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ing mode, optimal control. are proposed in [1], [3], [6]. Arbitrary-order sliding controller
for single-input single-output systems (SISO) with finite time
Abstract convergence has been proposed in [7]. At our best knowledge,

these works are the most complete published orrtherder
In this paper, a new robust higher order sliding mode controligiding mode approach. The algorithm proposed in [7] is in-
for uncertain minimum-phase nonlinear systems is designégired by the so-called “terminal sliding modes control” [14].
The problem is solved in three steps: a) the higher order slidiBy tuning only one “gain” parameter and from the knowledge
mode problem is formulated in input-output term; b) the prolef the relative degree of the output [5], the controller allows
lem is viewed in uncertain linear context by considering uncéhe tracking of smooth signals. The aim of this paper is to
tain nonlinear functions as bounded non structured parameffesent a new arbitrary-order sliding mode controller for uncer-
uncertainties; c) following the optimal sliding-mode design fdain SISO minimum-phase nonlinear systems. The main objec-
linear systems, a time varying manifold is designed through ttiee of this new approach is to propose a controller for which
minimization of a quadratic cost function over a finite time inthe implementation is simple, the convergence time is finite and
terval with a fixed final state. The control law which engendete robustness is ensured. The controller design combines stan-
the sliding on the time varying surface allows the establishmetard sliding mode control with linear quadratic (LQ) one over
of anrt" order sliding mode. The designed controller is well finite time interval with a fixed final state [8]. The infinite-
adapted to practical implementation and all the features of liperizon linear quadratic control has been used by [13], [12]
ear quadratic control can be used to synthesize the controllé@synthesize sliding mode surfaces for multi-input linear sys-
gain. tems. Actually, the problem of the higher order sliding mode
control of SISO minimum-phase uncertain systems can be for-
mulated in input-output terms only through the differentiation
of the sliding variable [7], and is equivalent to the finite time

Itis well known that the standard sliding mode features are higpabilization of integrators chain with nonlinear uncertainties.
accuracy and robustness with respect to various internal and Ekese latter are considered as bounded non structured para-
ternal disturbances. The basic idea is to force the state via dRtric uncertainties: in this case, the system can be viewed as
continuous feedback to move on a prescribed manifold (call@d uncertain linear system. Then, following the optimal slid-
the sliding manifold. Specific problem involved by this tech-ing mode formulation for linear systems [12], and considering
nique is the chattering effedte. dangerous high-frequency vi-the uncertain linear system, an optimal time varying switching
brations of the controlled system. In [12], the author relates tAeanifold is determined by minimizing a quadratic cost func-
chattering behaviour to the discontinuity of the “sign” functiofion over a finite time intervalto, t¢] with a fixed final state.
which appears in the control law on the sliding manifold. Téhe standard sliding mode over this manifold (which depends
overcome this problem, one can replace the “sign” function ff) the sliding variables and its(r — 1) first time derivatives)

a small V|C|n|ty of the surface by a smooth approximation; thaads to the eStainShmentrélf Slldlng mode in finite time with
implies deterioration of accuracy and robustness. Note also tFRfPect ta.

there exist other approaches to reduce the effects of the chattée algorithm needs the relative degpe8] of the system with

ing, by using observers [12], or generalized sliding mode cofesPect to the sliding variable and the bounds of uncertain-
trollers [10]. ties. This algorithm has several advantages: first, the conver-
Recently, a new approach called “higher order sliding modgence time is fixed priori via the parametdf and the control

has been proposed [1], [3], [6]. Instead of influencing the fir&w can be adjusted via and two weighting matriceBs and
sliding manifold time derivative, the “sign” function is actingQ- Furthermore, this strategy can be applied for all value of
on its higher time derivative. Keeping the main advantages 9fding mode order (greater or equal to the relative degree). Fi-
the standard sliding mode control, the chattering effect is elif@lly, the structure of the controller is well-adapted to practical
inated and higher order precision is provided. In the caseiBiPlementations.

second order sliding mode contral £ 2), many works have The paper is organized as follows. The linear quadratic opti-

