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Abstract

A CFD (computational fluid dynamics model) of a heated two-
dimensional plate is presented. The model is finely discretised
and the resulted order, which accounts to more than 1,000 states
is too high for control and optimization design. A model reduc-
tion strategy is applied to the model, which allows significant
reduction of the original order as well as control and optimiza-
tion designs. The plant successfully follows the desired tra-
jectory when controlled by an optimal controller based on the
reduced order model.

1 Introduction

Heat transfer is one of the most encountered physical phenom-
ena in daily life. In process control, manipulating heat transfer
becomes an integral part of reaching the desired temperature
distribution. Heat transfer as for example conduction is de-
scribed by a set of partial differential equations. In the simula-
tion tools, these equations are finely discretised over time and
spatial coordinates, and the discretization procedure increases
the model order significantly. The numerical model is adequate
for simulation, but control design requires a much more lower
order model.

To reduce the model order, Proper Orthogonal Decomposition
or also known as Karhunen-Loève expansions are getting more
commonly applied in many physical systems governed by par-
tial differential equations. The advantage of applying this tech-
nique is the incorporation of simulation or experimental data as
well as the existing physical relationships in the original model.
The resulting reduced order model is of state-space form and
this is very convenient for control design.

In this paper, we present the application of a method of Proper
Orthogonal Decomposition (POD) to a 2D heated plate. The
control problem amount to reaching to a desired tempera-

ture distribution along the plate based on the reduced order
model derived by POD reduction technique. The designed con-
troller is an LQR controller with reference signal(s) unequal to
zero(s).

The paper is organized as follows. First, the model of heat
transfer by conduction on a 2D plate is presented. Thereafter,
the reduced order modeling strategy by POD is discussed and
some simulation results are shown. Further, the optimal con-
trol design is presented and finally the controlled temperature
distribution of the heated plate is shown.

2 Heated plate

The model that we are using in this paper is a thin two di-
mensional plate. The sketch of the plate is given in Figure 1.
The dimension of the plate is0.3m × 0.4m in length (x) and
height(y), respectively. This corresponds to a Cartesian spatial
areaX = [0, 0.3] × [0, 0.4]. The temperature along the north
side is kept at100¦C and there is incoming heat flux at the west
side of500kW/m2. The eastern and the southern boundaries are
insulated.

Thermal conductivity of the plate material isk = 1000W/m.K.
The plate is very thin, only1cm. The computational domain is
divided into44 grid cells along they direction and33 grid cells
along thex direction. Thus in total, the number of equations
solved are1452 equations.

The model of this heated plate is given by:
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In the numerical simulation, Eq. 1 is discretised by employing
The Finite Volume Method [5], where Eq. 1 is integrated over
a unit volume∆V = ∆x×∆y× 1cm. The termS denotes the
source terms, in this case the west heat flux and the constant
temperature at the north boundary.
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Figure 1: Sketch of the Heated Plate
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The integration of Eq. 2 for a specific grid pointxg results in
Eq. 3 with T̃ (xg, k + 1) denotes the temperature of a specific
grid pointxg at time stepk + 1 andT̃ (xgw, k + 1), T̃ (xge, k +
1), T̃ (xgn(k +1), T̃ (xgs, k +1) denote the temperatures of the
west, east, north, and south neighboring grid points, respec-
tively. The temperature at the current time step is denoted by
T (xg, k).
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Rearranging Eq. 3 gives:

aP T̃ (xg, k + 1) = a0
P T̃ (xg, k) + aW T̃ (xgw(k + 1)

+ aE T̃ (xge, k + 1) + aN T̃ (xgn, k + 1)

+ aS T̃ (xgs, k + 1) + S(xg, k) (4)

Calculating Eq. 4 for all grid points and collecting all grid
points into T(k + 1) = col[T̃ (xg, k + 1)] and S(k) =
col[S̃(xg, k)] give the recursive linear system of equations:

AT(k + 1) = A0T(k) + S(k) (5)

Eq. 5 is the equation solved by the simulation tools employ-
ing CFD Finite Volume Method. Due to the high dimension
of the matrices, iteration procedure is common in CFD cal-
culation before a solution is determined. In the case of non-
linear PDEs, for example when the conductivity constant is
temperature-dependent, the matrices in Eq. 5 are updated at
every time step.

With initial condition ofT (0) = 0 along the plate and subjec-
tion to north temperature boundary at100C and west heat flux
of k = 1000W/m.K, the steady-state temperature distribution of
the full order model is shown in Fig. 2.

