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BP 92101, 1 Rue de la Noë, 44321 Nantes Cedex 03, France

salah.laghrouche@irccyn.ec-nantes.fr ,
http://www.irccyn.ec-nantes.fr

Keywords: Nonlinear systems, uncertainty, higher order slid-
ing mode, optimal control.

Abstract

In this paper, a new robust higher order sliding mode controller
for uncertain minimum-phase nonlinear systems is designed.
The problem is solved in three steps: a) the higher order sliding
mode problem is formulated in input-output term; b) the prob-
lem is viewed in uncertain linear context by considering uncer-
tain nonlinear functions as bounded non structured parametric
uncertainties; c) following the optimal sliding-mode design for
linear systems, a time varying manifold is designed through the
minimization of a quadratic cost function over a finite time in-
terval with a fixed final state. The control law which engenders
the sliding on the time varying surface allows the establishment
of an rth order sliding mode. The designed controller is well-
adapted to practical implementation and all the features of lin-
ear quadratic control can be used to synthesize the controller’s
gain.

1 Introduction

It is well known that the standard sliding mode features are high
accuracy and robustness with respect to various internal and ex-
ternal disturbances. The basic idea is to force the state via dis-
continuous feedback to move on a prescribed manifold (called
thesliding manifold). Specific problem involved by this tech-
nique is the chattering effect,i.e. dangerous high-frequency vi-
brations of the controlled system. In [12], the author relates the
chattering behaviour to the discontinuity of the “sign” function
which appears in the control law on the sliding manifold. To
overcome this problem, one can replace the “sign” function in
a small vicinity of the surface by a smooth approximation; that
implies deterioration of accuracy and robustness. Note also that
there exist other approaches to reduce the effects of the chatter-
ing, by using observers [12], or generalized sliding mode con-
trollers [10].
Recently, a new approach called “higher order sliding mode”
has been proposed [1], [3], [6]. Instead of influencing the first
sliding manifold time derivative, the “sign” function is acting
on its higher time derivative. Keeping the main advantages of
the standard sliding mode control, the chattering effect is elim-
inated and higher order precision is provided. In the case of
second order sliding mode control (r = 2), many works have

given solutions. Several second order sliding mode algorithms
are proposed in [1], [3], [6]. Arbitrary-order sliding controller
for single-input single-output systems (SISO) with finite time
convergence has been proposed in [7]. At our best knowledge,
these works are the most complete published on therth order
sliding mode approach. The algorithm proposed in [7] is in-
spired by the so-called “terminal sliding modes control” [14].
By tuning only one “gain” parameter and from the knowledge
of the relative degree of the output [5], the controller allows
the tracking of smooth signals. The aim of this paper is to
present a new arbitrary-order sliding mode controller for uncer-
tain SISO minimum-phase nonlinear systems. The main objec-
tive of this new approach is to propose a controller for which
the implementation is simple, the convergence time is finite and
the robustness is ensured. The controller design combines stan-
dard sliding mode control with linear quadratic (LQ) one over
a finite time interval with a fixed final state [8]. The infinite-
horizon linear quadratic control has been used by [13], [12]
to synthesize sliding mode surfaces for multi-input linear sys-
tems. Actually, the problem of the higher order sliding mode
control of SISO minimum-phase uncertain systems can be for-
mulated in input-output terms only through the differentiation
of the sliding variable [7], and is equivalent to the finite time
stabilization of integrators chain with nonlinear uncertainties.
These latter are considered as bounded non structured para-
metric uncertainties: in this case, the system can be viewed as
an uncertain linear system. Then, following the optimal slid-
ing mode formulation for linear systems [12], and considering
the uncertain linear system, an optimal time varying switching
manifold is determined by minimizing a quadratic cost func-
tion over a finite time interval[t0, t f ] with a fixed final state.
The standard sliding mode over this manifold (which depends
on the sliding variableσ and its(r −1) first time derivatives)
leads to the establishment ofrth sliding mode in finite time with
respect toσ.
The algorithm needs the relative degreeρ [5] of the system with
respect to the sliding variableσ and the bounds of uncertain-
ties. This algorithm has several advantages: first, the conver-
gence time is fixeda priori via the parametert f and the control
law can be adjusted viat f and two weighting matricesPf and
Q. Furthermore, this strategy can be applied for all value of
sliding mode order (greater or equal to the relative degree). Fi-
nally, the structure of the controller is well-adapted to practical
implementations.
The paper is organized as follows. The linear quadratic opti-



