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Abstract

We address the problem of finite-horizon optimal control of
uncertain discrete-time SISO linear systems with input con-
straints. The uncertainty for the problem analyzed is related to
incomplete state information (output feedback) and stochastic
disturbances. We analyze the optimal solutions for short op-
timization horizons when the disturbances and the initial state
are Gaussian random vectors. We also consider two subopti-
mal strategies, one of which is known as Certainty Equivalent
Control.

1 Introduction

Control problems where constraints are imposed on certain
variables and where performance is measured by means of
an additive cost function are usually encountered in practice.
One widely-known technique that addresses such problems is
Model Predictive Control (MPC) [14].

In this kind of problems, an optimal control strategy is under-
stood as one that minimizes a cost function while insuring that
all constraints will be satisfied. Finding the optimal control
strategy involves the solution of an optimization problem. De-
pending on the equations that describe the system and the infor-
mation that can be obtained from the system (measurements),
different kinds of optimization problems arise. Two main forms
of system descriptions can be distinguished: deterministic and
stochastic.

The problem of constrained control of uncertain systems with
a stochastic description is still not fully resolved within the
framework of MPC [14]. In [11], output feedback predictive
control of non-linear systems with uncertain parameters is ad-
dressed. In this work, the authors consider no constraints as-
sociated with the control. Due to the difficulties of the opti-
mization for a general non-linear system, only suboptimal so-
lutions are presented. In reference [12], state feedback control
of unconstrained linear systems with uncertain parameters is
addressed. In reference [4], the case of state feedback, input
constraints and scalar disturbances, is considered. A random-

ized algorithm (Monte Carlo sampling) is used to approximate
the optimal solution. Examples for an optimization horizon of
only one time instant are presented. In [5], the same authors
analyze a similar case, but where state constraints are also con-
sidered. They utilize a short optimization horizon (5 time in-
stants) and implement the solution over a longer horizon in a
receding horizon fashion.

When there is incomplete state information, an observer-based
strategy that seems natural for control in the presence of
stochastic disturbances is the one that uses the so-called Cer-
tainty Equivalence (CE) principle. Specifically, CE consists of
estimating the state and then using these estimates as if they
were the true state in the control law that results when the
problem is formulated as a deterministic problem (no uncer-
tainty). This strategy is motivated by the unconstrained control
problem for linear systems with quadratic cost, for which the
obtained strategy is indeed optimal [3, 9]. The use of CE in
MPC leads to CE-MPC, and due to its simplicity, this strat-
egy has been advocated in the literature [15] and reported in a
number of applications [2], [13] and [16]. Notwithstanding the
widespread use of CE-MPC in applications, it must be stressed
that CE-MPC, generally, results in a suboptimal control strat-
egy. Two factors can be highlighted that render CE-MPC sub-
optimal: (1) the state estimate is assumed to be the true current
state, and (2) the stochastic behavior of the system is neglected
over the prediction horizon.

The main aim of this work is to focus on the case where the
disturbances and the initial state are Gaussian random vectors
and to provide an example where the CE solution differs from
the optimal one. This work follows a line of research started in
[17].

2 Problem Statement

We consider the following time-invariant discrete-time linear
system

xk+1 = Axk +Buk + wk, (1)

yk = C xk +vk, (2)

where xk,wk ∈ Rn and uk, yk, vk ∈ R. The disturbances wk

and vk are assumed to be sequences of independent and identi-
cally distributed Gaussian random vectors with zero mean and
covariance matrices Rw and Rv , respectively. The scalar con-



trol, uk, is constrained to take values in the following set

U = {u : −∆ ≤ u ≤ ∆} ⊂ R, (3)

for a given constant value ∆ > 0. The initial state, x0, is also
a Gaussian random vector, having mean x00 and covariance
matrix P00. We assume that the pair (A, B) is reachable and
that the pair (A, C) is observable.

