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Abstract based on Finsler's lemma is used. The proof of the result pre-

sented in this paper was inspired by the use of Finsler's lemma

This paper presents a method for the design and tuning of {Qyerive analysis results given in [10]. Using a standard change
bustH> output feedback controllers for uncertain plants, basggl 4riables technique [3], an approach similar to D-K iteration

on Finsler's Lemma. The cgnser.vatism pf design is consides; ropustrr, controller design - referred to d€ — © iteration
ably reduced by a proposed iterative scaling procedure, referred proposed, where the objective is to minimize fiignorm

to as KO iteration. The proposed method can deal with NoRyematingly over the scaling matréx and over the controller.
square uncertainty models, and it is shown that an approach

proposed previously based on the S-procedure is a special ¢ag&cond contribution is to show that a design technique pro-
of this technique. Application to the ACC benchmark progrosed in [4] and extended in [S], which is based on the S-
lem shows that the proposed technique outperforms previougipcedure, is shown to be a special case of this more general

published solutions. approach.
The proposed method is applied to a well-known benchmark
1 Introduction problem with a plant that has parametric uncertainty inhe

and B matrices of its state space model; it is shown to outper-
The problem addressed in this paper is robust desigh0f form previously published solutions.
optimal controllers for uncertain systems: given a family of ] ] ) ) )
admissible plant models, find the controller that minimizes tHe® Paper is organized as follows. In section 2 a brief review of
worst-casel, norm over all admissible models. ropustHg control is given, and the proposed deS|g_n procedure
o is introduced. In section 3 the design procedure is illustrated
The robustH, problem has been studied in [9] and [13]. Iby application to the ACC benchmark problem. Conclusions

[11] bounds were proposed on the worst-casenorm of a are drawn in section 4. The proof of the main result is given in
system subject to norm-bounded, time-varying uncertaintigge Appendix.

In [6] it was shown that the computation of bounds on the
performance can be reduced to a convex optimization prob
involving linear matrix inequalities (LMI), which can be solve
via efficient convex optimization techniques.

I?“ Robust H, Control and K — O lteration

In this paper we consider the design of linear time-invariant
A major difficulty in designing robust, optimal controllers, controllers for a plant with state space realization

is the fact that the bounds on the worst-cébenorm that can )

be used for controller synthesis tend to be rather conservative. &= Ar+ Bu, y=Cz @)

In [4] an iterative procedure was proposed that can be used to | ts of th tricdsand B tk "
reduce this conservatism. A drawback of this procedure is tf4pere elements of the matricésand s are not known exactly

it applies only to systems where parametric uncertainty is mﬁyt only guaranteed to take values within specified intervals.

ited to the state matrid of the plant state space model. More or the purpose of controller design, this uncertain plant model

over, the matrixA used in an LFT representation of model un> embedded in a generalized planiwith state space realiza-

certainty is restricted to be square. A more realistic situationqgn
the design of a robudi; controller when both state matrix .

. ! X ; =A B B B
and input matrixB are uncertain and non-squakeare permit- €= Ao+ Byt + Saws + Bou
ted. zZ1 = 01I + Dlu

i . . . = D
The contribution of this paper is twofold: 1. we present an iter- %2 = Cor + Doyu

ative procedure for computing the controller that minimizes the y = Oz + Daywo @)
worst-caseH, norm for a plant with uncertaid and B matri-

ces. Instead of using the S-procedure as in [4] to eliminate thige plant is shown in Figure 1. The physical plant model (1)
uncertainty from the plant model, a less conservative techniggaepresented by the matricéd,, By, C), where A, and By



stand for the nominal values of the uncertain matrideand where

B. Perturbations of the nominal plant matrice ( By) are A B.C ~ B ~ B
expressed via fictitious inputs throughy, fictitious outputs A = [ BKOC jKK } , By = [ ' } , Ba = [ 2 }
throughC; and a fictitious feedthrough teri;: Introducing

feedbackw; = Az;, where the matri represents perturba-

tions and is assumed to satisf$r|| < 1, leads to the represen- Ci = 10 DiC Gy = Oy Do O

tation 1 [ 1 1 K]7 2 [ 2 2u K]

