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Abstract

We present new characterizations of integral Input-Output-
to-State Stability. This is a notion of dectectability formu-
lated in the Input-to-State Stability framework. Equivalent
properties are discussed in terms Lyapunov dissipation in-
equalities and asymptotic estimates of the state variables on
the basis of external information provided by input and out-
put signals.

1 Introduction

Detectability is a central notion in control theory. It plays a
major role both in static state-feedback design (Lasalle’s in-
variance principle, Jurdjevic-Quinn control, see [9]) as well
as stabilization by means of dynamic output feedback or
observers design. Several possibilities are available when
formulating such a notion in the context of nonlinear con-
trol. According to the specific problem under considera-
tion, they capture some or most of the useful features of
its linear counterpart. One way of addressing the problem,
which has proved to be especially powerful for systems sub-
ject to exogenous disturbances, is to define 0-detectability
in terms of estimates involving (possibly nonlinear) gains of
input and output norms. This is the so called input-output-
to-state stability (I0SS), [10], and integral input-output-to-
state-stability.Such notions not only allows one to extend
Lasalle’s type stability results to the case of non-autonomous
systems, [1], it also provides a machinery, fully compatible
with the small-gain and ISS formalisms, in order to under-
stand relevant questions such as minimum-phase behaviour
or certainty equivalence [11, 6].

Although general nonlinear systems may often exhibit an
overwhelming variety of behaviours, it turns out that many
of of the “reasonable” formulations, (meaning at least com-
patible with the linear notion of detectability), for such a
property are in the end equivalent to each other. Hereby we
discuss characterizations of IOSS in terms of asymptotic be-
haviour of systems solutions. This leads to several useful de-
compositions of the property in terms of seemingly weaker
notions.

2 Basic definitions

Consider systems in the following general form:

&(t) = f(x(t), u(t), y(t) = h(z(?)), @)

where, for each t > 0, z(t) € R", u(t) € U, a subset of
R™. We assume thatthe maps f : R” x R™ — R™ and h :
R"™ — RP are locally Lipschitz continuous, with f(0,0) =0
and h(0) = 0. The symbol |-| denotes the Euclidean norms
in R™, R™ and RP.

By an input we mean a measurable and locally essentially
bounded function v : Z — U, where Z is a subinterval of
R which contains the origin. Whenever the domain Z of an
input v is not specified, it will be understood that Z = R>.
The L7 -norm (possibly infinite) of an input « is denoted by
Jlull, i.e.Jul| = (ess) sup{|u(t)[ , ¢ € T}.

Given any input  and any £ € R"™, the unique maximal
solution of the initial value problem & = f(z,u), z(0) = ¢
(defined on some maximal open subinterval of 7) is denoted
by z(-,&,u). When Z = R, this maximal subinterval has
the form [0, T ,,). The system is said to be forward complete
if for every initial state £ and for every input « defined on
R>o, T¢,» = +o0. The corresponding output is denoted by
y(-, &, u), thatis, y(¢, &, u) = h(x(t, &, u)) on the domain of
definition of the solution.

We use standard terminology: N is the class of of con-
tinuous, increasing functions from [0, co) to [0, 00); K is
the subset of A/ functions that are zero at zero and strictly
increasing; K, is the subset of X functions that are un-
bounded; L is the set of functions [0, +00) — [0, +0c0)
which are continuous, decreasing, and converging to 0 as
their argument tends to +oo; KL is the class of functions
[0,00)% — [0, 00) which are class K on the first argument
and class £ on the second argument. A positive definite
function [0, co) — [0, oo) is one that is zero at 0 and positive
otherwise.

The following notion was introduced in [12]:

Definition 2.1 The system (1) satisfies the unboundedness
observability (UO) property if, for each state £ and control u
such that Ty ,, < oo, it follows that

lim sup |y(t, &, u)| = +o00.
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The detectability notion that will be investigated throughout
this note was introduced in [2].

Definition 2.2 The system (1) is integral input-output-to-
state stable (ilOSS) if there exist some g € KL, o, 0, and
a € K such that

t
afle(t, &, w)l) SB(IfI,tH/O au(lu(s)]) + oy (ly(s)]) ds
)
forall ¢ € [0,T% ), all £ € R and all w. O

In order to provide asymptotic characterizations of ilOSS
we will show that the property is equivalent to a differ-
ent detectability notion, the so called Input-Output-to-State
Stability, of a suitably augmented system. For the sake of
completeness we recall the following definition (see for in-
stance [15] and [10] ).

Definition 2.3 The system (1) is input-output-to-state sta-
ble (10SS) if there exist some 5 € KL, v, € Kand v, € K
such that

j2(t,&, )| < BUEL ) +rulllull) + v (lypal])  B)
forall ¢ € [0,T¢ ), all ¢ € R* and all w. O

Clearly, the 10SS property implies the UO property.