We further assume that, at the event k, the value of the state xk

is not available to the controller. Instead, all the past inputs and
past and current outputs (measurements) are available to the
controller at time instant k, and contained in the information
vector, denoted by Ik, where

Ik = {y0, y1, . . . , yk, u0, u1, . . . uk−1} ∈ R
2k+1, (4)

and we see that Ik−1 ⊂ Ik.

At time instant k, the controller must calculate the control ac-
tion uk based on the available information Ik in order that the
constraints (3) be satisfied and a cost function minimized. Be-
fore posing the optimal control problem, we need the following
definition.

Definition 1 (Admissible control policies) A policy ΠN is a
finite sequence of functions πk(·) : R2k+1 → R for k =
0, 1, . . . , N − 1, i.e.,

ΠN = {π0(·), π1(·), · · · , πN−1(·)}.

A policy ΠN is called an “admissible control policy” if and
only if

πk(Ik) ∈ U ∀Ik ∈ R
2k+1, for k = 0, . . . , N − 1.

Further, the class of all admissible control policies will be de-
noted by

ΠN = {ΠN : ΠN admissible}.

The optimal control problem we address can now be stated as
follows.

Definition 2 (Finite-horizon Optimal Control Problem)
Given the probability density functions (pdf’s) px0

(·), pw(·)
and pv(·) of the initial state, x0, and the disturbances wk

and vk, respectively, the problem considered is that of finding
the control policy ΠOPT

N , called the optimal control policy,
belonging to the class of all admissible control policies ΠN ,
that minimizes the cost

VN (ΠN ) = E
x0,wk,vk

k=0,...,N−1

{

gT (xN ) +

N−1
∑

k=0

g(xk, πk(Ik))

}

, (5)

subject to

xk+1 = Axk +B πk(Ik) + wk, (6)

yk = C xk +vk, (7)

Ik+1 = {Ik, yk+1, uk}, (8)

for k = 0, . . . , N − 1 , where the terminal cost gT (·) and the
cost per stage g(·, ·) are given by

gT (xN ) = x
T
N S xN ,

g(xk, πk(Ik)) = x
T
k Qxk +Rπ2

k(Ik) ,
(9)

for S, R > 0 and Q ≥ 0. The integer N is called the optimiza-
tion horizon.

We can thus express the optimal control policy as

ΠOPT
N = arg inf

ΠN∈ΠN

VN (ΠN ), (10)

with the following resulting optimal cost

V OPT
N = inf

ΠN∈ΠN

VN (ΠN ). (11)

Remark 2.1 We would like to emphasize that the optimization
problem thus stated takes into account the fact that new in-
formation will be available to the controller at future time in-
stants. This is called closed-loop optimization and can be dis-
tinguished from open-loop optimization where the control val-
ues {u0, u1, . . . , uN−1} are selected all at once, at stage 0 [9].
For deterministic systems, in which there is no uncertainty, it is
not necessary to make this distinction because minimizing the
cost over all sequences of controls or over all control policies
yields the same result.

Throughout this work, the matrix S in Equation (9) will be
adopted as a solution of the following Algebraic Riccati Equa-
tion [1]

S = ATSA + Q − KTR̄K , (12)

where

K , R̄−1BTSA , R̄ , R + BTSB . (13)

3 Optimal Solutions

The problem described in the previous section can be tackled
through the use of Dynamic Programming (DP) [9, 8]. DP is
an algorithm based on Bellman’s Principle of Optimality [6]
that proceeds sequentially backwards in time by solving opti-
mization subproblems. In the following subsections, the form
of the optimal solutions for optimization horizons N = 1 and
N = 2 are stated for future reference. These expressions are
taken from the authors’ parallel work [18].

3.1 Optimal Solution for N = 1

By applying the DP algorithm, the optimal solution for the case
where the prediction horizon is equal to only one time instant
can be obtained.