mal control problem over a finite time interval with a fixed fi-
nal state is briefly recalled in Section 2. The problem of higher
order sliding mode control is stated in Section 3, in which it
is shown that the problem is equivalent to stabilize to zero an
uncertain linear system in finite time. The control strategy al-
lowing the establishment ofrth order sliding mode in finite time
is described in Section 4. Section 5 is devoted to illustrate the
features of the controller through application to the control of
a kinematic car model [7].

2 Background

2.1 Linear quadratic control over a finite time interval
with a fixed final state

Consider the controllable linear system

ẋ = Ax+Bu (1)

whereu∈ IRp is the control input andx∈ IRn is the state vector.
The objective of theLQ control over a finite time interval[t0, t f ]
with a fixed final state is to find a control lawu ∈ L2[0 ∞)
which minimizes the quadratic cost functional

J =
1
2
{xT(t f )Pf x(t f )+

Z t f

t0
(xTQx+uTRu)dt} (2)

for every initial statex0 and0≤ t0 < t f < +∞ under the final
state constraint

x(t f ) = xd(t f ) (3)

wherexd(t f ) is the desired final state.Pf , Q and R denote
the so-calledweighting matrices. Pf and Q are supposed to
be symmetrical and positive semidefinite, andRa symmetrical

positive definite matrix. Since the matrix

[
Q 0
0 R

]
is sym-

metrical and non-negative definite, there exist unique full rank
matrixC with elements inIR so that

Q = CT C. (4)

The solution to the previous problem is summarized in the fol-
lowing theorem.

Theorem 1 ([8]) Consider the linear system (1) with the pair
(A,B) controllable and the pair(C,A) observable. Then, over
the interval[t0, t f ], the optimal controlu that stabilizes (1) to
xd(t f ) in finite time for every initial state valuex0 and mini-
mizes the quadratic cost function (2) with respect to the linear
system (1) is given by

u(t) = −(R−1BTP(t)−R−1BTVH−1VT)x
−R−1BTVH−1xd(t f )

(5)

where P(t) ∈ IR(n−p)×(n−p) is the unique non-negative defi-
nite solution of the differential matrix Riccati equation (with
P(t f ) = Pf )

−Ṗ = ATP+PA+Q−PBR−1BTP, (6)

V ∈ IR(n−p)×(n−p) andH ∈ IR(n−p)×(n−p) are the solutions of

−V̇ = (A−BR−1BTP)TV, t ≤ t f , V(t f ) = I (7)

and
Ḣ = VTBR−1BTV, t ≤ t f , H(t f ) = 0 (8)

with I the unit matrix.

3 Problem formulation

Consider the nonlinear SISO system

ẋ = f (x)+g(x)u
y = σ(x, t) (9)

wherex∈ IRn is the state variable,u∈ IR is the input control and
σ(x, t) ∈ IR is the output function (sliding variable).f (x), g(x)
andσ(x, t) are smooth functions. In this section, it is shown that
the problem of higher order sliding mode control with respect
to σ(x, t) of nonlinear system (9) can be expressed in terms of
stabilization of a linear system with uncertainties. Consider the
nonlinear system (9), and assume that

H1. the relative degreeρ of system (9) with respect toσ is
known and the associated zero dynamics are stable.

H2. u∈ U = {u : |u| < uM} whereuM is a real constant; fur-
thermore, the solution of (9) is well defined∀ t ≥ 0.

The rth order sliding mode is defined through the following
definition

Definition 1 [1] Given the sliding variableσ, andr ∈ IN with
r ≥ 1. The“rth order sliding set” ofσ, denotedS r , is defined
as

S r = {x∈ X | σ = σ̇ = · · ·= σ(r−1) = 0} (10)

with X ⊂ IRn. The integerr is called “sliding mode order”.