Figure 2: Steady state Response of the full order model 1452
grid cells)

3 Model reduction strategy

The temperature distributionT (x, y) of the heated plate is
described by Eq. 1 over over a (gridded) domainX × T of
spatial and temporal coordinates.

Eq. 1 can be written as

∂T

∂t
(x, t) = D(T (x, t))

with D(·) an operator that involve spatial derivatives and other
functions [1],x ∈ X andt ∈ T.



For any functionT : X × T −→ R we define the residual
R (T (x, t)):

R(T (x, t)) =
∂T

∂t
(x, t)−D(T (x, t)) (6)

We postulate that the solutionsT can be expanded as a Fourier
series (or spectral form):

T (x, t) =
∑

i∈I
ai(t)ϕi(x) x ∈ X, t ∈ T

whereϕi(·) is a set of orthonormal basis functions inX, with
i ranging over a countable index setI ⊆ N, that is〈ϕi, ϕj〉 =
δij whereδij is the Kronecker delta and〈·, ·〉 is an appropriate
inner product defined on the spatial domainX.

An nth order approximation of (7) is then given by the trun-
cated sequence

Tn(x, t) =
n∑

i=1

ai(t)ϕi(x) x ∈ X, t ∈ T. (7)

The method of Proper Orthogonal Decompositions requires
that the Galerkin projection of the residualR(Tn(x, t)) on the
space spanned by the basis functionsϕi(·), i = 1, . . . , n van-
ishes, cf. [3] [4].

〈R(T (x, t)), ϕi(x)〉 = 0 i = 1, . . . , n (8)

for all t ∈ T.

3.1 Determination of time varying coefficientsai(t)

For every choice of orthonormal basis functions, the require-
ment (8) defines a finite number of constraints on the time vary-
ing coefficientsai(t), i ∈ I. The condition (8) is equivalent to
setting

ȧi(t) = 〈D
(∑

i∈I
ai(t)ϕi(x)

)
, ϕi(x)〉 (9)

SinceD (.) is linear in our case, replacing the original sequence
of T (x, t) by its truncated sequenceTn (x, t) in (8) will result
in n constraints of coefficient functionsai (t).

For linear operatorD (.), (8) is equivalent to setting

ȧi(t) = 〈D
(

n∑

i=1

ai(t)ϕi(x)

)
, ϕi(x)〉 (10)

Thus, the time-varying coefficientsai(t) associated with the
approximation (7) can be found by solving a system ofn or-
dinary differential equations. The initial conditions of (10) is
determined from:

ai(0) = 〈T (x, 0) , ϕi(x)〉 (11)

3.2 Determination of basis functionϕi(x)

The basis functionsϕi(x) with i ∈ I are themodesof the spa-
tial dynamics ofT (x, t). A characteristic feature of the reduc-
tion method that we employ here is that the basis functions
ϕi(x), with i ∈ I, are obtained fromdata. To determineϕi(x),
we consider the data

T̃ (x, t) x ∈ X, t ∈ T
whereX is a gridded space of dimensionK andT is also grid-
ded and has dimensionL. The relation between the time step
ki and the timeti is given byti = ki.∆t. The data is stored
in a matrix Tsnap which is defined asTsnap = (Tsnap)ij with
i = 1, . . . ,K andj = 1, . . . , L. With T(k) = col[T̃ (x, k)]
we can writeTsnapas:

Tsnap =
(
T(k1) . . . T(kL−1) T(kL)

)

We then calculate a singular value decomposition ofTsnapas

Tsnap= ΦΣΨ> Φ ∈ RK×K , Ψ ∈ RL×L unitary matrices

whereΣ is aK × L matrix which contains the singular values
of Tsnapin nonincreasing orderon its main diagonal. Let

Φ =
(
ϕ1, . . . , ϕK

)

denote the column-partitioning ofΦ and set, for alli ∈ I, the
basis functions

ϕi(x) = 〈ϕi, x〉

wherex ∈ X. Note that the calculation of the firstn (n ¿ K)
basis functions requires only the firstn left singular vectors of
Tsnap. We denote the set of basis vectors correspond ton largest
singular values asΦn.