1 Introduction



mal control problem over a finite time interval with a fixed fiV € R("P*("-P) andH ¢ R"P)*("P) gre the solutions of
nal state is briefly recalled in Section 2. The problem of higher )

order sliding mode control is stated in Section 3, in which it -V =(A-BR'BTP)TV, t<t;, V(ty)=I ()
is shown that the problem is equivalent to stabilize to zero %

uncertain linear system in finite time. The control strategy al-

b _yT 1RT _

lowing the establishment of" order sliding mode in finite time H=VIBRTBIV, ts<t, H()=0 ®)
is described in Section 4. Section 5 is devoted to illustrate théh | the unit matrix. -
features of the controller through application to the control of

a kinematic car model [7]. 3 Problem formulation

2 Background Consider the nonlinear SISO system
2.1 Linear quadratic control over a finite time interval X - f(x)t+ g(x)u
with a fixed final state y = o(xt)

wherex € R" is the state variabley € Ris the input control and
o(x,t) € Ris the output function (sliding variable}.(x), g(x)

X = AX+Bu 1) ando(x,t) are smooth functions. In this section, itis shown that

the problem of higher order sliding mode control with respect

whereu € RP is the control input anel € R" is the state vector. t0 0(x,t) of nonlinear system (9) can be expressed in terms of
The objective of th& Q control over a finite time intervaly, t{] stabilization of a linear system with uncertainties. Consider the
with a fixed final state is to find a control lawe L[0 ) nonlinear system (9), and assume that
which minimizes the quadratic cost functional

9)

Consider the controllable linear system

H1. the relative degre@ of system (9) with respect to is
] = %{XT (t)Pex(ty ) +/tf XTQx+u"RUd}  (2) known and the associated zero dynamics are stable.
to

H2. ue U= {u: |u| < uw} whereuy is a real constant; fur-
for every initial statexg and0 <ty < t; < +oo under the final thermore, the solution of (9) is well defingd > 0.
state constraint
X(ts) = xq(ts) (3) Therth order sliding mode is defined through the following

wherexq(ts) is the desired final statePs, Q and R denote definition

the so-calledveighting matrices P; and Q are supposed to

; - e - Definition 1 [1] Given the sliding variables, andr € N with
be symmetrical and positive semidefinite, ahd symmetrical s . ;
y b Q Y. r > 1. The“rt" order sliding set” ofa, denoteds’, is defined

0 R is sym- as

metrical and non-negative definite, there exist unique full rank
matrix C with elements ifR so that

positive definite matrix. Since the matrix
S = {xexX|o=6=---=0""D=0} (10)

with X C R". The integer is called “sliding mode order”. g
Q=C'cC.
Jpefinition 2 [6] Consider the not-empty" order sliding set

S', and assume that it is locally an integral set in the Filippov
sense, i.e. it consists of Filippov's trajectories of the discontin-

Theorem 1 ([8]) Consider the linear system (1) with the pairuous dynamics system [4]. The behaviour of (9) satisfying (10)

wpth .- ” . .y
(A, B) controllable and the paifC,A) observable. Then, overfaﬁgg?gor order sliding mode” with respect to the sliding
the interval[t,t¢], the optimal controlu that stabilizes (1) to ' u

X4(ts) in finite time for every initial state valugy and mini-

mizes the quadratic cost function (2) with respect to the lineR€finition 2 means that system (9) _satisfiesr‘érorqler sliding
system (1) is given by mode with respect to if its trajectories lie on the intersection

of the r — 1 manifoldsoc =0, 6 =0, ---, 62 =0 and
ut) = —(RIBTP(t)—RIBTVHIVT)x ) oY =0in x.
—RIBTVH Ix4(tf)

The solution to the previous problem is summarized in the f
lowing theorem.

Our control goal is to fulfill the constraint(x,t) = 0 in
where P(t) € R(M-P)x("-P) js the unique non-negative defifinite time. Therth order sliding mode control approach allows
nite solution of the differential matrix Riccati equation (witdhe finite time stabilization to zero of the sliding variable
P(ts) = Ps) o and itsr — 1 first time derivatives by defining a suitable

discontinuous control function which is either the actual

—P = ATP+PA+Q-PBRIBTP, (6) controlifp=r, orits(r — p)™" time derivative ifr > p.