Definition 2 [6] Consider the not-emptyrth order sliding set
S r , and assume that it is locally an integral set in the Filippov
sense, i.e. it consists of Filippov’s trajectories of the discontin-
uous dynamics system [4]. The behaviour of (9) satisfying (10)
is called “rth order sliding mode” with respect to the sliding
variableσ.

Definition 2 means that system (9) satisfies anrth order sliding
mode with respect toσ if its trajectories lie on the intersection
of the r − 1 manifolds σ = 0, σ̇ = 0, · · ·, σ(r−2) = 0 and
σ(r−1) = 0 in X .

Our control goal is to fulfill the constraintσ(x, t) = 0 in
finite time. Therth order sliding mode control approach allows
the finite time stabilization to zero of the sliding variable
σ and its r − 1 first time derivatives by defining a suitable
discontinuous control function which is either the actual
control if ρ = r, or its(r−ρ)th time derivative ifr > ρ.



• Case 1 : r = ρ. Introduce new local coordi-
nates z = (z1, · · · ,zr , · · · ,zn) where [z1,z2, · · · ,zr ]T =
[σ, σ̇, · · · ,σ(r−1)]T and[zr+1, · · · ,zn] are chosen so thatz is
a local state coordinates transformation. Then, the prob-
lem of higher order sliding mode control with respect toσ
is equivalent to the finite time stabilization of the follow-
ing system





żi = zi+1, i = 1, · · · , r−1
żr = a(z, t)+b(z, t)u
y = z1

(11)

with b =
∂

∂u

[
σ(r)

]
anda = σ(r)−bu.

• Case 2 : r > ρ. This case is more general: in fact, it
is necessary to increase the dimension of the system by
addition of the actual control inputu and itsr−ρ−1 first
time derivatives as state variables. Then, one gets a new
”extended” system

˙̄x = f̄ (x̄)+ ḡ(x̄)u(r−ρ)

=




f (x)+g(x)x̄n+1

x̄n+2
...

x̄n+r−ρ
0




+




0
0
...
0
1



·u(r−ρ) (12)

with x̄ = [x̄1 · · · x̄n x̄n+1 · · · x̄n+r−ρ]T =
[xT u u̇ · · · u(r−ρ−1)]T . Note that the relative degree of
(12) with respect toσ versus the “new” inputv = u(r−ρ)

equalsr. Assume that the extended system has stable zero
dynamics with respect toσ. Then, therth order sliding
mode with respect toσ is equivalent to the finite time sta-
bilization of system

{
żi = zi+1 i = 1, · · · , r−1
żr = ϕ(z, t)+ γ(z, t)v(t)

(13)
wherez = [z1 · · ·zr · · ·zn+r−ρ]T ∈ Z ⊂ IRn+r−ρ is a new
coordinates transformation such thatz1 = σ, z2 = σ̇, · · ·,
zr = σ(r−1), γ =

∂
∂v

[
σ(r)

]
andϕ = σ(r)− γ u.

Consider the following assumption

H3. Functionsϕ(z, t) andγ(z, t) are bounded uncertain func-
tions and, in the sequel of the paper, without loss of gener-
ality, γ(z, t) is supposed to be positive : there existKm∈ IR,
KM ∈ IR, C0 ∈ IR such that

0 < Km < γ(z, t) < KM

|ϕ(z, t)| ≤C0.
(14)

Under Assumption H3, the system (13) can be viewed as a
chain of integrators with uncertain bounded terms. Then, the
problem is stated as the finite time stabilization of (13) in
a linear uncertain context, while considering the nonlinear

functions γ and ϕ as bounded non structured parametric
uncertainties. One can summarize the problem statement of
higher sliding mode control in the following way:

Consider the nonlinear system (12) with a relative degree
r with respect toσ. The rth order sliding mode control with
respect toσ is equivalent to the finite time stabilization to zero
of the uncertain linear system

Ż1 = A11Z1 +A12Z2

Ż2 = ϕ+ γv
(15)

whereZ1 = [σ · · ·σ(r−2)]T , Z2 = σ(r−1), 0< Km < γ < KM, |ϕ| ≤
C0 andA11, A12 defined by

A11 =




0 1 . . . 0 . . .
...

.. .
.. .

.. .
.. .

...
.. .

.. .
.. .

