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Abstract

We consider here the Fault Detection and Isolation (FDI)
problem for linear systems. We design a set of observer-
based residuals, in such a way that the transfer from the
faults to the residuals is diagonal. We deal with this prob-
lem when the system under consideration is structured, that
is, the entries of the system matrices are either fixed zeros or
free parameters. This problem was solved recently in terms
of the graph that one can associate in a natural way to a
structured system. We are concerned in this paper with the
case where the FDI solvability conditions are not satisfied.
We consider that some internal states can be measured at
some cost and wonder if the problem is solvable with these
new measurements. If this is possible we try to reach the
solvability conditions at minimal cost. These problems are
solved using the bipartite graph of the system.

1 Introduction

This paper is concerned with the Fault Detection and Iso-
lation (FDI) problem for linear systems. This problem
has received considerable attention in the past ten years
[3, 4, 10, 16].
In this paper we consider the observer based FDI problem
using structured residual sets that allow fault isolation. We
are interested in obtaining a transfer from faults to resid-
uals with a diagonal structure (i.e. a dedicated structured
residual set). We consider for these problems intrinsic solv-
ability conditions depending on the internal structure of the
system and not on the specific values of the parameters. We
look for internal structures which are well suited for diag-
nosis. An interesting tool for this purpose is the notion of
structured system [14]. The solvability conditions for the
bank of observers-based FDI problem were given recently
in terms of the graph that can can be associated in a natural
way to a structured system [6].
In general the FDI solvability conditions are not satisfied.
These conditions are restrictive and we consider that some
new sensors can be implemented at some cost and wonder
if the problem is solvable with these new measurements. If
this is possible we try to reach the solvability conditions at
minimal cost. These problems are solved through the bi-
partite graph of the system. The results are expressed in
standard combinatorial optimization terms. Note that the

sensor location problem has received a lot of attention in
system observation, supervision and abrupt changes detec-
tion, see for example [2, 1]. The structural and graphical
approaches have also been used in fault detection problems
but in a context which is different from ours, see [17].

The outline of this paper is as follows. The problem is for-
mulated in section 2. The linear structured systems are pre-
sented in section 3. First results on the possibility to reach
the FDI conditions by adding new measurements are given
in section 4. In section 5 we consider that new measure-
ments have a cost and solve the minimal cost sensor loca-
tion problem for FDI. Some concluding remarks end the
paper.

2 Problem formulation

2.1 Observer-based FDI problem

Let us consider the following linear time-invariant system :

Σ
{

ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) + Mf(t) (1)

where x(t) ∈ R
n is the state vector, f(t) ∈ R

r the fault
vector and y(t) ∈ R

p the measured output vector. A,C,L
and M are matrices of appropriate dimensions.
Note that the control input effects are not considered here
as, for any observer-based FDI problem, it is well known
that these can be taken into account in the observer struc-
ture without loss of generality.
A dedicated residual set is designed using a bank of r ob-
servers for system (1), according to the dedicated observer
scheme [3]. Each residual will be designed to be sensitive to
a single fault while remaining insensitive to the other faults.
The ith observer of this bank of r observers is designed for
a system of type (1) as follows:

˙̂x
i
(t) = Ax̂i(t) + Ki(y(t) − Cx̂i(t)) (2)

where x̂i(t) ∈ R
n is the state of the ith observer, Ki is the

observer gain to be designed such that x̂i(t) asymptotically
converges to x(t), when no fault is considered.
The residuals are defined as :

ri(t) = Qi(y(t) − Cx̂i(t)), for i = 1, . . . , r (3)

where Qi is a 1 × p matrix.

Definition 1 The bank of observers-based FDI problem
consists in finding, if possible, matrices Ki and Qi, such



that, for i = 1, 2, . . . , r, A−KiC is stable, and the fault to
residual transfer matrix is non zero, proper and diagonal,
i.e. the transfer form the faults to the residuals has the form

r(s) =




t11(s) 0 · · · 0
0 t22(s) · · · 0
...

...
. . .

...
0 0 · · · trr(s)


 f(s) (4)

where tii(s) �= 0 for i = 1, 2, . . . , r.