Proposition 1 For N = 1, the solution of the optimal control
problem stated in Definition 2 is of the form ΠOPT

1 = {πOPT
0 (·)},

with

πOPT
0 (I0) = −sat∆(K E{x0 |I0}), ∀I0 ∈ R , (14)



where K was defined in (13) and sat∆ : R → R is defined as

sat∆(z) =











∆ if z > ∆ ,

z if |z| ≤ ∆ ,

−∆ if z < −∆ .

(15)

The proof of this proposition is given in [18].

Remark 3.1 It is worth noting that when N = 1 the optimal
control law πOPT

0 depends on the information I0 only through
the conditional expectation E{x0 |I0}. Therefore, this condi-
tional expectation is a sufficient statistic for the problem con-
sidered, i.e., it provides all the necessary information to imple-
ment the control.

3.2 Optimal Solution for N = 2

We now consider the case where the optimization horizon is
increased to two instants, i.e., N = 2.

Proposition 2 For N = 2, the solution of the optimal con-
trol problem stated in Definition 2 is of the form ΠOPT

2 =
{πOPT

0 (·), πOPT
1 (·)}, with

πOPT
1 (I1) = −sat∆(K E{x1 |I1}), ∀I1 ∈ R

3 , (16)

πOPT
0 (I0) = arg inf

u0∈U

[

(u0 + K E{x0 |I0})2+

RE{Φ∆(K E{x1 |I1})|I0, u0}
]

, ∀I0 ∈ R, (17)

where Φ∆ : R → R is given by

Φ∆(z) = [z − sat∆(z)]2. (18)

Again, the proof of this proposition is given in [18].

4 Optimal Solutions in the Gaussian Case

In this section, we utilize the expressions (14), (16) and (17)
to explicitly express the optimal solution (as a function of the
available information) when the disturbances wk and vk, and
the initial state, x0, are Gaussian random vectors. To achieve
this aim, we will need to use the Kalman Filter, which calcu-
lates the parameters of the conditional distribution of the state
given the information, at every time instant.

4.1 The Kalman Filter

We assume that the disturbances wk and vk are Gaussian ran-
dom vectors with zero mean and covariance matrices Rw and
Rv, respectively. The initial state, x0, is also assumed to be
a Gaussian random vector, with mean x00 and covariance ma-
trix P00. When these assumptions hold, the conditional pdf’s
of the state at any time instant given the information at any
(not necessarily the same) time instant are also Gaussian. The

conditional mean and covariance of the state satisfy the follow-
ing recursion, known as the Kalman Filter algorithm, which
is usually separated into two sets of equations: prediction and
measurement update [8].

Prediction:

E{xk |Ik−1, uk−1} = AE{xk−1 |Ik−1} + Buk−1

cov{xk |Ik−1} = A cov{xk−1 |Ik−1}AT + Rw (19)

Measurement update:

Lk = cov{xk |Ik−1}CT(C cov{xk |Ik−1}CT + Rv)−1,

E{xk |Ik} = E{xk |Ik−1, uk−1}+
Lk

(

yk − C E{xk |Ik−1, uk−1}
)

,

cov{xk |Ik} = (In − LkC) cov{xk |Ik−1}, (20)

where In denotes the identity matrix of order n.

Remark 4.1 From the above equations, it can be noted that
the covariance matrices are not affected by the value taken by
the information at any time instant. However, the covariance
matrices depend on the number of times the algorithm has been
iterated, i.e., they depend on the time instant k.

4.2 Explicit Optimal Solution for N = 1

In Equation (14), the expectation E{x0 |I0} needs to be eval-
uated in order to express the optimal solution as a function of
the information I0 = y0. Using Equations (20) for k = 0, we
have

E{x0 |y0} = (In − L0C)x00 +L0y0, (21)

where L0 = P00C
T(CP00C

T +Rv)
−1, which is an affine func-

tion of its arguments and can be written as

E{x0 |y0} = M0
x0

x00 +M0
y0

y0. (22)

Substituting Equation (21) into (14) yields

πOPT
0 (y0) = −sat∆ [K(In − L0C)x00 +KL0y0] , (23)

which constitutes the optimal control policy for N = 1 in the
Gaussian case.