& = (Ao + BiAC))z + Bows + (Bo + BiAD )u, y = Ca The design procedure proposed in this paper is based on the
’ 3) following result.

of the physical plant with parametric uncertaintydnand B. Theorem 2.1

The inputw,, is a white noise process with unit variance. If the o , ,
matricesCy. Ds,. B> andDs,, are chosen as In the control system in Figure 1, the performance index satis-
) Uy w

fiesJ < v? forall |Al| < 1, if there exist a positive definite

QY2 0 matrix P and a matriX¥ such that
Cy = v Daw=1 5ipo (4)
0 R 2
o o trace W < v~
By = [Qe OL Dy, = [0 Re } (5) PA JEATP (*) (*) (*)
then Ca -I 0 0
01:1C1 0 —0u O <0 ®)
1T Bfp—0¢L,C; o 0 6
J=E|zn®)|3=E tlim T/ 2L 2 dt] (6) 1 1201 22
0 [ W) } >0 )
represents a LQG cost function with the usual weight matrices PBy, P

Q, R and noise covarianced., Re. Here® is a symmetric scaling matrix that satisfies

The problem considered in this paper is to find a strictly proper

T
controller K (s) with state space realisation [ i ] o) { i ] >0
C(t) = A((t) + Brey(t) for all ||A|| < 1. The notationM < 0 (M > 0) means that
u(t) = Cr((t) (7)  the matrixM is negative (positive) definite. The matrichs |,
015 , 022 In (8) are partions 0® andfs, < 0. For a proof see

such that the LQG cost is guaranteed to be less than a gi

value.J < v2 in all admissible operating conditions, i.e. for all
Al < 1. Conservatism of Design and K@ lIteration

This problem can be expressed in the form of linear matrbhe closed-loop matriced, B andC in (8) depend on the
inequalities as follows. Consider the closed-loop system  controller matricesAx, Bk, Ck. Due to the presence of
the product termsd P and C; P, (8) cannot be solved as an

[ i } _i [ x ] LB B [ wq } LMI problem for the controller, because it is nonlinear in the
¢ ¢ controller matrices and the matrix variabkl® However, it is
straightforward to use a linearizing change of variables, pro-
~ posed in [3], to transform (8) into an LMI problem that can be
{ A1 } = [ Gy } [ * } solved for the controller with efficient LMI solvers - details are
< omitted here for lack of space.

endix A.

w2

On the other hand, the LMI conditions (8) and (9) are only suf-
A | ficient conditions for the worst case bound on the performance.
The resulting conservatism can be reduced by a suitable choice
of the scaling matriX®. Unfortunately it is not possible to treat

Wi [, L 1z © as a matrix variable and solve an (8) as an LMI problem
Wo Y P " % to find the scaling that yields the best worst-case performance.
This is because the linearizing transformation introduces a term

that is nonlinear ir® and the controller variables. To overcome
this problem, we propose the following iterative technique

K-step Assumed; = I, 015 = 0, and solve

Figure 1: Generalized plant .
min trace W
K(S),P,ezz



subject to the linearized form of (8) 0 0
0 0
©-step Using the controller obtained in the 'K-step’, solve Bi= —1.8831 0
111311(;1 trace W subject to (8) 0 —1.8963
’ —.991 1 0 0 0
Go back to the 'K-step’ and repeat withobtained inthe (¢, = 1 —.9772 0 O D, = 0
'©-step’ until no further drop in tracE’ is observed. 0 0 0 0 0.3983

) and the uncertain gain matrix has the structure
3 Robust Design Example: The ACC Bench-

mark Problem A { o 0 43 ]
0 6 O
This problem was proposed as a benchmark problem for robust
control at the American Control Conference 1990 [16]. TWQ 1 RobustH
bodies with masses; andm, are connected by a spring with ™ 2

stiffnessk, as shown in Fig. 2. A state space model of thgaving determined matricesdo, By, By, C1, D), the uncer-