The solvability conditions for this problem will be detailed
further. These conditions express in particular that there
must exist a sufficient number of measured outputs to be
able to detect and isolate the faults.

2.2 Sensor location for FDI

Consider again the system (1). In general the above defined
FDI problem has no solution using only the existing sensors
on the system. In this case we consider new sensors which
could be implemented on the system with some cost. Define
the new output vector z which collects the potential new
measurements:

z(t) = Dx(t) + Nf(t), (5)

z(t) ∈ R
q , where zi(t) is the measure obtained from the i-

th additional sensor with cost ci. The cost of the measured
outputs y1(t), . . . , yp(t) is assumed to be null. Define now
the composite system denoted by Σc.

Σc




ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) + Mf(t)
z(t) = Dx(t) + Nf(t)

(6)

In the next sections we will consider the following optimal
sensor location problem for FDI:

• First check the solvability of the FDI problem on the
system Σ. If it is solvable, the optimal sensor location
problem has clearly a zero cost solution.

• When the FDI problem on system Σ has no solu-
tion, check the solvability of the FDI problem on the
composite system Σc with additional sensors. When
this problem is solvable find a minimal cost solution,
which will give us the sensors to be actually imple-
mented.

Our study will be achieved in the framework of structured
systems that we introduce now.

3 Linear structured systems

In this part we recall some definitions and results on linear
structured systems. More details can be found in [5, 8].
We consider linear systems as described in (1), but with
parameterized entries and denoted by ΣΛ

ΣΛ

{
ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) + Mf(t) (7)

This system is called a linear structured systems if the en-

tries of the composite matrix J =
[

A L
C M

]
are either

fixed zeros or independent parameters (not related by alge-
braic equations). Λ = {λ1, λ2, . . . , λk} denotes the set of
independent parameters of the composite matrix J . For the
sake of simplicity the dependence of the system matrices
on Λ will not be made explicit in the notation. A structured
system represents a large class of parameter dependent lin-
ear systems. The structure is given by the location of the
fixed zero entries of J . This structure often comes from
physical particularities of the system (for example intercon-
nection of subsystems); thus the only exact knowledge on
the system is the the structure, i.e. the absence of direct
relations between variables as state variables for example
(see [9] for a detailed discussion on internal structure rep-
resentation).
For such systems one can study generic properties i.e. prop-
erties which are true for almost all values of the parameters
collected in Λ [15, 20]. More precisely a property is said
to be generic (or structural) if it is true for all values of the
parameters (i.e. any Λ ∈ R

k) outside a proper algebraic
variety of the parameter space, i.e. the zero set of a finite
number of nontrivial polynomials in the parameters. A di-
rected graph G(ΣΛ) = (Z,W ) can be easily associated
to the structured system ΣΛ of type (7) where the matrix[

A L
C M

]
is structured:

• the vertex set is Z = F ∪ X ∪ Y where F , X and Y are
the fault, state and output sets given by {f1, f2, . . . , fr},
{x1, x2, . . . , xn} and {y1, y2, . . . , yp} respectively,
• the arc set is W = {(fi, xj)|Lji �= 0} ∪ {(xi, xj)|Aji �=
0} ∪ {(xi, yj)|Cji �= 0} ∪ {(fi, yj)|Mji �= 0}, where Aji

(resp. Cji,Lji,Mji) denotes the entry (j, i) of the matrix A
(resp. C,L,M ).
Moreover, recall that a directed path in G(ΣΛ) from
a vertex iµ0 to a vertex iµq is a sequence of arcs
(iµ0, iµ1), (iµ1, iµ2), . . . , (iµq−2, iµq−1), (iµq−1, iµq) such
that iµt ∈ Z for t = 0, 1, . . . , q and (iµt−1, iµt) ∈ W
for t = 1, 2, . . . , q. The length of a path is the number of its
arcs, each arc being counted the number of times it appears
in the sequence. For the last sequence, the path has length
q. Occasionally, we denote the path P by the sequence of
vertices it consists of, i.e. by :

P = (iµ0, iµ1, . . . , iµq−1, iµq)