4 Application of POD

Proper Orthogonal Decomposition is then applied to the CFD
numerical model which originally solves1452 equations. The
original model is simulated forL = 400 time steps and the
results are collected in the in matrixTsnap. After performing
SV D for Tsnap, we pick 5 basis vectors which corresponds
to the5 largest singular value. The comparison between the
original model (K=1452) and the reduced order model (n=5) is
shown in Figure. 3. It is shown that the reduced order model
can capture the dynamics of the original model quite accu-
rately, with highest deviation is less than1¦C. So with less
than0.5% of the original order, the reduced order model still
performs very well.

4.1 State Space Form

From the derivation of the discrete CFD model (Eq. 5), we can
derive the state space form of the reduced order model:

AT(k + 1) = A0T(k) + S(k) (12)

T(k + 1) = Φna (k + 1)



Figure 3: Original Model (left), Reduced Model (middle), Er-
ror (right)

By applying the inner product criterion on (12), the reduced
oder model can be written as:

ΦT AΦn︸ ︷︷ ︸ a(k + 1) = ΦT A0Φn︸ ︷︷ ︸ a(k) + ΦT︸︷︷︸S(k) (13)

Areda(k + 1) = A0reda(k) + BredS(k)
a(k + 1) = A−1

redA0reda(k) + A−1
redBredS (k)

The reduced order model can then be cast into standard state
space form

a(k + 1) = Aa(k) + Bu (k) (14)

When some output points are chosen for measurements:

y(k) = Toutput(k) = Φoutputa(k) = Ca(k) (15)

with Φoutput is Φ with the row corresponding to non-measured
temperatures set to zero.

With the state-space model for the reduced order model, we
can easily design a controller.

5 Controller design

To design a controller, the original plant is adjusted such that
there are four actuators(I1, I2, I3, I4) along the west side
whose heat fluxes can be varied and the actuator on the north
edge(I5)whose temperature level can be manipulated to reach
the desired temperature distribution. The east side and the
south side are kept insulated. LetXact ⊂ X denote these 5 ac-
tuator positions in the spatial domain. The sketch of the plate
with the actuator position is given in Fig. 4.

One important assumption when designing a controller based
on POD-based model is that the closed-loop behavior can still
be well approximated by the generated POD basis vectors. In
general, POD basis are onlyguaranteedto be effective in de-
scribing the response where they are generated [6]. Thus, there
is no guarantee that the POD-based model derived from an
open loop situation will work well in closed loop situation.

Figure 4: Actuator Positions

However, it is infeasible to generate snapshots on the basis of
closed loop response since the order of the original model is
too high that for optimal control design. Hence we rely on the
open loop response only to derive a reduced model. For this
particular plant, we controlled in the same operating range as
where the POD basis vectors are generated.

5.1 Control Problem

The control problem for this model is how to track a reference
temperature distribution as close as possible. Prior to the the
mathematical translation of this problem, some formal defini-
tions are given.

Definition 1 FunctionT (x, t, u) is defined as the temperature
T at positionx ∈ X, timet ∈ T subject to the actuator input
u (ξ, τ) with ξ ∈ Xact, τ ∈ T.

Definition 2 The tracking errorJ (u) is defined as:

J (u) := ‖Tref (x, t)− T (x, t, u)‖2

:=
∑

x∈X

∑

t∈Tcontrol

|Tref (x, t)− T (x, t, u)| (16)

with the control horizonTcontrol ⊆ T.

With the given definitions, we can proceed to the control prob-
lem of the heated plate

Problem 3 Find for each actuator positionξ ∈ Xact ⊆ X, a
control sequenceu∗ (ξ, τ) with τ ∈ Tcontrol ⊆ T such that

J (u∗) ≤ J (u)

for any other control sequenceu of this type. If suchu∗ exists,
it is called optimal.



The control problem is defined for the full order model.
Since the order of the discretised original model is very high,
i.e.1452, it is infeasible to incorporate all states into the control
and optimization problem. Thus, the control problem has to be
re-formulated based on the reduced model.

The recursive state space model of the reduced model is given
in (13). Based on (7) we can translate the reference signals and
the temperatureT (x, t, u) as truncated expansions.

Tref (x, t) ←→ aref (t)
T (x, t, u) ←→ a (t, u)
Tn (x, t) ←→ a (t, u)

wherea (t, u) denotes the state of the reduced order model sub-
ject to the inputu (14).

Hence, the control problem for the discrete reduced model (14)
is defined as:

Problem 4 Find a control sequenceu∗ (t) with t ∈ Tcontrol ⊆
T such that

Jred (u∗) ≤ Jred (u)∀u ∈ U
where

Jred (u) = ‖aref (t)− a (t, u)‖2

Since the controller is applied to thediscretised model(5), in
the next discussion, the notationt for the time is replaced to
time stept = k∆t.

