hy are all smooth functions.
Moreover, in this paper, for ease of presentation, we
restrict ourselves to the consideration of systems sat-
isfying the following standing assumption considered

in, e.g., [24] [5].
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Figure 1 : H® control with sampled measurements

Assumption (A1l):
k() ka(x) = 1,

and

kiy(x)hi(z) =0
for all  near z = 0.

The standard H® control problem is concerned
with constructing a controller using the measurements
Yy, such that the resulting closed-loop system has a lo-
cally asymptotically stable equilibrium at the origin
and has L?-gain < =, i.e. the whole system satisfies
the dissipativity inequality

[P <2 [ oo

(see below for detailed definition of L?-gain).
Let us denote for a function V(z,t), under suitable
condition of differentiability,

. oV . oV . 0 (2V
Vx = Bz Vt = Bt Vtx o E(_)

L]

leGD)|I*) (2)

=0

N~

We conclude this section by recalling from [5] the fol-
lowing results which will be useful in the sequel.

Proposition 1 : Consider a nonlinear dynamic sys-
tem with jumps described by the equations

x(t) = f(x(t)), t # 4T, (3)
e(il) = fr(z(iT), i>1,

with f(0) = 0, and fr(0) = 0. Suppose that there ex-
ists a positive definite function S(x,t), locally defined
on ¥y x [0,T] with ¥y a neighborhood of the origin in
IR”™, which is T-periodic, piecewise differentiable with
respect to t, and C' with respect to x, and satisfies

St(x,t) + Sp(x,t) f(x) Vae#0, Vtel0,T),
S(fr(z), T)— Sz, T7) Vit=T
(4)

Then system (3) has a locally asymptotically stable
equilibrium at x = 0.

< 0,
<0,

Proposition 2 : Consider system (1) and suppose
Assumption (A1) is salisfied. Suppose the following
hypotheses hold.

(H1) There erists a C3, positive definite function
V(x), locally defined on a neighborhood of the ori-
gin in IR”, such that the function

Yi(z) = Ve(o)f(x) + 7w (z)w.(x)
+h (x)hy () = ul (#)u.(x) (5)

is negative definite near © = 0, where

7201 (1) V)] (2)
—393 (2)V! (x)

(H2) There exists a positive definite function Q(z,1),
locally defined on ¥y x [0,T] with ¥y a neighbor-
hood of the origin in IR™, which is T-periodic,
piecewise differentiable with respect to t, and C3
with respect to x, and is such that the Hessian
matriz Qz5(0,T) is nonsingular, which satisfies

37 (0)Q42(0,T)§(0) — 2421 < 0, (7)

and for all t € [0,T] the function Y(x,1) is nega-
tive definite near x = 0 with nonsingular Hessian
matriz at x = 0, where the function Yz(z,t) is
piecewise continuously, defined as

us(2) =

(6)

Ya(zot) = Qi t) + Qu(z, 1) (f(z) + g1(x)w
+#Qx(l‘vt)gl(ﬂﬁ)gf(ﬂﬁ)Qf(%t)
+ul (2)ue(x), 0 < t<T,
and
Ya(x, T) = Q(z,T) — Q(a, T7) — v*h3 (x)ha(x).

9)

Then the nonlinear H® control problem is solved by

the feedback law

t T,
— ha(2(iT7))),

(10)
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where & € IR" 1is defined on a neighborhood of the
origin,

f2) = [(@)+ai(@)w@) + ga()us (@),

hiz) = wus(z),

and §(&) satisfies
Q. (2, T)g(x) = 292 (x).