Moreover, if iµ0 ∈ F and, iµq ∈ Y , P is called a fault-
output path. A path which is such that iµ0 = iµq is called a
circuit.
A set of paths with no common vertex is said to be a vertex
disjoint. A k-linking is a set of k vertex disjoint fault-output
paths, it is also called a linking of size k. A linking is max-
imal when k is maximal.
All the previous definitions can be extended to a composite
structured system Σc

Λ with associated graph G(Σc
Λ) where

Σc
Λ is defined as

Σc
Λ




ẋ(t) = Ax(t) + Lf(t)
y(t) = Cx(t) + Mf(t)
z(t) = Dx(t) + Nf(t)

(8)



Using their associated graphs many important results have
been obtained for these systems on structural controllabil-
ity, decoupling, disturbance rejection, ... [5, 8, 14]. As a
first example of these results, recall the graph characteri-
zation of the structural observability, which will be useful
later [14, 15].

Proposition 1 Let ΣΛ be the linear structured system de-
fined by (7) with its associated graph G(ΣΛ). The system
(in fact the pair(C,A)) is structurally observable if and
only if:

• there exists a state-output path starting from any state
vertex in X ,

• there exists a set of vertex disjoint circuits and state-
output paths which cover all state vertices.

Consider now system ΣΛ defined in (7) which transfer
matrix is TΛ(s) = C(sI − A)−1L + M .
We can calculate the generic rank of TΛ(s) by using the
following result [8, 18].

Theorem 1 Let ΣΛ be the linear structured system defined
by (7) with its associated graph G(ΣΛ). The generic rank
of TΛ(s) is equal to the size of a maximal linking in G(ΣΛ).

Example 1 Let us now present an example to illustrate the
previous notions and results. Consider the following struc-
tured system ΣΛ which is of type (7) with three faults and
two outputs:

A =


 0 0 0

λ1 0 0
0 λ2 0


 , L =


 λ3 0 0

0 λ4 0
0 0 λ5


 ,

C =
[

0 λ6 0
0 0 λ7

]
,M =

[
0 0 0
0 0 0

]

The entries of these matrices are the free parameters Λ =
(λ1, λ2, . . . , λ7). The associated graph G(ΣΛ) is given in
Figure 1.
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Figure 1. Graph G(ΣΛ)

This system is structurally observable as can be seen from
Proposition 1. Indeed there is a state-output path starting
from any state vertex and the set of vertex disjoint paths
(x1, x2, y1) and (x3, y2) covers all state vertices. The sys-
tem has clearly rank two since there exists a linking of size
two in the graph.

Give now the result concerning the diagonal FDI problem
by using a bank of observers which was stated first in [6].

Theorem 2 Consider the structurally observable system
with r faults ΣΛ as defined in (7) and the associated graph
G(ΣΛ). The bank of observers-based diagonal FDI prob-
lem of Definition 1, is generically solvable if and only if:

k = r (9)

where k is the size of a maximal linking in G(ΣΛ)

4 System decomposition and first results

We have seen that the solvability of the FDI problem is
based on the maximal size of fault-output linkings. In this
section we will consider some properties of these maximal
linkings and derive some useful consequences for the FDI
problem.

4.1 Basic notions

Most of the basic material of this subsection is based on
[19]. First consider again the graph G(ΣΛ) = (Z,W ) of a
structured system of type (7) with vertex set Z and edge set
W . A separator S is a set of vertices such that any fault-
output path has at least one vertex in S. Separators with a
minimal number of vertices are called minimal. A classical
result is that the minimal size of a separator is the maximal
size of a fault-output linking. The set of essential vertices
Zess is the set of vertices which belong to any maximal size
linking. Construct now the set of vertices which contains
for any fault-output path the first vertex which is in Zess,
call this set S∗. It can be shown that S∗ is a minimal sep-
arator. S∗ is indeed the first bottleneck between faults and
outputs. S∗ may contain fault, state and output vertices. It
follows from this definition that the maximal size of a link-
ing is r if and only if S∗ = F . Define F1 = F/(F