It is interesting to note that by incorporating the truncated ap-
proximation of the reference and the temperature signals in the
tracking error, modeling error due to the truncation si incorpo-
rated as well in the objective function.

‖Tref (x, t)− T (x, t, u)‖2 =
∥∥T red

ref + T tail
ref − T red− T tail

∥∥2

=
∥∥T red

ref − T red
∥∥2

︸ ︷︷ ︸
reduced problem

+
∥∥T tail

ref − T tail
∥∥2

︸ ︷︷ ︸
modeling error

As long as this modeling error is small, then minimization of
the tracking error will not deviate much from the minimization
of the original tracking error.

5.2 LQR controller

Based on the control problem, we would like to optimize the
control inputu(k) also on nonzero reference signals,as op-
posed to the standard LQR problemwhich only optimizes
the input to track zero reference signals [2].

Consider a generaldiscretestate equation:

x(k + 1) = Ax(k) + Bu(k) (17)

To obtain an expression for the standard state feedback which
optimizes the states compared to the reference states,(r(k) −

x(k))T Q(r(k) − x(k)), the new cost function with the incor-
poration of the reference signal is given by:

J(x0, u) =
Ne−1∑

k=0

[
(r(k)− x(k))T Q(r(k)− x(k))

]
(18)

+uT (k)Ru(k) + x(Ne)]T E[r(Ne)− x(Ne)]

Control problem is defined as:

Problem 5 Find u∗ ∈ U such that

J(x0, u
∗) ≤ J(x0, u) ∀u ∈ U

whereU is the set of all admissible discrete time input signals.

It can be shown [2] that the minimizing solution to the control
problem is

u∗(k) = −Fkx(k)−Gkv(k + 1)

where

Fk = (R + BT P (k + 1)B)−1BT P (k + 1)A

Gk = (R + BT P (k + 1)B)−1BT

In (19), let P:T → Rn×n with P (Ne) = E be the symmetric
solution of

P (k) = AT P (k + 1)A + Q

− AT P (k + 1)B(R + BT P (k + 1)B)−1BT P (k + 1)A

andv : T→ Rn is the unique solution of

v(k) = AT −AT P (k + 1)B(R + BP (k + 1)BT )−1BT

v(k + 1) = Qr(k)

with v(Ne) = 0.

The reduced model (13) is used as the basis to derive the op-
timal control signalu∗(k) and the control signal is sent out to
the full model (5) to reach the desired temperature distribution.

Schematic representation of the LQR controller with the refer-
ence signals unequal to zeros is given in Fig. 5.

 

Figure 5: Schematic representation of the LQR Controller



6 Application of LQR Controller

The LQR controller as discussed in the previous section is ap-
plied to the full model of the heated plate. The control design is
based upon the reduced model which only has5 states instead
of 1452 as in the original model. As the tracking trajectory, the
temperature distribution at time stepk = 1000 when the plant
is excited from zero temperature distribution by the constant
heat flux on the west side of500kW/m2 and the constant north
temperature boundary at100¦C.

Despite of the dramatic reduction of model order upon which
the controller is based, the controller performs very well. In
Figure. 7, it can be seen that the deviation from the desired
temperature distribution is very small.

Figure 6: Reference Trajectory (Left) and Response of The
Controlled Plant (Right)

Figure 7: Deviation from The Reference Profile

The maximum deviation4¦C for a temperature range of70¦C to
90¦C. The maximum deviations occur at the temperature near
the north boundary, which is understandable since the temper-
ature near this boundary is quite low compared to the tempera-
ture near the insulated boundaries (see Fig. 2). Due to the insu-
lations, heat is preserved more in the area near the insulations
because there is no heat exchanged with the surroundings. The
dynamics of this area then predominates the dynamics of the

whole systems because there are more temperature changes.
Therefore, the dynamics captured by the basis vectors used to
construct the reduced order model is more accurate in this area
than elsewhere.

7 Conclusion

POD is a prominent model reduction technique to reduce
significantly the order of the original model. The advantages
of this technique are the use of data to determine the modes of
the dynamics as well as the incorporation of the original equa-
tions. By employing the technique to large-scale numerical
model, control and optimization designs becomes feasible. In
particular for CFD models largely employed in many industrial
processes, this technique will provide many possibilities in the
application of more advanced controllers.
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