Controller Design

system is tain plant can be represented in the form of (3). To facilitate
-~ ~ the tuning of a robust controller for this plant, we replace the
T 0 0 0 Ty uncertainty-input matrix3; - which is a common left factor of
Ty | _ 0 0 0 1 T2 the perturbations int and B - by the matrixp B, wherep > 0
T3 —k/m1  k/mi 0 0 z3 is a tuning parameter that can be used to scale the perturbation.
Ty L k/m2 —k/may 0 0 | | 24 The uncertainty representation (3) is therefore replaced by
0 0 0
0 0 0 dy A=Ay + pBlACh B =By + pBlADl
T 1/m1 ut 1/m1 0 |: dQ :| ’ . . .
0 0 1/ms With p = 0, this model represents the nominal plant, and larger
- - values ofp mean that a larger range of uncertain parameters is
covered.
Y = T2 (10)

A quadratic performance index is also included in the model by

, ) choosing the matriceSy, Ds,,, Bs andDsy,, in (2) according
We consider the following problem. to (5), with

Design Problem For a unit impulse disturbance exerted either

on body 1 or 2, the controlled output must have a settling Q=ql, Qe=g¢l, R=1, R.=1
time of no more than 15 sec for the nominal system (=
me = k = 1; the settling time, is defined byjz,| < 0.1Vt >

ts). The closed-loop system should be stable)fér< £ < 2.0
and0.5 < my,mo < 2.0.

This representation leaves the designer with three tuning pa-
rametersy, g. andp. Once values for these parameters have
been chosen, the K-iteration procedure presented in the pre-
vious section can be applied to compute the controller with the
A systematic way of constructing the uncertainty representawest worst-caséf, cost for this problem.

tion in the state space model (3) was proposed in [15]. H
the following model is used to represent the above probl
with ||A]| < 1 The influence ofp on performance and robustness is shown
in Figure 3. As expected, the price to be paid for improving

eI[enin Parameters
emn9

0 0 10 0 robustness (increasing - the maximum allowed variation in
Ay = 0 0 0 1 By = 0 all parameters:, m1, my for which the system is stable) is a
—2.1179 2132 0 0 1.25 loss of performance (i.e. larger values fgy.
2.1429 —2.1067 0 O 0
Following the design procedure outlined above, after a few it-
_ erations the following controller was obtained with tuning pa-
e ) L elY rameters; = 0.02, ¢, = 0.02 andp = 0.053
4 — —0.074208(s + 0.1285)(s% 4 4.114s + 10.6
n AN ™ e K= G o ’
u —= (s2 +1.225s 4 0.5846) (s + 0.6182s + 2.337)
OO OO (11)

In [14], a scoring scheme was proposed to evaluate and com-
pare the performance of different controllers for this bench-

Figure 2: Two-mass-spring system mark problem. The performance measures achieved with the
above controller are shown in Table 1, and compared with the
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Design Reference PM GM ts Umaz | Fmin — Emaz DPm Score
(equation) (deg) | (dB) | (sec)

Requirement 30 6.0 15 1 05-20 0.30
K — 0 iteration | this paper (11)] 31.12| 6.62 | 14.71| 0.51 0.37-99 | 0531| 8.6
ClassicalH, [14] (19) 35 6.0 | 145 | 0.759| 0.450-2.800| 0.41 | 7.3
Heo [17] (40) 34 6.1 | 15.2 | 0.573| 0.440-3.900, 045 | 6.4
Pole placement  [7] nexater(5) 24 3.7 | 28.9 | 0.549| 0.230-c 0.37 | 0.7
u-synthesis [1] (29-32) 27 2.8 | 14.1 | 0.953| 0.580-2.500| 0.37 | -0.1
Minimax LQG [8] (37) 19 3.4 | 18.1 | 0.691| 0.690-1.400| 0.18 | -7.2
LTR [2] 19 2.4 22 0.7 0.68-150 | 0.19 | -85

Table 1: Controller performance
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Figure 3: Influence op on robustness and performange=
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4 Conclusion

A new method for iterative design of robult controllers has
been proposed for plants with uncertadrand B matrices. A
previously published result is shown to be a special case of
this more general approach. The practical importance of the
proposed approach is illustrated via a well known benchmark
problem, where it outperforms previously published solutions.