3 A preiminary result on ilOSS

The following result of independent interest will be needed
in order to prove the asymptotic characterizations in Theo-
rem 2. The proof is only sketched and deferred to a forth-
coming paper.

Proposition 3.1 Assume that system (1) satisfies, for some
B €KL, oy, v,y and a € Ko, the estimate

a(le(t, & u)l) < B(E],1) +/0 ou(lu(s)]) +

t
+ [ oy ds + ulluogllo) @
0

forall ¢t € [0,T ), all ¢ € R™ and all inputs u. Then the
system is integral 10SS. ]

Proof. Let us assume without loss of generality that o, = 7,
in (4) (if this is not the case just consider v := max{o, 4}
). Choose any smooth ¢ € K, with the property that yop <
a/2. We first look at trajectories of the following auxiliary
system:

&= f(z, o(lz)d),  y=hz) (5)

where the input signal d is assumed to take values in the unit
ball of R™. Let us denote by z¥ (¢, £, d) the solution of (5).

Since trajectories of (5) can be interpreted as solutions of (1)
corresponding to the input u = (| *¥|)d, we have by virtue
of (4):

a(|z?(t,€,d)|)
B¢l 1) +/ Y([u(s)]) + oy (|h(@?(s))]) ds
0
+7([lujo,1l)
B¢l 1) +/ Y([u(s)]) + oy (|h(z?(s))]) ds
0
+7 0 (][, 4 lls0)
Bl 1) +/ Y([u(s)]) + oy (|h(z?(s))]) ds
0
t+a(|lzf yllc) /2 (6)
Now taking supremums over ¢t € [0, 7], 7 < T q Yields
alllzf llse) < BUEL0) + alllzf llse) /2 +
+ /0 ou([u(s)]) + oy (|h(z7(s))]) ds. ()

Thus, subtracting a(||a:r(’) . |0 )/2 in both sides of (7) we can
conclude

a(|29(r,&,d)))/2 < a(llef, 1) /2 ®)
< B(I&I,0)+/0T7(IU(S)I)+0y(|h(w“"(8))l)d8-
Let us denote by
2(1, &, d) = a(|z? (7, ¢, d)]) /2
- 2/OTW(I<,0(I$“’I)dI)+ffy(lf”t(w“"(S))l)dS- ©)
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Then, consider the following definition of () : R — R

9(§) :=sup{z(r,&,d) : 7 >0, d € Lo(1)}  (10)

Thanks to (8) we are able to show that the g(&) is well de-
fined; in fact it is radially unbounded and decrescent:

a(|€)/2 < g(¢) < B(¢],0)-

Local Lipschitzianity of g can be shown along the same lines
asin [3]. The next step in the proof is to show that g cannot
increase too fast along trajectories. This follows by a tech-
nique similar to [2] by exploiting the definition of g. We
now follow an argument as in [2] in order to show that a
suitable locally Lipschitz ilOSS function V' (z) exists and,
consequently, that the system is ilOSS as claimed. Notice
that an estimate as in (4) implies, for u = 0, the so called in-
tegral Output-to-State Stability. We already know that this
is equivalent (see Lemma 3.3 in [7] ) to the existence of
a smooth function Vy(z), positive definite and radially un-
bounded, such that:

DVo(2)f(x,0) < —(|z]) + o1 (|h(x)])

(11)

Vo eR".
12)



where « is positive definite and o; € K. By using a sim-
ilar argument as in [2], Proposition 2.5, we can show that it
is possible to rescale V4 (and relaxing properness to semi-
properness) in order to satisfy the following dissipation in-
equality

DVof(x,u) < =& (|z]) + 1 (|h(2)]) + &2(lul)  (13)

with & positive definite and &, of class K.,. Then, it is
straightforward following the same lines as in [2] to show
that V() := Vo(z) + g(x) is an il0SS-Lyapunov function.
Then a system satisfying (4) is ilOSS.

|

The proof of Proposition 3.1 relies on a (locally Lipschitz)
converse Lyapunov Theorem for integral Input-Output to
State Stability. Since the result deserves attention in itself
we state it separately :

Theorem 1 A system asin (1) is integral Input-Output to
Sate Stableif and only if it admits a smooth il OSS-Lyapunov
function, viz. there exist a1, 2 € Ko, 04,0y € K, p pos-
itive definite and V(z) : R® — R such that a;(|z]) <
V(z) < az(|z|) andfor any z in R™ and any u in R™

DV () f(z,u) < =p(|z]) + oullu]) + oy (|h(z)])  (14)

4 An1OSSformulation of integral |OSS

The main result in this section is to estabilish equivalent for-
mulations of integral 10SS in terms of asymptotic detectabil-
ity notions. We first introduce the following auxiliary sys-
tem:

z = flx,u)
er = ou(|ul)
éx = oy(|h(z)]) (15)
e = [e1,es]

The following Proposition is central for the proof of our
Main Result.