.. .

0
...

... . . . 1

0
...

...
.. . 0




, A12 =




0
...
0
0
1




As previously mentioned , ifr = ρ, thenv = u ; if r > ρ, then
v = u(r−ρ) .

4 A solution to the rth order sliding mode con-
trol

4.1 Optimal switching manifold design

We suggest to stabilize the perturbed linear system (15) in finite
time while minimizing the following quadratic cost over a finite
time interval[t0, t f ] (t0 ≥ 0 andt f < +∞)

J =
1
2

Z(t f )TPf Z(t f )+
1
2

Z t f

t0
ZTQZdt, (16)

under the following fixed final states constraint

Z(t f ) = Zd(t f ) = 0 (17)

with Z = [ZT
1 ZT

2 ]T . The positive symmetrical matrixQ is
defined as

Q =
[

Q11 Q12

QT
12 Q22

]
(18)

whereQ11, Q12 andQ22 are((r−1)×(r−1))-, ((r−1)×(1))-
and(1×1)-dimensional matrices respectively. Criterion (16)
becomes

J =
1
2

Z t f

t0
ZT

1 Q11Z1 +2ZT
1 Q12Z2 +ZT

2 Q22Z2dt. (19)

Let ω defined as

ω = Z2 +Q−1
22 QT

12Z1. (20)

From (20), dynamics ofZ1 (15) and criterion (19) can be writ-
ten as

Ż1 = (A11−A12Q
−1
22 QT

12)Z1 +A12ω (21)



and

J =
1
2

Z t f

t0
ZT

1 (Q11−Q12Q
−1
22 QT

12)Z1 +ωTQ22ω dt.

(22)
In (21), considerZ1 as the state variable, andω as the control
input; the problem leads back to the resolution of theLQ prob-
lem (22) for the linear time invariant system (21) formulated in
section 2.2. By analogy with Theorem 1, one gets

Theorem 2 Consider the system (21) withQ22 > 0, pair
(A11 − A12Q

−1
22 QT

12,A12) controllable and pair (C,A11 −
A12Q

−1
22 QT

12) observable with

CTC = Q11−Q12Q
−1
22 QT

12 (23)

Then, over the finite time interval[t0, t f ], a controlω stabilizing
(21) to Z(t f ) = 0 in finite time and minimizing the quadratic
cost function (22), with respect to the linear invariant system
(21) for every initial valueZ(t0), is given by

ω = −(Q−1
22 AT

12P(t)−Q−1
22 AT

12V(t)H(t)−1V(t)T)Z1
(24)

whereP(t) ∈ IR(r−1)×(r−1) is the unique solution to the differ-
ential Riccati equation

−Ṗ = P(A11−A12Q
−1
22 QT

12)+(A11−A12Q
−1
22 QT

12)
TP

−PA12Q
−1
22 AT

12P+(Q11−Q12Q
−1
22 QT

12) (25)

with a given P(t f ) = Pf . V ∈ IR(r−1)×(r−1) and H ∈
IR(r−1)×(r−1) are the solutions to two linear differential equa-
tions (t ≤ t f , V(t f ) = I andH(t f ) = 0)

−V̇ = (A11−A12Q
−1
22 QT

12−A12Q
−1
22 AT

12P)TV, (26)

and
Ḣ = VTA12Q

−1
22 AT

12V. (27)

The controllability of(A11,A12) is sufficient to ensure the con-
trollability of (A11−A12Q

−1
22 QT

12,A12). Moreover, the positivity
condition onQ ensures thatQ22 > 0 (so thatQ−1

22 exists) and
Q11−Q12Q

−1
22 QT

12 > 0. Then, there exist unique full rank ma-
trix C with elements inIR such thatQ11−Q12Q

−1
22 QT

12 = CTC
and the pair(C,A11−A12Q

−1
22 QT

12) is observable [12]. From
(20)-(24) and by analogy with Theorem 1 under constraint
Z(t f ) = 0, the optimal vectorZ2 is a function of vectorZ1 and
has the following form

Z2 = −(Q−1
22 AT

12P(t)−Q−1
22 AT

12V(t)H(t)−1

V(t)T +Q−1
22 QT

12)Z1. (28)

Let S(Z, t) defined by

S(Z, t) = Z2 +(Q−1
22 AT

12P(t)−Q−1
22 AT

12V(t)H(t)−1

V(t)T +Q−1
22 QT

12)Z1. (29)

EquationS(Z, t) = 0 describes the desired dynamics which sat-
isfy the finite time stabilization of vector[ZT

1 ZT
2 ]T to zero and

minimize the quadratic cost function (19). Theoptimal switch-
ing manifoldis defined as

S = {x∈ X | S(Z, t) = 0} (30)

on which system (15) is forced to slide on via the discontinuous
controlv.