⋂
S∗),

Y1 = S∗/(F
⋂

S∗) and X1 is the set of state vertices in
any fault-output path from F1 to Y1. Now think of a new
structured system defined by its graph with input set F1,
output set Y1, state set X1; the set of edges corresponds to
the edges in any path from F1 to Y1. The corresponding
structured system is denoted Σ1Λ, its graph is denoted by
G(Σ1Λ).
A directed graph G(Σc

Λ) can be easily associated with the
structured system Σc

Λ of type (6). In fact G(Σc
Λ) is ob-

tained from G(ΣΛ) by adding q output vertices z1, . . . , zq

and edges from F
⋃

X to Z in G(Σc
Λ) corresponding to

non null parameters of matrices D and N .



4.2 The sensor location problem and some simple re-
sults

We assume that the observability condition of Theorem 2
is satisfied for the initial system (7), adding new edges will
preserve the property, therefore Σc

Λ is observable. In the
following we will then concentrate on the rank condition
(9). In graph terms, we try to get a size r linking thanks
to the addition of new output vertices and new edges which
connect state or fault vertices to them. A variable wi is said
to be measurable with additional sensors if we can add a
new sensor with corresponding output zj such that in the
graph of the composite system G(Σc

Λ), there is an edge
(wi, zj) between this variable and the new output. Let us
denote by Wm the set of measurable fault and state vari-
ables. .
From the previous subsection if the FDI conditions are met
we have S∗ = F and the system Σ1Λ will not exist. This is
of course not the case of interest for us here, therefore from
now on we will assume that Σ1Λ is not empty, i.e. the FDI
problem without additional sensors has no solution.

Proposition 2 Consider a linear structured system ΣΛ

with graph G(ΣΛ). Assuming that the FDI problem without
additional sensors has no solution, the FDI problem with
additional sensors has a solution only if

(F1

⋃
X1)

⋂
Wm �= ∅ (10)

Proof Since the FDI problem without additional sensors has
no solution we have F1 �= ∅. If the condition (10) is not
satisfied, there is no edge connecting F1

⋃
X1 to the addi-

tional vertices of Z, then S∗(Σc
Λ) = S∗(ΣΛ). This implies

that S∗ remains the first bottleneck between F and Y and
then that the size of a maximal fault-output linking is the
same in ΣΛ and Σc

Λ. Then by Theorem 2 the FDI problem
with additional sensors has no solution.

To check if supplementary measurements allow to solve the
problem we could simply add the new output vertices, the
new edges, and verify on the modified graph that the condi-
tion is satisfied. However, another result which may drasti-
cally reduce the dimension of the problem is the following.

Proposition 3 The FDI problem with additional sensors
has a solution for the system ΣΛ if and only if the FDI prob-
lem with additional sensors has a solution for the system
Σ1Λ.

Proof
only if
Assume that the FDI problem with additional sensors
has a solution for the system ΣΛ, then on G(Σc

Λ) there
exists a maximal linking of size r from F to Z

⋃
Y in

Σc
Λ. Consider a sub-linking of this linking containing the

paths with initial vertex in F1. This sub-linking contains
a maximal linking from F1 to Z

⋃
Y1 of size dim(F1).

Therefore the FDI problem with additional sensors has a
solution for Σ1,Λ.
if

Assume now that the FDI problem with additional sensors
has a solution for the system Σ1Λ. Then there exists a
maximal linking of size dim(F1) from F1 to Z

⋃
Y1 in

Σc
1Λ. Since S∗ is a minimal separator such that the vertices

of F/F1 lie in S∗, there exists a maximal linking from S∗

to Y of size dim(S∗). From these two linkings it is easy to
construct a size r linking from F to Z

⋃
Y . Then the FDI

problem with additional sensors has a solution for ΣΛ.
This result is of practical interest since we can restrict
the analysis to the subsystem Σ1,Λ which can be of much
lower dimension than ΣΛ.

Consider again our example. Using Theorem 2 one can
see that the FDI problem without additional sensors has
no solution because r = 3 and k = 2. Add now
two additional sensors z1 and z2 with matrices D =[

λ8 λ9 0
0 λ10 λ11

]
, N =

[
0 0 0
0 0 λ12

]
.