4.3 Explicit Optimal Solution for N = 2

In order to express the optimal solution given in Equa-
tion (16), the expectation E{x1 |I1} has to be evaluated. Us-
ing Equations (19) and (20), we can express E{x1 |I1} =

E{x1 |y0, y1, u0} as an affine function of its arguments, of the
form

E{x1 |y0, y1, u0} = f(y0, y1, u0) =

M1
x0

x00 +M1
y0

y0 + M1
y1

y1 + M1
u0

u0. (24)



Substituting this expression for E{x1 |I1} in Equation (16)
yields

πOPT
1 (I1) =

− sat∆
[

K(M1
x0

x00 +M1
y0

y0 + M1
y1

y1 + M1
u0

u0)
]

. (25)

Performing the same substitution into Equation (17) and using
Equation (22) gives

πOPT
0 (I0) = arg inf

u0∈U

[

[u0 + K(M0
x0

x00 +M0
y0

y0)]
2+

RE

{

Φ∆[Kf(y0, y1, u0)]|I0, u0

}

]

, (26)

Before the minimization can be performed, the remaining ex-
pected value in Equation (26) has to be calculated. Defining
z = Kf(y0, y1, u0), the necessary calculation amounts to solv-
ing the following integral

E{Φ∆(z)|I0, u0} =

∫ ∞

−∞

Φ∆(z)pz(z|I0, u0)dz, (27)

where

pz(z|I0, u0) ∼ N(η, σ2). (28)

The variables η and σ2 can be easily determined from the statis-
tics provided by the Kalman Filter

η = η(I0, u0) = K(AE{x0 |I0} + Bu0), (29)

σ2 = (KL0)
2(CA cov{x0 |I0}ATCT + CRwCT + Rv), (30)

with E{x0 |I0} as in (21) and cov{x0 |I0} = (In −L0C)P00.

After integration, Equation (26) can be expressed as

πOPT
0 (I0) = arg inf

u0∈U

[

[

u0 + K(M0
x0

x00 +M0
y0

y0)
]2

+ RW[η(y0, u0), σ]
]

, where (31)

W(η, σ) = [σ2 + (η + ∆)2] G(η, σ,−∆)

+ [σ2 + (η − ∆)2][1 − G(η, σ, ∆)]

− (η + ∆)σ√
2π

exp(
−(∆ + η)2

2σ2
)

− (∆ − η)σ√
2π

exp(
−(∆ − η)2

2σ2
), with

G(η, σ, α) =

∫ α

−∞

1

σ
√

2π
exp

{−(z − η)2

2σ2

}

dz. (32)

Due to the fact that the solution to this integral cannot be ex-
pressed as an explicit function of its arguments (and parame-
ters), we are not able to proceed further. In the next section, we
consider two suboptimal strategies.

5 Suboptimal Strategies for the Gaussian Case

5.1 Certainty Equivalent Control

As mentioned in the introduction, Certainty Equivalent Control
(CEC) is a control strategy in which, at each stage, the con-
trol applied is the optimal control of an associated determinis-
tic problem derived from the original problem by removing all
uncertainty. Specifically, the associated problem is derived by
setting the disturbance wk to a fixed typical value, e.g. E{wk},
and by also assuming perfect state information. After finding
the solution to the associated deterministic problem, the con-
trol to apply is implemented using some estimate of the state
x̂k(Ik) in place of the true state (which was assumed to be
known for solving the associated problem). That is, we obtain
the optimal policy for the deterministic problem (DET)

ΠDET
N = {πDET

0 (·), . . . , πDET
N−1(·)}, (33)

where πDET
k : Rn → R for k = 0, 1, . . . , N −1. Then, the CEC

evaluates the deterministic laws at the estimate of the state, i.e.,

uCE
k = πDET

k

(

x̂k(Ik)
)

. (34)

The associated deterministic problem for linear systems with a
quadratic cost is an example of a case where the control policy
can be explicitly obtained for any finite optimization horizon
[7]. The following example illustrates this for an optimization
horizon N = 2; for a procedure to obtain the pre-computable
laws for larger optimization horizons see [7] and [19].

