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Abstract decoupling method by generalized output injection. It isdzh

on a geometrical approach ([1, 7, 4]). The generalized dutpu
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fault (or disturbance). This method is based on a nonlinkar fstimation. An exemple highlights the interest of the métho
ter defined by means of the generalized output injection. Amlast section.
example is presented which illustrates results.
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injection, Filter. Let us consider the following model for system description:

1 Introduction . - g

oo = folx) + Zfl(z)ul + ZPj(x)wj )
In this paper, we consider nonlinear model based Fault De- NEL - i=1 J=1
tection and Isolation (F.D.l.), that is methods designedhan y = h(z)

basis of an explicit mathematical system model described \Rr\ﬁerex(t) € X =R ult) €U = R™, y(t) € ¥ — R and
nonlinear differential equations (or equivalent représgons). w(t) € W — RY are respectively states, inputs, outputs and

Consi_dering the _control problem, it i_s now We_II admit that G its disturbances. The functiofis(-), h(-), P (-) are matrix-
counting for nonlinear system behavior yields increasetbpe valued differentiable>°) and all of appropriate dimensions.

mances. Thus, in the F.D.I. framework, it is expected thahs ) : .

; ) e can add that all faults can be written on state differéntia
a nonlinear approach may lead as well to an increased process_.. : .
availability equation. According to a state transformation, actuaystesn

; . nd more precisely sensor faults m incl in ion
In this paper, we focus on one of the most challenging pro nd more precisely sensor faults may be included in equatio

: . ). More precisions are given in ([3], [10] and [11]).
lem of F'D'I" namely the fault_ d|§turbances decouplmgopro.l_he main problem addressed in this paper is fault distumnc
lem. Basically, we aim at designing a F.D.I. procedure that |

" : ; o ... decoupling in order to design a filter making possible faadt i
sensitive to a particular fault while remaining insensitia dis- Ping g gp

turbances (including the other kinds of faults). Iatl.oné ?gftho?sﬁtg(taé ?nggbr!tssit}cg tfg lllgmng characteristic

Wonham ([1]), Massoumnia aral ([2, 3]), have shown that e other part of state is insensitive to fault.
the addressed problem may be solved in the general settin%;_ of o
linear systems. Isidori aral ([4, 5]) extend these works to theL€t US introduce the following filter:

decoupling problem by dynamic feedback in nonlinear cdntro m

scheme while [6, 7] consider the same decoupling problem in z2=fo(z) + Z Filui + (s as )

the F.D.I. framework. In this framework, we note that decou- ~FD ° i=1 )
pling is achieved by an output injection. y. =h(z)

In this paper, a new decoupling method is proposed. The main . L .
idea of this approach is to use generalized output injecti?ﬂ\ﬁ'erez IS an estimation _Of state vectarand¥(, -, ) is
[8, 9] to increase the dimension of a particular state subspathe gengrahzed output.lnjectlon. We as§ume:

the insensitive state subspace to a fault (or perturbation) * - is connected with system equation (as for example
The paper is organized as follows. In section 2, we formally Y= )

state the decoupling problem in a nonlinear setting. Inisect e - is connected with filter equation (as for exampley.,

),



e -, is connected with control input (and possibly its derivaBy definition of ST, it is always possible to find an output in-
tions). jection such that:

In order to determine which part of state is considered asisen ~ mo

tive or insensitive to fault, we use the sensitivity defimiti[5]) foo(F1,32) + ) fin(F1,32)u; =
introduced by A. Isidori. A part of state (or state subspase) i=1 @)
defined as insensitive (resp. sensitive) to fault if and ahly . UL .

r—2z =0, Yw # 0, that is to say that is close toz (resp. fo2(%2) + Z fi2(T2)ui + V(Z2, ya, u)
x—z#0, Yw #£0). =1