From the construction of Σ1,Λ we have F1 = {f1, f2},
X1 = {x1}, Y1 = {x2}. The corresponding graph G(Σc

1Λ)
is given in Figure 2.

�f2

�f1

�

x2

�

x1

� z2

� z1

�

� �

�

Figure 2. Graph G(Σc
1Λ)

It is clear that the sensor z2 will not help for solving the
FDI problem. In fact the FDI problem with additional mea-
surements has a solution since the condition of Theorem 2
is satisfied on Σc

1Λ. k = r = 2, there is a linking of size 2
from F1 to (Y1

⋃
Z), namely (f1, x1, z1) and (f2, x2).

5 Bipartite graph and optimal sensor loca-
tion

In section 3 we have presented a graph G(ΣΛ) which can
be naturally associated with a structured system ΣΛ. This
graph gives a visual representation of the internal struc-
ture and the solvability of several structural problems can
be stated in a very pedagogical way in terms of this graph.
We will present now another representation in terms of a bi-
partite graph, although probably less appealing in terms of
visualization, this representation is better suited for efficient
computations. We will now introduce this graph.

5.1 Bipartite graph of a system

We consider a linear structured system ΣΛ of type (7) as
previously. The bipartite graph of this system is B(ΣΛ) =
(V, V ′, E), where we give a new meaning to V and E. The



sets V and V ′ are two disjoint vertex sets and E is the
edge set. The vertex set V is given by F ∪ X1, the ver-
tex set V ′ is given by X2 ∪ Y , with F = {f1, . . . , fr}
the set of fault vertices, X1 = {x1

1, . . . , x
1
n} the first set of

state vertices, X2 = {x2
1, . . . , x

2
n} the second set of state

vertices and Y = {y1, . . . , yp} the set of output vertices.
Notice that here we have split each state vertex xi of G
into two vertices x1

i and x2
i . Denoting (v, v′) for an edge

from the vertex v ∈ V to the vertex v′ ∈ V ′, the edge
set E is newly described by EA ∪ EL ∪ EC ∪ EM with
EA = {(x1

j , x
2
i )|Aij �= 0}, EL = {(fj , x

2
i )|Lij �= 0},

EC = {(x1
j , yi)|Cij �= 0} and EM = {(fj , yi)|Mij �= 0}.

In the latter, for instance Aij �= 0 means that the (i, j)-th
entry of the matrix A is a parameter (a nonzero). We com-
plete this graph by all the ”horizontal edges” of the type
(x1

i , x
2
i ) for i = 1, . . . , n.

To the composite system Σc
Λ defined in (6) we can associate

the bipartite graph Bc using the rules given for B(ΣΛ).
Let us consider a general bipartite graph B = (V, V ′, E) as
follows. The sets V, V ′ are two disjoint vertex sets and E
is the edge set, where all edges have the form (v, v′) with
v ∈ V and v′ ∈ V ′. These graphs received a considerable
attention in the literature on combinatorics. A matching in
a bipartite graph B = (V, V ′, E) is an edge set M ⊆ E
such that the edges in M have no common vertex. The car-
dinality of a matching, i.e. the number of edges it consists
of, is also called its size. The maximal matching problem
is the problem of just finding a matching of maximal car-
dinality. This problem can be solved using very efficient
algorithms based on alternate augmenting chains or ideas
of maximum flow theory [12]. This notion allows allows a
simple characterization of the generic rank of a structured
system in terms of its bipartite graph [7].

Theorem 3 Consider a linear structured system of type (7)
with bipartite graph B(ΣΛ) and transfer matrix TΛ(s). The
generic rank of TΛ(s), g-rank TΛ(s), is equal to the size of
a maximal matching in B(ΣΛ) minus n.

Let us now consider a weighted bipartite graph, i.e. a bipar-
tite graph B = (V, V ′, E), for which a real number w(e) is
associated to each edge e ∈ E. The weight of a matching
M ⊆ E is defined as w(M) =

∑
e∈M w(e). The optimal

µ-matching problem consists of finding a matching M of
size µ such that w(M) is maximal (or minimal). Again,
there exist a lot of efficient algorithms to solve this prob-
lem, among them there is the famous Hungarian method
[11, 13]. The classical software packages in operations re-
search contain optimized versions of these algorithms.