5.1.1 Closed-loop CEC for N = 2

For N = 2, the deterministic policy ΠDET
2 = {πDET

0 (·), πDET
1 (·)}

is given by [10]:

πDET
1 (x) = −sat∆(Kx) ∀x ∈ R

n (35)

πDET
0 (x) =











−sat∆(Gx + H) if x ∈ X1

−sat∆(Kx) if x ∈ X2

−sat∆(Gx − H) if x ∈ X3 .

(36)

K is given by (13) and

G =
K + KBKA

1 + (KB)2
, H =

KB

1 + (KB)2
∆ .

The sets X1,X2,X3 form a partition of Rn, and are given by

X1 = {x : KAKx < −∆} ,

X2 = {x : |KAKx| ≤ ∆} ,

X3 = {x : KAKx > ∆} ,

with
AK = A − BK.

Therefore, a closed-loop CEC consists in using the controls

uCE
0 = πDET

0

(

x̂0(I
0)

)

uCE
1 = πDET

1

(

x̂1(I
1)

)

.
(37)



5.2 Partially Stochastic CEC

This variant of CEC treats the problem as one of perfect state
information but takes stochastic disturbances into account. To
solve the optimization problem, it is assumed that the state is,
and will be, known to the controller. In reality, and as with
CEC, the value of the state is provided by an estimator that re-
ceives the available information as input and generates x̂k(Ik).
A Partially Stochastic CEC (PS-CEC) admissible policy

ΛN = {λ0(·), . . . , λN−1(·)} (38)

is a sequence of admissible control laws λk(·) : R
n → U that

map the (estimates of the) states into admissible control ac-
tions. The PS-CEC solves the following perfect state informa-
tion problem.

Definition 3 (PS-CEC Optimal Control Problem)
Assuming the state x̂k will be available to the controller
at time instant k to calculate the control and given the pdf
pw(·) of the disturbances wk, find the admissible control
policy ΛOPT

N that minimizes the cost

V̂N (ΛN ) = E
wk

k=0,...,N−1

{

gT (x̂N ) +

N−1
∑

k=0

g(x̂k, λk(x̂k))

}

(39)

subject to x̂k+1 = Ax̂k + Buk +wk, for k = 0, 1, . . . , N − 1.

The optimal control policy for perfect state information thus
found will be used, as in CEC, to calculate the control action
based on the estimate x̂k provided by the estimator, i.e.,

ûOPT
k = λOPT

k (x̂k(Ik)). (40)

The notation ûOPT
k is used to show that the PS-CEC solution can

be regarded as an approximation to the optimal solution. Next,
we apply this suboptimal strategy to the problem of interest.

5.2.1 PS-CEC for N = 1

In [18] it was shown that if x̂0(I
0) = E{x0 |I0}, then the PS-

CEC solution coincides with the optimal one, which for the
Gaussian case is given in Equation (23).

5.2.2 PS-CEC for N = 2

The PS-CEC solution when N = 2 is given by [18]

ûOPT
0 = arg inf

u0∈U

[

(u0 + Kx̂0)
2

+ RE {Φ∆[K(Ax̂0 + Bu0 + w0)]|x̂0, u0}
]

. (41)

As in Section 4.3, the expected value in the previous expression
has to be evaluated in order to proceed with the minimization.
Defining z′ = K(Ax̂0 + Bu0 + w0) we see that

pz′(z′|x̂0, u0) ∼ N(η′, σ′2), (42)

where

η′ = KAx̂0 + KBu0,

σ′2 = KRwKT.