Proposition 4.1 A system as in (1) is integral 10SS if and
only if the auxiliary system (15) is IOSS with respect to the
output e. O

Proof. Let us first show that 10SS of (15) implies integral
IOSS. We let z = [2',e1,ez]’. By hypotesis we know that
the following estimate holds along trajectories of (15):

12t m,uw)| < BInlst) + yullluo.qll) +ve(llep.gll)  (16)

where 3 is of class KL and ~,, v, are of class K. In par-
ticular, for e; (0) = 0 and e (0) = 0, equation (16) yields

|z (t, & )| < |2(t, €, 0,0, u)|

< BUEL ) + vulllugo glloo) + ve(llefo,zlloo)
< BUELD) + 7u(lluiog )
T ( [ uttute +ay<|h<x<s,f,u>>|>ds)(17>

Letting a = (3v.) ! we have
ale(t, €, w)) < a (3] D + 7elup )
-, ( [ oututon +ay<|h<x<s,5,u>>|>ds))
< a(380¢) + aGralllup.gl)
© oaody. ( [t + ay<|h<x<s,f,u>>|>ds)
= B0l + H (o 1)
+ / cullu(s))) + oy (h(x(s, €, w)]) ds

Application of Proposition 3.1 to the estimate (18) is enough
to conclude integral 10SS of system (1).

(18)

Let us look now at the converse implication. Clearly:

les() < lexpo,nllos < llego,gllo

le2()] < lle2go,qlloe < llejo,glloo
Thus, in order to show 10SS of the auxiliary system (15) we
only need to find suitable estimates for the 2-component of

the extended state z. Now, by virtue of integral 10SS, there
exist class K, functions «, o, 0 and 3 of class KL so that

a(|z(t, €, u)l)

pElt) + /0 au(lu(s)]) + oy (|h(z(s, €, u))]) ds
B(1z(0)] 1) + ler(t) — e1(0)] + [e2(t) — e2(0)]
B(1z(0)],1) + lex ()] + lex(0)] + ex(#)] + [e2(0)]
B(1z(0)], 1) + 4llejo,glloo (19)

It is straightforward from (19) and by exploiting the weak
triangular inequality to show that 10SS of the auxiliary sys-
tem holds. |
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5 Asymptotic characterizations of integral
|OSS

Before stating our main results we need the following defi-
nitions:

Definition 5.1 A systemas in (1) is zero-inputlocally stable
modulo output (O-LS) if for for any € > 0, there exists §. >
0 such that for any ¢ satisfying max{|¢|, [|y[o,¢llcc } < 6, it
holds that

|z(t,&,0)| <e Vi€ [0,Teu=0); (20)
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Definition 5.2 A system as in (1) is zero-input locally sta-
ble modulo integral output (O-iLS) if for for any ¢ >
0, there exists 6. > 0 such that for any ¢ satisfying
max{|¢], fo o, (|y(s)]) ds} < 8., it holds that

|z(t,&,0)| <e Vi€ 0,T¢u=0); (21)

m|
Definition 5.3 A system as in (1) enjoys the |O-LIM prop-

erty if for some ~,, v, € K, all ¢ € R” and all measurable

u()

inf t,&,u)] < ma , , (22
etk (¢, &, u)| < max{y([lulloo), 1y (lyllee) }, (22)
where the || - ||o norms are taken over [0, T ,,) m|

It was one of the main results in [4] that;

10SS & [I0-LIM & zero-input O-LS].

Therefore, by means of the above equivalence and exploiting
Proposition 4.1, it is possible to derive asymptotic character-
izations of integral 10SS.

Definition 5.4 A system as in (1) enjoys the bounded input-
output energy converging state property if there exists o,
and o, such that for all £ € R™ and all measurable inputs «
the following implication holds:

+00
A cu([u(s)]) + 0y ([y(s)]) ds < +00
= lminf [r(t,&,u)] =0 (23)

O

Definition 5.5 A system as in (1) enjoys the bounded input-
output energy frequently bounded state property if there ex-
ists o, and o, such that for all ¢ € R™ and all measurable
inputs v the following implication holds:

+00
A cu([u(s)]) + 0y ([y(s)]) ds < +00

= lminfz(t,§,u)] < +oo (24)

O
Our main result is as follows:

Theorem 2 Givena systemasin (1), the following facts are
equivalent:

1. thesystemisintegral I0SS
2. the systemis zero-input O-iLSand BIOE-CS

3. the systemis zero-input globally iOSSand BIOE-FBS
[ |

Proof. Implication 1 = 3 follows immediately from the def-
inition of ilOSS. We show next 3 = 2.