5 Appendix A

This appendix presents a derivation of the LMI condition (8)
for a worst case performance bound.

Consider the uncertain system:

T = flx -+ Blwl + BQU)Q

zZ1 = 012E
29 = C_(Q./E (12)
and feedback
w1 = AZl

where A is assumed stable\ is a real, possibly time-varying
matrix that represents model uncertainty, anglis a white
noise process with unit covariance, as in section 2.

Initially, assume thaB, = 0 and an initial state:(0) = zg is
given. Consider the search for a Lyapunov functiofr) =
2T Pz such that for all trajectories(t)

dV (z)
dt

+282 <0 VA A <1 (13)
It is straightforward to show that the existence of a maftix
0 satisfying the above, guarantees

J < trace Pxoxl,

VA Al < 1 (14)

performance achieved in [14] and a collection of controllefhis means the worst-case value of the performance ifdex
presented in [12], including the three best designs. It is cld2@unded, which implies robust stability.

that the proposed robuét, design outperforms all other con-

hus, the robuskl, problem can be formulated as

trollers. Moreover, the design procedure is simple and it would
be straightforward to re-tune the controller to trade speed of

response against robustness, or both against control effort.

min trace Pz,z’



subject to Using the Schur complement, (23) can be rewritten as
av

E{+£@<O (15)
wy = —Az (16) ATP+PA cf oTol, B, —CT0i,
Cs -1 0 0
Conditions (15) and (16) can be rewritten respectively as 01,04 0 —0,, 0 <0 (24
Bf —05,C1 0 0 022

Tr zr i T
{ x ] [ A P+P7‘f1+c2 C2 PB ] T o To complete the derivation we need to express (14) in LMI
w1 By P 0 w1 form. Now, removing the assumptioB, = 0, the bound
(17) (14) on the worst-case performance can be interpreted as a
worst-case bound on the energy of with initial condition
(A 1] { C: 0 ] [ x } _0 (18) %0 = Bsws, wherews is white noise with unit covariance as

0 -1 w1 defined above. Taking the expectation yields
DefineT as J = E||22|)5 < trace Bl PBy
7 = [ A T ] { C(;l _OI ] With a slack matrix variabl&/, the above is equivalent td <
trace W and
W BP |, 25
SinceI''T" = 0 andT"T+T = 0, and using equation (18), PB, P > (25)

Fl:[xT wlT}

LMI (17) can be rewritten as

This completes the prove.

A Special Case

ATP+ PA+CTCy PB

rtort? <o, Q= { } (19) Consider the special case where the scaling mé&irig given

T
B; P 0 by
. . . S 0
Using Finsler’s lemma (19) holds, iffa > 0 such that O = [ 0 —S§ }
ATP4+PA+CTC, PB In that case (22) will always be satisfied becafise AT SA.
[ BTP 0 ] Now equation (24) simplifies to
T
+—{ ¢ 0 ] o [ G0 ] <0 (20) ATPLPA (+) () (»)
0 -I 0 -I

Co -7 0 0 0 26
where: . SCy 0 -5 o |< (26)

@(y{fl} (A —T] Bf 0 0 =S

This last LMI is identical to the LMI condition (6) in [4]. In
other words, the robustis design approach proposed in [4]
which was derived using the S-procedure, is a special case of
the method proposed in this paper.

Itis clear that® < 0, thus there exists a constant mat#such
that

0-0>0 (21)

ing Fi i i " feren
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