eCase 1 : r =p. Introduce new local coordi- functionsy and ¢ as bounded non structured parametric
nates z = (zy,---,%,---,Z,) Wwhere [z1,2,---,z]" = uncertainties. One can summarize the problem statement of
[0,0,---,6" YT and[z.1,--,2z)] are chosen so thatis  higher sliding mode control in the following way:
a local state coordinates transformation. Then, the prob-
lem of higher order sliding mode control with respectto Consider the nonlinear system (12) with a relative degree
is equivalent to the finite time stabilization of the follow+ with respect too. Ther" order sliding mode control with
ing system respect tas is equivalent to the finite time stabilization to zero

of the uncertain linear system

3 = 7, i=1---,r—1 .
z = a(zt)+b(zt)u (11) Zy = AuZi+Alp (15)
y =z Z; = 0+wW
_ 9 whereZy =[0---002|T,Z, =0V, 0 < K<y <Ky, ¢ <
with b= 2 [0-(")} anda= o) —bu. Co andAq1, Ar» defined by
e Case 2 :r > p. This case is more general: in fact, it ro 1 ... 0 ...7
is necessary to increase the dimension of the system by o 0
addition of the actual control inputand itsr — p — 1 first ' ' ' ' ' :
time derivatives as state variables. Then, one getsanewpa,, — | @ . -, "0 | A= 0
"extended” system . . 0
- o . . ... 1
X o= f(0+gxure o 1
_ 0 . . . 0
£(X) + g(X) %1 0 - :
Xn+2 0 As previously mentioned , if = p, thenv=u; if r > p, then
— . + : . u(rfp) (12) V= u<r7p> .
)?n"rr—p 0 . th . g
0 1 4 A solution to the r™ order sliding mode con-
Lo _ _ . trol
with X =[a - X X1 o Xrpl = . o . .
X" u U .- uf=P-D]T Note that the relative degree of4-1 Optimal switching manifold design

(12) with respect tay versus the “new” inpuy = u("—P)
equals. Assume that the extended system has stable z
dynamics with respect to. Then, thert" order sliding
mode with respect to is equivalent to the finite time sta-

We suggest to stabilize the perturbed linear system (15) in finite
e while minimizing the following quadratic cost over a finite
time interval[to, t¢] (to > 0 andt; < +o)

bilization of system 1 1 rt
Y I = 2P+ é/ ZTQzdt,  (16)
Z = Zu i=1---,r—1 fo
Z = 0(zt)+y(zt)v(t) under the following fixed final states constraint
(13)
wherez=(zi---z --Znyr—p|" € ZC R™ P is a new Z(ts) = Z4(tf) =0 (17)
coordinates trar:)sformanon such tit=0,2 =0, - it 7 — (z] ZI]T. The positive symmetrical matrig is
z =01 y= Y {0(”} andp = ol —yu. defined as
v Q = { Qu Qu2 ] (18)
Q, Q2

Consider the following assumption
whereQu1, Qr2andQzz are((r —1) x (r—1))-, ((r—1) x (1))-
H3. Functionsd(zt) andy(zt) are bounded uncertain func-and (1 x 1)-dimensional matrices respectively. Criterion (16)
tions and, in the sequel of the paper, without loss of gen&€cOMes

ality, y(z t) is supposed to be positive : there eXgic R, 14 _; - -
Km € R, Co € R such that J = > [0 Z; QuiZa + 223 QuoZo +Z; Q20 (19)
0 < Km<y(zt) <Knm Let w defined as
4z 1)] <Co. () o
W = ZZ + Q22 lezl. (20)

Under Assumption H3, the system (13) can be viewed as-gym (20), dynamics aZ; (15) and criterion (19) can be writ-
chain of integrators with uncertain bounded terms. Then, thg, 55

problem is stated as the finite time stabilization of (13) in _
a linear uncertain context, while considering the nonlinear Z1 = (A11—A12Q§21Q12)21+A12w (22)



and EquationS(Z,t) = 0 describes the desired dynamics which sat-
1t isfy the finite time stabilization of vectdZ] ZJ]T to zero and
J = 3 / Z{ (Qu1— Q12Q5, Q12)Z1 + ' Qo ct. minimize the quadratic cost function (19). Taptimal switch-
2.J (22) ing manifoldis defined as

In (21), consideiz; as the state variable, andaas the control S = {xex|SZzt)=0} (30)
input; the problem leads back to the resolution ofltkeprob-
lem (22) for the linear time invariant system (21) formulated i
section 2.2. By analogy with Theorem 1, one gets

an which system (15) is forced to slide on via the discontinuous
controlv.