4.2 Controller design

We focus the attention to the design of the discontinuous vector
control law which drives and constrains the system (12) to lie
on S in finite time.

Theorem 3 Consider the extended nonlinear system (12) with
a relative degreer with respect to the sliding variableσ(x, t).
Suppose that hypothesesH2 andH3 are fulfilled and the system
is minimum phase. LetS∈ IR a function defined as

S= σ(r−1) +(Q−1
22 AT

12P−Q−1
22 AT

12VH−1VT

+Q−1
22 QT

12) ·
[
σ σ̇ · · · , σ(r−2)

]T (31)

with the matrix A12 defined by (16),P(t) the unique non-
negative definite solution of the differential matrix Riccati
equation (25) (with a givenP(t f ) = Pf ), V andH the solutions
of equations (26) and (27) andQ is a symmetrical and posi-
tive matrix defined by (18). Then, the control inputu whose the
(r−ρ)th time derivative is

v = u(r−ρ) =−α sign(S(σ, σ̇, · · · ,σ(r−1), t)) (32)

with

α≥ C0 +Θ
Km

and (33)

Θ > Max(|Ψ ·




σ̇
σ̈
...

σ(r−1)


+∆ ·




σ
σ̇
...

σ(r−2)


 |) (34)

where

Ψ = Q−1
22 AT

12P−Q−1
22 AT

12VH−1VT +Q−1
22 QT

12

∆ = Q−1
22 AT

12 · (Ṗ−V̇H−1VT −V ˙(H−1)VT

−VH−1 ˙(VT)) (35)

with Ṗ, V̇ and Ḣ defined respectively by (25)-(26)-(27), leads
to the establishment ofrth order sliding mode with respect to
σ by attracting each trajectory in finite time. The convergence
time ist f .

Proof. The finite time stabilization to zero of vectorZ =
[ZT

1 ZT
2 ]T = [σ σ̇ · · · σ(r−1)]T via the minimization of (16) is

realized by sliding on the optimal switching manifold

S = {x∈ X | σ(r−1) +(Q−1
22 AT

12P(t)−Q−1
22 AT

12V(t)

H(t)−1V(t)T +Q−1
22 QT

12) · [σ σ̇ · · · σ(r−2) ]T = 0} (36)



The design of a switching control function follows the conven-
tional path [12]: the variable structure controlv takes the form

v = −α sign(S) (37)

where the gainα is selected to satisfy the sliding mode condi-
tion [12]

Ṡ·S< 0. (38)

One gets

Ṡ = β+[ϕ+ γ · (−α ·sign(S))] (39)

with β given by

β = Ψ




σ̇
σ̈
...

σ(r−1)


+∆




σ
σ̇
...

σ(r−2)


 (40)

where

Ψ = Q−1
22 AT

12P−Q−1
22 AT

12VH−1VT +Q−1
22 QT

12

∆ = Q−1
22 AT

12 · (Ṗ−V̇H−1VT −V ˙(H−1)VT

−VH−1 ˙(VT)). (41)

To satisfy (38), the(r−ρ)th time derivative of the controlv =
u(r−ρ) =−α ·sign(S) must dominate in (39). It means formally
that inequalityγ ·α > β + ϕ implies ṠS< 0 in finite time. A
sufficient condition is

min(|γ|) ·α > Max(|β|)+Max(|ϕ|). (42)

Since the vector[σ σ̇ · · · σ(r−2) σ(r−1)]T , P(t), V(t) andH(t)
are bounded functions, then functionβ can be bounded by a
positive real numberΘ. From (42), one derives that gainα has
to be tuned so thatα > (Θ+C0)/Km to ensure (38).