Using the results in Section 4.3, we can find

ûOPT
0 = arg inf

u0∈U

[

(u0 + Kx̂0)
2 + RW(η′, σ′)

]

. (43)

6 Example for N = 2

A simple numerical example can be used to show that the op-
timal control, πOPT

0 (I0) (see Section 4.3), depends not only on
E{x0|I0} but also on cov{x0|I0}. Indeed, Figure 1 shows an
example of the dependence of the optimal control as a function
of σ for the conditional expectation E{x0|I0} fixed at the value
[3.636 − 16.092]T, for the following system and parameters:

A =

[

0.5764 −0.0014
1 0

]

B =

[

3
1

]

C =
[

0.368 0.057
]

Q =

[

3 0
0 0.2

]

R = 50
∆ = 1

Rw =

[

0.5 0
0 0.5

]

Rv = 0.01 .

We see in Figure 1, that the optimal control policy is a function

10
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Figure 1: Optimal control with fixed E{x0|I0} as a function
of σ.

of the standard deviation σ, which depends on cov{x0 |I0}.
Thus, since the Certainty Equivalent scheme consists in finding
E{x0|I0} and calculating the control action based only on this
value, we have shown that CEC definitely does not yield the
optimal solution for this particular case.

It is worth noting some interesting features depicted in Fig-
ure 1. It is easy (though tedious) to show that the function
W[η(y0, u0), σ] is a convex function of u0 and has a unique
minimum at uW

0 = −KAE{x0|I0}/(KB). Thus, the un-
constrained optimal control will be between the values uq

0 =
−K E{x0|I0}, which is the minimizer of the quadratic term of
Equation (31) and uW

0 . From the convexity of W[η(y0, u0), σ]
and the quadratic term, and the fact that the sum of convex



functions is also a convex function, it follows that the con-
strained minimum will be a clipped version of the uncon-
strained minimum.

When the distribution of the noise degenerates at its mean, i.e.,
in the limit when Rw and Rv tend to zero, E{Φ∆(z)|I0, u0} →
Φ∆(E{z|I0, u0}). In this case, the optimal solution reverts to
the Certainty Equivalent Control solution [10], given by Equa-
tion (36):

πOPT
0 (I0) → πDET

0 (E{x0|I0})

On the other hand, when the noise becomes large, i.e., σ → ∞,
it can be shown that

W(η, σ) → η2 + g(σ),

and the optimal control for this case becomes

πOPT
0 (I0) → −sat∆

(

GE{x0|I0}
)

These results are shown in Figure 1 for a particular value of
E{x0|I0}. An interesting feature of this example is that there
exists a range of values of σ for which the Certainty Equivalent
Control solution approximates the optimal solution very well.
This motivates further research aimed at quantifying the size of
this range in terms of the parameters of the system, the cost and
the noise.

7 Conclusions

We have analyzed the optimal control problems for SISO lin-
ear systems with input constraints where the disturbances and
initial state are Gaussian random vectors, for prediction hori-
zons N = 1 and N = 2. Because of the Gaussian nature of the
variables involved and the linearity of the system, the Kalman
Filter provides all of the necessary statistics to solve the prob-
lem. We have also analyzed two suboptimal strategies.

Specifically, we have given an example where the optimal con-
trol depends not only on the state estimate provided by the
Kalman Filter, but also on its covariance. This establishes that
CEC does not yield the optimal solution in this case. We have
also studied limiting cases when the variance of the noise tends
to zero and infinity. As expected, for the former case the opti-
mal solution reverts to CEC. Moreover, the example shows that
there is a range of values of the variance (not only for the lim-
iting case) for which Certainty Equivalence approximates the
optimal solution with remarkable accuracy.

Further research is needed to quantify the conditions under
which Certainty Equivalence yields a suitable approximation
to the optimal solution.
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