Theorem 2 Consider the system (21) witQ,, > 0, pair 4.2 Controller design

—1AT - . , : :
(A1 le%Zsz Qi2,A12) cpntrollable and pair (C,A11 —  we focus the attention to the design of the discontinuous vector
A12Q5, Q;,) observable with control law which drives and constrains the system (12) to lie

- AT on S in finite time.
C'C =Qu-— QlZsz le (23)

. o Theorem 3 Consider the extended nonlinear system (12) with
Then, over the finite time interva, 7], a controlwstabilizing 5 e|ative degree with respect to the sliding variable(x,t).
(21) to Z(ts) = 0 in finite time and minimizing the quadrat|cSuppose that hypothesids andHj are fulfilled and the system
cost function (22), with respect to the linear invariant Systefd minimum phase. L&e R a function defined as
(21) for every initial valueZ(tp), is given by

S=0"Y + (QALP — QAL VH VT

© = —(QFALP() —QIALVMH(L) WV (1)T)Z; 217 (31)

whereP(t) € R™1*(" 1 is the unique solution to the differ-ith the matrixAy, defined by (16)P(t) the unique non-
ential Riccati equation negative definite solution of the differential matrix Riccati

: equation (25) (with a giveR(t;) = Ps), V andH the solutions

~P = P(A11—A120% QL) + (A1~ A1202 QL)' P 019 equati(gns)((26) anc? (27)(afr)@ is 2 symmetrical and posi-

—PALQy AP + (Qu1— Q12Q,0 Q1) (25) tive matrix defined by (18). Then, the control inpwthose the

(r —p)t" time derivative is

with a given P(ty) = Pr. V € RU*(-1 and H ¢ (1=p) , _ (-1)
R(—Dx(-1) gre the solutions to two linear differential equa- ¥ — Y ¥ =-asign¥o,0,--,6"77, 1)) (32)

tions ¢ <ts,V(tf) =1 andH(ts) = 0) with
Co+0
' ~10T 15T p\T a> and (33)
-V = (All - A12Q22 Q12 - A12Q22 AlZP) V, (26) Km
and _ .
H = VTARQ ALV (27) g g
. O>Max(W-| . A ) G4
O'(r*l) o‘(r*Z)

The controllability of(A11, A1) is sufficient to ensure the con-

trollability of (A117A12Q2‘21Q12,A12). Moreover, the positivity where

condition onQ ensures th > 0 (so thatQ, 1 exists) and _ _ . _

,? T Q22> 0 ( ) Qo2 ) QAP — QALVH VT + Q) Q1,

Q11— Q12Q5,Q4, > 0. Then, there exist unique full rank ma- TINT e T T

trix C with elements inR such thaQq; — Q12Q,3Q], =C'C A = QuAp (P-VH VI -V(H™)V

and the pairC,A1; — A12Q,7QJ,) is observable [12]. From ~VHYVT)) (35)

(22(3)-(34()) ?r?gob)t/'n?;?l%%}t/ovzmh Z:‘eg(r:?'?n tfurgii;;ogsga'%th P,V andH defined respectively by (25)-(26)-(27), leads

h( f)trr follow P 'f v 215 & funcl v 1 to the establishment af" order sliding mode with respect to
as the foflowing form 0 by attracting each trajectory in finite time. The convergence

_ _ _ ti ists.
Zy = —(QuALPE) — QALY OH(N) me st "
V()" +Q3 Q17 (28) Proof. The finite time stabilization to zero of vectar =
. (z] ZJ]" =0 6 --- o YT via the minimization of (16) is
LetS(Z,t) defined by realized by sliding on the optimal switching manifold
SZt) = Zo+(QuALP1) — ALV (HH(t) S ={xe X | 0"V +(QALP(t) - Qur ALV (1)

V()" + Q500 (29) HU) V(1) +QpQl) [0 - 62T =0} (36)