Filter (2) allows to isolate faults by considering a sensitpart ) _ - o

and an insensitive part of state. The fault decoupling is of§iatis to say tha¥l(zz, y., u) expresses the, contribution on
tained according to an output injection. To a particulapotit 2 equ.atlon. —

injection form is assigned a state subspace insensitivéatdta 2 Nonlinearfilter is deduced:

With a “suitable” choice of output injection, the greater insen- m
sitive state subspace to a fault can be obtained. That is our 2 =fo1(%1, %) + Zﬁ,1(21722)ui
proposition by using derivations of the different signaighe P

output injection. In the next section, the output injectorm v, . J = mo .
De Persis is recalled, and then, our work is detailed. Zy =fo2(%) + > fia(Z)ui + ¥ (Z, ys, u)
i=1
3 Current decoupling method vz =h(21, 22) @®
This method ([6] and [7]) is based on the following particula/Ve can note that, is insensitive to the fault whereas is sen-
output injection form: sitive tow.
By using output injection (3)$7 is overvalued by fault dimen-
U(onsnson) = U(ya, 2, 0) — U(ys, 2, 1) 3) sion. And related telim(ker{dh}), insensitive state subspace

dimension is undervalued by zero. That is to say:

The minimal invariant state subspace sensitive to the fauia B (%, o, 1)
an output injection is defined by the non-decreasing seguenc 21L © )
0 < dim(spar{(SF)+}) < n — dim(w)
S = spad P}

$P, =5 +> 5 nkerany P
k=0

In the next section, we propose to use an other output injecti
form to increase dimension of the insensitive subspaceeflow
and upper bounds of (9)). This will guarantee a greater dimen
» sion of exact state estimation for all faults.

whereS; denotes th@wvolutive closuref the distributionS?”,

. —P —P . : . . .
le. if 7,0 € 5; then[r,o] € §; with [r,0] the Lie bracket. 4 Decoupling method via a generalized output
The stopping conditions of the sequence (4) are: injection

5P _gP b The aim of this section is to increase the size of the insegasit
! i+l } = SP =03, (5) state subspace according to a generalized output injedtho
dim(spar{$;’}) = n design is based on theconstructibility definition introduced
in ([11] and [12]). To facilitate comprehension, we intragu
The greater state subspace insensitive to the faudenoted the A-reconstructibility definition as follows:
by (SF)* is then obtained. A diffeomorphism is defined as

P\T
7 = ®(x) with 22 = { (5:) } Hence, system (1) canDefinition 1 A signal is said A-reconstructible if, and only

T
o ((s9)H) if, it exists a nonlinear fanetiof/such that:
e written as:

m It is to be noticed that ifA andd represent respectively known
I :fo,l(j‘:l,ﬁsg) + Zﬁ,1(i1,i2)ui signals of a process (inputs and outputs) and the fault, it is
i=1 possible to estimate this fault by output combinations. Our
- + P(#1, &2)w proposition is based on a two steps strategy: the first step
LNL: m (6) s the increase of the upper bound of (9) according to fault
Zo =foo(F1,%2) + Z fin(F1, Z2)us estimation; the second one is the increase of the lower bound
i=1 of (9) according to a novel non-decreasing sequence.
Yo =h(T1,Z2)




4.1 First step : upper bound increasing (CP)L). Finally, maz points out the maximum index of out-
puts derivation. With these notations, the following casabn

A necessary condition to fault reconstructibility is faulfan be given:

detectability.

If faults can be estimated according to outputs and/or th@heorem 2 For all output injections (i.e¥ (-, -.,-)), a fault

derivations, then these faults affect outputs and/or th&iiva- w is said estimable if, and only ify is A.-reconstructible.

tions.

A necessary condition to fault estimate is given using t

following non-decreasing sequence and the observablees

(noted~,;s, defined in [1], [4] and [13]):

r?ﬁroof of Theorem 1 Proof is trivial considering generalized
IO<’5]ﬁtput injection use and thus no signals restrictidx.§.