5 An academic example

This part displays the control of a simple kinematic model of a
car [7, 9]. It has been chosen to illustrate the control strategy
previously exposed, and also to compare the results obtained
by our approach to the results proposed in [7]. Then, the tra-
jectories, the initial values of the state variables and the simu-
lations have been made, as accurately as possible, in the same
conditions as [7]. The car model is

ẋ1 = w·cos(x3)
ẋ2 = w·sin(x3)
ẋ3 = w/l · tan(x4)
ẋ4 = u

(43)

where x1 and x2 are the cartesian coordinates of the rear-
axle middle point,x3 the orientation angle andx4 the steer-
ing angle. u is the control input. w is the longitudinal ve-
locity (w = 10m/s), andl the distance between the two axles

(l = 5 m). The goal is to steer the car from a given initial po-
sition to the trajectoryx2 = g(x1) = 10 sin(0.05x1)+5; all the
state variables are assumed to be measured in real time. Let
define the outputσ(x) = x2−g(x1). The relative degree of (43)
with respect toσ equals 3. In order to avoid chattering phe-
nomena, we propose to steerσ to zero using4th order sliding
mode control as in [7]. In this case, the control derivativev= u̇
is viewed as the control instead ofu, which is considered as a
new state coordinate. LetZ1 andZ2 denote

Z1 =




σ
σ̇
σ̈


 and Z2 = [σ(3)]. (44)

Then, according to Section 3, the4th order sliding mode with
respect toσ is equivalent to the finite time stabilization to zero
of the following system

Ż1 =




0 1 0
0 0 1
0 0 0


 ·Z1 +




0
0
1


 ·Z2

:= A11 ·Z1 +A12 ·Z2

Ż2 = ϕ+ γ ·v.

(45)

Since the state variables are bounded, functionsϕ and γ are
bounded withγ > 0. By using the control design of the previous
section for the synthesis of a4th order sliding mode controller,
and from (31), one gets

S = σ(3) +(Q−1
22 AT

12P(t)−Q−1
22 AT

12V(t)H(t)−1V(t)T

+Q−1
22 QT

12) · [σ σ̇ σ̈ ]T . (46)

The choice of weighting matrixQ is as follows

Q11 =




1000 0 0
0 1000 0
0 0 1000


 , Q12 =




0
0
0




andQ22 = 1000. The choice ofQ is made to obtain realistic
value of the input. The weighting matrixP(t f ) = Pf has been
taken equal to 03×3, andt f equals 10 sec. The control inputv
is defined as

v = u̇ =−α ·sign(S). (47)

Gainα must satisfy condition (33) and is tuned asα = 2. The
sampled time (τ = 10−3s) is the same as in [7], whereas the
initial state variables conditions are more constraining. Figure
1 displays the tracking ofg(x1) by x2; note the absence of chat-
tering phenomena. In Figure 2, the convergence to zero ofσ
and its first three derivatives is put into evidence; this conver-
gence is done in the time interval defined byt f . Figure 3 dis-
plays the state variablex4, which is the physical input [7] and
on which no chattering appears. The comparison between these
results and [7] allows to conclude that the present approach, ap-
plied to this specific example, seems to be more efficient from a
”chattering” point of view (see for example the time derivatives
of σ). Note also two additional advantages of this approach :
the relative simplicity of the control law (onlyt f andQ must
be tuned), and the possibility to statea priori the convergence
time.



6 Conclusion

A methodology for the design of a robust higher order slid-
ing mode controller with a simple structure for a class of SISO
nonlinear uncertain systems has been presented. The problem
is formulated in an uncertain linear context to allow the syn-
thesis of a control law which uses the good features of optimal
linear quadratic control. The controller is able to steer to zero
in finite time the output function of any uncertain smooth SISO
minimum-phase dynamic system with known relative degree.
The effectiveness of the method is shown through simulation
results of a car control.
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Figure 1: Referenceg(x1) (m) and current trajectoryx2 (m)
versusx1 (m).
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Figure 2: Surface and its 3 first time derivatives versus time
(sec).
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Figure 3: Steering anglex4 (rad) versus time (sec).
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