III. MAaAIN RESULTS

As it has been seen, Proposition 2 provides a feed-
back law of the same order as the plant (1), that solves
the H® problem in question. The objective of this
section is to design a reduced-order H™ controller K,
using the sampled measurement y(iT), of the form

) = F(Q), t # i,
§eT) = C(T7) 4+ GEET))(y(ET) — Ha(E((T7))),
u(t) = H($),
(11)
where £ € IR" (r < n) is defined on a neighbor-

hood of the origin, with F(0) = 0, H3(0) = 0, and
H(0) = 0, such that the resulting closed-loop sys-
tem has a locally asymptotically stable equilibrium
at the origin (z,&) = (0,0), and has L?-gain < v, i.e.
there exists a neighborhood of the origin (z,£) = (0, 0)
such that for all ' > 0 and for each noise input
w(+) € L2[0,T] (and v(-) € [?[0,T]), the state trajec-
tory of the closed-loop system starting from the initial
state (2(0),£(0)) = (0, 0) remains in the neighborhood
for all ¢t € [0,T], and the response z(:) of the closed-
loop system satisfies the dissipativity inequality (2).
For this purpose, we first assume that there exists a
smooth function ¢ : IR x IR — IR"defined around the
origin (z,¢) = (0,0) in IR x IR with ¢(0,0) = 0 and
rank%((}, t) = r for all ¢ around ¢ = 0. The rank con-
dition implies that the restriction of ¢ to some neigh-
borhood of (x,t) = (0,0) is a surjection, provided by
the surjective mapping theorem [1]. Then, we make a
change of variables

£=¢&— la,t)

where £ € IR" is also defined on a neighborhood of
the origin. In terms of these variables the resulting
closed-loop system is

(12)

Te = Fo(we) + Ge(xo)w, t £,
2. (iT) = FHz(iT7)) + Gz (iT7))o(iT), i > 1,
z = H.(z.),

A (13
where z.(t) 1= col(x(1),£(2)),

N (@) + 92 l‘)H(éﬂ' é(z,1)

R = | e |
_ g1(x)

Ge(ze) = —¢z(z,)g1(x) |’

F = | e o ol

€

and
H.(z.) = hy() + kia(2)H(E + ¢(x,1)),
where

(1) — a0 1(2) + FE + B, ),
ho(x) — Ha(§ + ¢(x,1)).

B Y
|
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We will seek for a control law of the form (11), such
that the closed-loop system satisfies the H perfor-
mance criterion, i.e. the closed-loop system (13) is
asymptotically stable and has L2-gain < . We first
observe that the problem in question can be cast
as a two players, differential game problem, associ-
ated with which we define two Hamiltonian functions

M, : R"™" x R™ x R — IR,

Wo (e, ) (Fe(we) + Ge(we)w)
+ Wi (e, t) + HeT(J:e)He(xe) — 72wTw
(14

My (ze, w, 1) 2

for t # iT, and M{: R™"*" x R — IR,

M{(ze,v) & W(FHxe)+ Glxe)v, T) — W(xe, T7)

—~2T (15)
for ¢t = ¢T. A preliminary lemma will be needed in the
sequel.

Lemma 3 : Consider system (1). Suppose that As-
sumption (A1) is satisfied. Suppose also that there
exists a smooth positive definite function W(x.,t), lo-
cally defined on ¥ x [0,T], with ¥ a neighborhood of
the origin in IR**", C? with respect to x., T-periodic
(i.e., W(xe,t) = W(xe,t +T)), and piecewise differ-
entiable with respect to t, such that W(xz.,t) vanishes
at x. = col(x, ¢(x,t)) for allt € [0,T], and such that
the following conditions are satisfied:

(a)

the quantity

G (0)W,_ o, (0, T)GL(0) — 22T < 0,  (16)

(b)

the function

1
Je (e, 1) W, + WerGe(xe)GeT(xe)WxTe
PHT () HL () + W () (17
vanishes at r. = col(x,¢(x,t)) and is negative

elsewhere for allt € [0,T] with t # iT,
()

the function

Jixe) = W(FNwe,T) + Gi(xe)v*, T)
W (e, T7) = y20* T 0" (18)
is less than or equal to zero, where v* is the
unique solution, with v*(0) = 0, of the implicit
function

BW d 2.7
e loa=Fd(z)+Gd(zeyy GelTe) — 29707 = 0.
(19

)



Then the reduced-order feedback law (11) locally asymp-
totically stabilizes the resulting closed-loop system (13)
and renders its L*-gain < 7.