= spar{ P;} In the case ofA.-reconstructibility ofw, it exists an output
. _p, 10) injection W(A.) such thatw = ¥(A.). Thus, the following
Cl=C + > e Ty (10) filter can be synthesized:
k=1
The stop conditions of the sequence (10) are: 2= fol2) + i Fi(2)ui + P(2)T(A,)
CPJ‘ _ CPJ XFD i=1 (13)
Lo } s cli=cl (11) Y. = h(z)
dim(spar{C;’}) =n

With the same considerations, theorem 2 can be generafized i
ch " expresses the fauli; propagation within nonlinear statesihe case oP(z)w:

i.e. the faultw; affects the state subset” .

So, if Yops € (ij)L then fault is detectable. More precisionSheorem 3 For all output injections (i.e. U(-y,.,-,)), a

are given in ([14]), and we recall that: fault w effect is said estimable if, and only if(z)w is A.-
reconstructible.

Theorem 1 The conditiony,,s € (Pt (vj) is:

e anecessary and sufficient conditionyif € R* Proof of Theorem 2 The proof is the same one as for theorem

e a necessary condition, ifs; € R¥ (with k> 1) to 2 by replacingw by P(x)w

achieve the detectability of all faults.
In the A.-reconstructibility of P(z)w case, it existsV(A.)
With fault detectability condition, fault estimation (awding such that?(z)w = ¥(A.). Consequently, the following filter
to known system signals) must be studied in order to incred be designed:
insensitive state subspace. A general case is first deltaitid
then, a particular case is considered. 2= fo(2) + Z filz
EFD .
4.1.1 Necessary and sufficient condition for fault estima- Y. = h(2)
tion via an output injection

Jui + ¥(A,) (14)

where¥ (A, ) is the output injection.

The following remark shows that the condition of fault ef-

Let us define: fect A.-reconstructibility is less restrictive than faulk.-
reconstructibility. Indeed, if some components Bfx) are
_,0 (py'=1) 0 (P =1) ' i
A= Yots- s Uat o Yaps oo Yap inobservable, these components of the fault veatos not
A.-reconstructible. But this does not imply the nb,-
u u(max71)7 (12)

Uy ey reconstructibility of fault effect.
& (Ye, Y1), o, &(Ye, Yar), Z 2] Consequently, a necessary and sufficient condition to é&ytota

fault decoupling system is:
where p}’ is the characteristic indice of faulb associated

to the outputi, i.e. the first indice of output derlvatlonTheorem4 A nonlinear system is said totaly fault decoupling

. X (J)
showing the fault g = mmj(aaw # 0)). Y. = if and only if, the fault effect i&.-reconstructible.

Y1 (pr—1)
[yglv"'vy;ql )7"'7y2p7~~'»ywp ]; and Ya:lwuale

are signals made up of outputs with derivation indices greaProof of Theorem 3 Proof is given previously and precisely
thanpy — 1. &, ..., & are nonlinear functions where fault andwith filter writing (14), according to this equation all cormp
its derivations do not appeat v, represents the part of statenents of state vectar (“totaly”) is estimated byz for all fault
naturally decoupled of fault (i.e., the state part assediatith w.



If, and only if, theorem 4 is satisfied then the sensitiveestat e Msfzm.) = 0 if one of both conditions (i) and (ii) below is
subspace is reduced {0}. Consequently the upper bound of  not satisfied.
(SF)+ dimension is increased toand no more ta — dim (w)

as itwas in (9). o ~ conditions (i) and (ii) are:
The generalized output injection used to satisfy this cioomi ] , - oMy, (@ U w)) Y
is very theorical. In practice, nonlinear functiogis(defined () the pair ( M . (x, U, w;, w; = 0), a—w,> IS

in (12)) are particularly difficult to design. Neverthelegiss A, -reconstructible,
possible to obtain decoupling conditions with a less gdizea (jj) pll = minj(pzu'j).
output injection than above mentioned (but more than output
injection (3)). This is the aim of the next paragraph. The first condition (i) is equivalent to the possibility to
estimate a part of fauly;. However, the objective is the fault
4.1.2 Sufficient condition for fault estimation via output vector estimation independently of the other faults (ctodi
injection (ii)).
To conclude comments, we can add that this simplified
Since signals used to filter design are truncated, the N@@nsibility matrix is a binary matrix (with somé@™and “1”).
essary and sufficient condition becomes a sufficient camiti with these considerations, necessary and sufficient dondit
Indeed, output injection is not generated with (12) but with: of theorem 2 is reduced to sufficient condition for fault