5.2 Optimal sensor location for FDI

Let us come back to our main problem. We assume that
the FDI problem on the composite system Σc

Λ in (8) with
additional sensors has a solution. We look for a minimal
cost solution to be actually implemented on the system. To
any edge of terminal vertex zi we associate the weight ci

which is the cost of the i-th sensor. The other edges have
weight 0. We get a weighted graph denoted by Bw(Σc

Λ).

Then we have the following result.

Theorem 4 Consider a structurally observable linear
structured system of type (8) with r faults, n states, q addi-
tional sensors, and the associated weighted bipartite graph
Bw(Σc

Λ). The optimal additional sensors for the FDI prob-
lem are given by the zi’s belonging to a minimal cost match-
ing of size n + r in Bw(Σc

Λ), if any.

Proof
When the FDI problem with additional sensors has a so-
lution, from Theorem 2 there exists a size r fault-output
linking in G(Σc

Λ). Among all such possible linkings, con-
sider one of minimal weight. The cost of such a minimal
weight linking corresponds to the sum of the costs of the
sensors zi actually used. Notice that for any sensor zi there
is at most one edge with terminal vertex zi appearing in a
linking. Therefore, the cost ci of the sensor zi appears only
once in the total cost if zi is a vertex of the chosen linking.
The cost ci of zi does not appear in the total cost in the case
where zi does not belong to the linking.
Consider now the bipartite graph Bw(Σc

Λ) and a minimal
cost matching of size n + r in Bw(Σc

Λ). It is proved in [7]
that any matching of size n + r in Bw(Σc

Λ) corresponds in
G(Σc

Λ) to:

• a fault-output linking of size r,

• a set of circuits joining state vertices,

• a set of fault-state paths,

• a set of state-output paths.

From our definition of weights, the above mentioned
circuits, fault-state paths and state-output paths with final
vertex in Y , have zero cost. Consider now a state-output
path (xi1, xi2, . . . , xil, zi) with final vertex in Z, which
is in one to one correspondence with the following set
of edges in Bw(Σc

Λ): (x1
i1, x

2
i2), (x

1
i2, x

2
i3), . . . , (x

1
il, zi)

belonging to an optimal matching of size n+ r in Bw(Σc
Λ).

Replacing these edges by the set:
(x1

i1, x
2
i1), (x

1
i2, x

2
i2), . . . , (x

1
il, x

2
il) would lead to another

maximal matching of lower cost, which is a contradiction.
Then in a minimal cost solution no state-output path with
final vertex in Z would appear.
We have proved that an optimal matching of size n + r
in Bw(Σc

Λ) corresponds to an optimal fault-output linking
of size r in G(Σc

Λ) with the same cost. This matching
provides us with the optimal additional sensors to be
implemented, in fact the zi’s which belong to this optimal
matching.
Let us consider again our example. The bipartite graph
corresponding to the system Σc

1Λ of Figure 2, is given in
Figure 3. Notice that here x2 plays the role of an output for
Σc

1Λ.
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Figure 3. Bipartite graph B(Σc
1Λ)

The size of a maximal matching in this graph is clearly 3.
Using Theorem 3 we get n + r = 3, and from Theorems 1
and 2 it appears that the FDI problem with additional sen-
sors has a solution because k = 3 − 1 = r = 2. In this
case the optimal sensor location is trivial since z1 belongs to
any size 3 matching, then this sensor must be implemented
whatever its cost, while the additional sensor z2 is useless.

6 Concluding remarks

In this paper we have considered a particular FDI problem
and we concentrated on the case when this problem has no
solution using the measurements available on the system.
We Considered that new sensors could be implemented on
the system with some cost. Then we solved the problem of
the optimal choice of additional sensors to be implemented
to achieve the FDI at a minimal cost. The result was ex-
pressed on the bipartite graph of the system and amounts to
solve a very classical problem of combinatorial optimiza-
tion.
Extensions of the previous ideas are under investigation for
more complex cases of the FDI problem.
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