Proof. With (14), (15), (17), and (18) in mind, and
using the Taylor expansion theorem, it is easy to see
that M; can be rewritten as

M1($ea wat) = Je(xeat) - 72||w - w*HZa
where w* = i GT(JL‘Q)I/VxTe is the worst distur-
bance. Since Je(z,t) < 0 by hypothesis, we have

My (z.,w,t) < 0. Moreover, My(z.,0,t) < 0. By a
simple calculation, it can be shown that

OM{(xe,v)  OW

5o = 9o lo=raworazway Gz =290"
; (20)
an
O* M (e, v 2W
552 : =Gt a2 la=Fa(a)+ai (o) Gi=2921.

(21)
By (16), it follows from the implicit function theorem
that there exists a unique solution v*(z.), defined on
a neighborhood of . = 0, satisfying

OM(z.,v) | 0
BU v=y*— U,

and
v (2e) |p.=0= 0.

Hence M{ can be expressed as

_ 1 "
Mi(we,v) = T2 (we) + 5llv = o[, + O(lv = v"|%),
where rqq := % |(xe7v) (0,0) is negative defi-

nite. Since J¢ < 0 by hypothesis, we have M{ < 0.
By Proposition 1, both My (z.,0,t) < 0 and Md <0
imply that the equlhbrlum ze = 0 of the closed loop
system (13) is locally asymptotically stable. Further-
more, combination of (14) and (15) and integration on

[0,T] gives

Jo Nz@)2de -
+W(x€( )7

7 [y et + S0 (o))
h<o

Since W(x.(t),t) > 0, it is concluded that the closed-
loop system (13) has L2?-gain < 0. This completes the
proof. O

Remark 1 : The reduced-order feedback law given
above is a nonlinear system with finite jumps at dis-
crete instants of time. At the sampling instants, the
measurement y(iT) is used to update the control law,
and to guarantee the whole system being asymptoti-
cally stable and having L?-gain < v even though there
is no output injection between any two sampling in-
stants. It is noted that the solution x.(t) to (13),
if exists, is right continuous but may be left discon-
tinuous with possibly finite jumps at t = iT. Also
note that Hamiltonian function Je(xe,t) solves the
continuous-time H control problem while the Hamil-
tonian function J%(z.), on the other hand, solves the

discrete-time counterpart. In other word, the func-
tion Jd(x.) is only available at sampling instant iT,
whereas Jo (e, 1) is available in other instants t # iT.
The combination (17) and (18) can be regarded as a
differential Hamiltonian function with jumps. O

The conditions in Lemma 3 for the solution of the
H*® control problem can be further simplified by pro-
viding an alternative set of sufficient conditions, which
involve a new Hamilton Jacobi inequality having fewer
independent variables. This is summarized in the fol-
lowing statement.

Theorem 4 : Suppose that Assumption (A1) is
satisfied and thalt hypotheses (H1) and (H2) of
Proposition 2 hold. Suppose that there exists a
smooth function ¢ : IR” X IR — IR", locally defined on
a neighborhood of the origin (x, t) (0,0) in IR™ x IR,
with ¢(0,t) = 0 and 32(0,4)(22)7(0,t) = I. Sup-
pose also that there exists a posztwe definite function
Q(é,t), locally defined on W3 x [0, T] with U5 a neigh-
borhood of the origin in IR, which is T-periodic, ptece-
wise diﬁerentiable with respect to t, C° with respect to

3 6fww“wtw—%wt%£ww

Then, if F, Hy, G, and H satisfy

Flo(z,1)) =
Hy(¢(,1)) =

t
Go(z,1)) =

and

H(¢(z,1)) = h(z), (23)
the r-th order controller (11) locally asymptotically
stabilizes the resulting closed-loop system (13) and
renders its L?-gain < v.