» estimation:
A, = ygl, .. ,yﬁlmi(plj)fl), A
Theorem 5 If the rank condition:
Wy @) rank(M') = dim(w) =q |
oy is satisfied, then, a fault is said estimable with the particular
u, ..., ymaxi(ming o) =1) i’Nz} output injection¥ (A,).

w j

wherep,

(3

is the characteristic indice associated with fault proof of Theorem 4 This theorem is based on the two

A (k) " i . : ; .
and outputi, that is to say thap,” = mink(ag’;f # 0) and conditions (i) and (i) previously defined but the signal$ se
other components are already defined. ! considered is a truncation k.. Thus, it is only a sufficient
Since the output injection is composed by signijsthen itis condition.

possible to give algebraic condition for fault estimatiord at

is the main objectif of this section. If we focus on one faultv;, and if the condition (i) is
satisfied, then it exists two functiofs and ¢, such that
We .introduce a new matrix, .nar'ned outpgt sensibilithn M_)(x,U’ u—}j’_wj) _ ygpm‘i) = _C1(At) + CQ(At)w_j- |
matrix, composed by output derivations showing each fawffith signalsA,, independent estimations are only possible if
component such that: condition (ii) is satisfied. The aim is to estimate all faults
- vy independently, so the conditions (i) and (ii) must be satisfi
yffil b yipll ) Vj. Itis equivalent to the rank condition of theorem 5.
MP=1 - (16)
y(ﬂ;fl) y(pZ"’) If theorem 5 is satisfied then the sensitive state subspace is
op R Ve

reduced to{0}. Consequently the upper limit of dimension is

If an output {,;) is naturally ;) fault decoupled, then increased ta and notn — dim(w) as it was in (9).

w o1y . .
p; = oo andy,; is considered as null. The first step of the decoupling method by generalized

It is to be noticed that by faults detectability assumptitin, ot injection has been studied in this section. The s:con
exists at least one matrix element which IS different fromoze gye concerns the decrease of the lower bound of the inisensit
Thatis to say, it exists a paff, j) such that: subspace and is developed in the next section.

P (p;?) _ _
M ) (@, U, w) =y (17) 4.2 Second step : lower bound increasing
= foi(z,w;) + fri(z,U,w5) + Pi(z, U, w;)w;
In order to follow the fault propagation through the statb-su

with U = [u, ... ulr: '7‘1)] and  w; = space, another non-decreasing sequence (different from 4)
(Wi, Wi, Wjg1, - W) defined. We begin to posA® equal toA.. And we con-
To simplify the study, we choose to transform the matrix (1&jder some components of fault vector which are Adt
according to the following choice: reconstructible (o\.-reconstructible) noted,

e MPE. . = 1if the both conditions (i) and (ii) below are ~p P
satisfied, Sma =5, &v (18)



WhereSP — represents the involutive state subspace generaged! the unknown disturbance (an actuator fault in this case)
by Spa,{p} no A°-reconstructible. This system is not observable and the inobservable subgpace
So, this state part propagates fault effect through the stéi- Yinobs = [0 1 0 0].

space. This propagation can be calculated by a non-desgeasising the non-decreasing sequence (10), we obtain:
sequence defined by:

0 0
CF = span 0 , —21(l —24)
P =S8h i+ Z TG R BEC) 2 2124
It is always possible ([5], according to Frobenius Theorém) It can be deduced that! ¢ 7incss, thus the faultw is de-
find a diffeomorphisni* = ®*(z) such as: tectable. According to output derivation, the fauitcan be
) estimated as followsw = (§z2 — Yz1U2)/Yu1-
0P (x)* (Sf;k)T A nonlinear filter totaly decoupled of fault is:
T or = GP )L T (20)
T (( m,k’) ) 2124 0
, 1— 0 0 0 o ya1us
The nonlinear system (1) can be transformed: = | 0 I 0 2 (Z;) ., (a2 ity
a 0 1 0 0
. T
:E’f = fo(Z")+ ZfZ Ju; + ZP(i‘k)wj Yr = (z1 23)
. =1 (24)
ENL Qo ke & where¥ (A.) = (Yo2 — Yz1U2)/Yz1 = w.
r3 = Jo(@") + Z: fi(@)ui On one hand assuming thaf0) is known the state estimation
y=  hE) =t (2) is always exact{ = x) Vw that is to say (c.f. equation (9)

21) for comparison) :

where the state subspace associated #fithoteddz* (equiv-

alent to 8*1 , or SP ) is the state subspace to express. Thus

k
m Partlcularly we stress on the |nsen5|t|va11(n)utput estimation

sP P in (19) represents the subspace partdaf no A*-

OT Yo
reconstructible with: On an other hand the convergence: @6 = must to be studied,
- but it is not the paper objectif. However, it can be addedanat
AF = |40 y(minj(pmﬁ)fl) intuitive method based on contraction analysis [16, 17]lman
zhw o Jwl A used for this study.
(22) With current decoupling method (section 3), we obtain:

dim(insensitive state subspacewtd = n = 4 (25)

0 (miny (Pm )—1) -1
y:z:p7"'7y$17 7 ’ ’u7.'.’u(maw )7 0

~k
51(YI,Y11),-~-751(Y17le),332] (SP) = span xol (SP)+ = span

0 0

1

0 1
0]710]”
0 0

= o o

After several iterations and the same stop conditions ash(®) 0

smaller state subspasg , sensitive tav via a generalized out- A nonlinear filter decoupling fault is:

put injection is deduced. Sinc&(-,,.,,) is more general

than (3), thens?, SP_ C SP and the more interesting result Yo124

dim(spar{(SZ,)*}) > dim(sparf (SF)*}). s [m-=0] <u1>

In the following section, the previous method is applied. 0 u2
0

5 Example yz:('zl 23)T

o o o
X o o

(26)

[
o

In this section, an example (inspired from ([15])) is corsivhere¥ (z,y,, u) —V(2,y, u) = yYz124 — Y124 (C.f. €quation
ered in order to highlight the interest of a generalized outp(3)). Compared with (24), nonlinear filter (26) results assl
injection in the fault decoupling problem. The system undénpressive, because only a reduced state vector is estimate
consideration is represented by the following equations: ~ without errors. Indeed, even:f(0) = z(0) only state estima-
tions[z; 22 24]7 are always exadtw (to compare with (25)):

xr1T4 0O O
s w2 | o 0 ( u1 ) dim(insensitive state subspacewd = n — dim(w) = 3
YNLL 0 0 | \uo+w (23) 27)
0 - L0 Particularly we stress on the sensitivewooutput estimation
Yo = (m :ca) of ya2.

with, z(t) € X = R*, u(t) € U = R?, y(t) € Y = R? To conclude this example, results are summed up as fol-
andw(t) € W = R1 respectively states, inputs, outputsows with the table TAB. 1.



Size of
Method using

Insensitive stateq

insensitive outputs

generalized output injection

2

2

classic output injection

3

1

Table 1: Results comparaison

6 Conclusion

(11]

This paper focus on fault decoupling method for nonlinear sy
tem. A decoupling method is proposed by means of a general-

ized output injection in order to increase the dimensiorhef t

decoupling state subspace. This output injection is gésara[12]

from known signals and their derivations. Thus the decougpli

state part sensitive to a fault is decreased. This ensui@sexct [13]

estimation of a larger part of the state for all faults. M@
an example emphasizes the interest of this work.
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