According to Theorem 1 applied to the zero-input system,
iOSS implies the existence of a smooth function V' : R"* —
R>o, such that o (|z]) < V(z) < ax(|z|) for some oy, a
of class K, and along trajectories

DV (z) f(x,0) < —p(|z]) + 6y (|h(z)]) (29)
for some K, function &,, and some positive definite p. By
exploiting the class CKC function lemma in [2] it follows
from (25) that:

DV (z)f(x,u)
DV (z)f(z,0) + |DV (z)(f(z,u) — f(z,0))]
=p(|z]) + 7y (|h(@)]) + v(|2z])Fu(lul) (26)

with &, of class K., and ~ of class N. Along the same
lines as in Lemma 4.10 of [2], equation (25) is equivalent
to the existence of a semi-proper function U (z) (viz. result-
ing from the composition of a proper function V' (z) with a
class K function ) which satisfies the following dissipation
inequality:

<
<

DU(x) f(z,u) < —=p(|a]) + Gu(lu]) + 64 (|h(x)]). (27)

with p positive definite. Let 6, = max{&,,0.} and ¢, =
max{&,, o, } where o, o, are as in definition 5.5. Pick ¢ €
R and u with [~ 64 (|u(s)]) + 0y (|y(s)]) ds < 4oc0. By
the BIOE-FBS assumption,

m = liminf [2(t, & u)| < +oo.

We want to show m = 0. By contradiction, assume
m > 0. Forany r > 0, let w(r) = max,<,U(z). By
semi-properness of U(z) there exists M > 3m such that
w(M) —w(2m) > 0. We let T be such [, &, (|u(s)]) +
Gy(ly(s))ds < w(M) — w(2m). By the BIOE-FBS as-
sumption there exists 7 > T such that |z(7, &, u)| < 2m.
By virtue of (25), forall ¢t > 7

V(ﬂ?(t, 5? u)) - V(JT(T, 5? u))
1/5AW®m+5NM$D%

IN
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+oo
/‘ 5([u(s)]) + 5y (1y(s)]) ds

T
w(M) —w(2m)

AN

(28)

Hence V(z(t,¢,u)) < w(M) < w(oo) forall ¢ > 7 and
hence x(t, &, u) is uniformly bounded, because semi-proper
Lyapunov function have compact sublevel sets. Let M > 0



be such that |z(t, £,u)| < M for all t. Therefore we have by
virtue of (26)

DV (2) f(z,u) < —p(|z|) + 7, ([h(2)]) + v(M)u(|ul)

This is enough to conclude that, for the considered trajectory,
a L function 3 and « of class K, exist so that

a(lz(t, & u)]) < B(I€]1) +/0 5 (|u(s)]) + ay(ly(s)]) ds

and therefore, along the same lines as in Proposition 6 of
[13], |=(t, &, u)| — 0. This implies m = 0 which is clearly
a contradiction.

We are only left to show 2 = 1. Let (1) enjoy the BIOE-CS
property and consider the auxiliary system (15), where o,
and o, are the energy supply functions, as in definition 5.4.
By virtue of BIOE-CS we have that (15) satisfies

lefloo < 400 = /Ooo au(lu(s)]) + oy (ly(s)]) ds < +o0

= liminflz(t,¢, u)| = 0. (29)
Therefore the following asymptotic property is true for any
choice of v, and 75 in Ko

liminf |z(t, €, u)] < max{y (full),2(lell)}. (30)

for any ¢ € R™ and any measurable u(-). Since |e(t)| <
|le|l~ forall ¢ > 0 system (15) satisfies the 10-LIM prop-
erty. We show next that zero-input iO-LS of system (1) im-
plies zero-input O-LS of the augmented system (15). Before
going ahead though, we remark that this completes the proof
of Theorem 2; in fact by the main result in [4], 10-LIM and
zero-input O-LS imply Input-Output to State Stability of 15,
and this is equivalent (by virtue of Proposition 4.1) to inte-
gral 10SS of system (1). Let £ > 0 be arbitrary. We define
0. 1= d-/2/2, where 4. is generated as in definition 5.2.
Then we have the following implications:

max{|[¢, e1(0), e2(0)]]., lego,lloc} < b
= max{[¢],e(0)]} < é. and

\ [t
S 60| <e/2 = [a(t60) et <e (D)

= le1(t) — €1(0)] < 20. = 5.2

that is the auxiliary system (15) is zero-input locally stable
modulo output. [ |
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