Proof. Let W(z.,t) = V(z) + Q(é,t), which is pos-
itive definite since both V() and Q(f,t) are positive
definite. The proof is divided into two parts, namely
continuous part and discrete part.
(a) Continuous part, i.e. t # iT.

Take Taylor expansion around £ = 0 to Je(a:,é,t)
to obtain
Je(z,€,t) = Jo(2,0,t)+

|E oéty €T |E oéth.o.t.,

(24)
where “h.0.t.” means higher order terms. With (22)
and (23) in hand, a routine manipulation shows that

Te(2,0,0) = Vif(x)+ Vioga(a)h(a) + hi (x)h1(x)
+hT (2)h(z) + 4; Vegi(2)gi (2)V,"
= Yl(l‘),
a.J. B
a—€|(x,0,t) =0,

and at (0,0,1)

9%,
dE?

62(0,0)((f (0) + he (0)93 (0)) Qi (0, 2)



+Qua (0, ) (2 (0) — g2(0)hr(0))
+#Qm<o,t>g1<0>g1<0>cz£x<o,t>

+2h7 (0 (0)Qrat (0,1)) 67 (0,1)
= ¢5(0,)Y5, . (0,8)¢,(0,1).
Since Y3, _(0,1) is negative definite for all ¢ € [0,T] by
hypothesis (H2), and Y7 (z) is also negative definite by
hypothesis (H1), it is concluded that for all ¢ € [0,T]
the function J.(z.,t) vanishes at ¢(x,t) = £ and is
negative elsewhere. Thus, condition (b) of Lemma 3

holds.
(b) Discrete part, i.e. t = iT.
Using (22), equation (16) can be rewritten as
77 (0)Qus(0,T)§(0) — 29°1 < 0,

which is the same as (7) of Proposition 2; thus, con-
dition (a) of Lemma 3 holds. Using (22) again, it is
straightforward to show that
v™(0) =0, and UE(O) = Hgé(())
by noting that
GT(0)Qg (0, T) = 29° Hy, (0).

Applying v*(0) and vgf(()) to (18) gets

9.
Tleo =0 &leo =0,
and
62Jd A 2 — 2 T
852 = Qéé(O,T) - Qgé(oaT ) - 27 Ug (O)Ug (0)

at (l‘,é) = (0,0). Using Taylor expansion again, it
can be shown that

L7 (6.00,7)
+h.o.t.,

92Ys(x, T)

Jg(l‘e) = 8l‘2

lo=o ¢L(0,T))é

which is less than or equal to zero since Y2(z,T) < 0.
Thus, condition (c) of Lemma 3 is also satisfied. This
completes the proof. O

Remark 2 : It has been shown in Theorem 4 that
the achicvement of closed-loop asymptotic stability is
implied by the fulfillment of the negative definiteness
of Yi(z). If Yi(z) is only negative semidefinite near
z = 0, then closed-loop asymptotic stability can still be
achieved if the equilibrium & = 0 of the controller (11)
is locally asymptotically stable and system (1) satisfies
the following standard assumption usually considered
in H® controller design (see [12], [34] for details).
The proof can be established with a similar argument
used in [34], and thus is omitted here.

Assumption (A2): Any bounded trajectory x(t) of
the system

2(t) = f(z(t)) + g2(x(t))u(t)
satisfying

ha(x(t)) + kiz(e(t))u(t) =0
for all t > 0, is such that limy_,co2x(t) = 0. O

IV. CoNCLUSIONS

Controller reduction is often desirable to reduce
the complexity and computational burden in real-time
control process, especially when fast data processing
is actually required. In this paper, the reduced-order
H*® control problem for nonlinear sampled-data sys-
tems has been extensively addressed. It has been
shown that reduced-order H* controllers can be con-
structed from the solutions of two standard Hamilton-
Jacobi inequalities (with jumps), and four auxiliary
equations.
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