The design of a switching control function follows the conver(} = 5m). The goal is to steer the car from a given initial po-
tional path [12]: the variable structure contkdiakes the form sition to the trajectory,; = g(x;) = 10 sin(0.05x;) + 5; all the
state variables are assumed to be measured in real time. Let
v = —a signs) (37)  define the outputi(x) = Xo — g(x1). The relative degree of (43)
with respect too equals 3. In order to avoid chattering phe-

where the gaimx is selected to satisfy the sliding mode Cond'ﬁomena, we propose to staeto zero usingdth order sliding

tion [12] 5.S<0 38 mode control as in [7]. In this case, the control derivative u
o< b (38) is viewed as the control instead @f which is considered as a
One gets new state coordinate. L& andZ, denote
S = B+[d+y (—a-signS 39 o
B+ [0 +y-(—a-signs))] (39) SN - . )
with B given by (o)
o a Then, according to Section 3, tH&' order sliding mode with
(o) o} respect tay is equivalent to the finite time stabilization to zero
p = W : +4 : (40)  of the following system
o(r-1 g(r-2 01 0 0
1 = 0 0 1|-zz+|0] 2
where 0 0O 1 (45)
W = QuALP-QRALVH VT +Q,,Ql, = AL+ A2
A = QLAL-(P-VH VT _v(H1VT Z2 = Oy
_VHfl(V'T)). (41) Since the state variables are bounded, functiprendy are

bounded withy > 0. By using the control design of the previous
To satisfy (38), thér — p)!" time derivative of the control = section for the synthesis of4" order sliding mode controller,
u=P) = —a - sign(S) must dominate in (39). It means formallyand from (31), one gets

that inequalityy- o > 3+ ¢ implies SS< 0 in finite time. A (3 AT AT L T
sufficient condition is S =o0 t(?zz A12.P(.t.);Q22 ARV (HOH () V()
+Q55Q12) [0GG]". (46)

min -0 > Max Max . 42
(I¥D) o> IR+ (1o 42) The choice of weighting matri® is as follows
Since the vectofo ¢ --- (™2 o= Y|T, P(t), V(t) andH (t)
are bounded functions, then functifincan be bounded by a 1000 0 0 0
positive real numbe®. From (42), one derives that gainhas Qu=| 0 1000 0 |, Qui2=/|0

to be tuned so that > (© +Cp)/Km to ensure (38). 0 0 1000 0

andQy, = 1000 The choice ofQ is made to obtain realistic
value of the input. The weighting matri(t;) = Ps has been
taken equal to 4.3, andts equals 10 sec. The control input
5 An academic example is defined as _ _
v = u=-a-signs). (47)
This part displays the control of a simple kinematic model Oféaina must satisfy condition (33) and is tunedas- 2. The

car [7, 9]. It has been chosen to illustrate the control strategg pled time = 10-3s) is the same as in [7], whereas the
Erewously expohsed, r?nd alslo 0 compzzrg th(; re_l:%rt]:lts Ogta'ﬂ‘ﬁ al state variables conditions are more constraining. Figure
Dy our approac .to the results propose n [7]. Then, t e trf‘ﬂisplays the tracking a(x1) by x2; note the absence of chat-
jectories, the initial values of the state variables and the si

lati h b q el ble. in th ring phenomena. In Figure 2, the convergence to zem of
ations have been made, as accurately as possible, In € SgMei first three derivatives is put into evidence; this conver-
conditions as [7]. The car model is

gence is done in the time interval definedthy Figure 3 dis-

X, = W-CcogXs) plays the state variabbe, which is the physical input [7] and

Xo = W-sin(xs) on which no chattering appears. The comparison between these
%3 = w/l tanx) (43)  results and [7] allows to conclude that the present approach, ap-
X = u plied to this specific example, seems to be more efficient from a

"chattering” point of view (see for example the time derivatives
where x; and x, are the cartesian coordinates of the reaof o). Note also two additional advantages of this approach :
axle middle point,x3 the orientation angle anxl, the steer- the relative simplicity of the control law (onlyy andQ must
ing angle. u is the control input. w is the longitudinal ve- be tuned), and the possibility to stateriori the convergence
locity (w = 10my/s), andl the distance between the two axleime.



6 Conclusion [14]

A methodology for the design of a robust higher order slid-
ing mode controller with a simple structure for a class of SISO
nonlinear uncertain systems has been presented. The problem
is formulated in an uncertain linear context to allow the syn-
thesis of a control law which uses the good features of optimal
linear quadratic control. The controller is able to steer to zero
in finite time the output function of any uncertain smooth SISO
minimum-phase dynamic system with known relative degree.
The effectiveness of the method is shown through simulation
results of a car control.
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Figure 1: Referencg(x1) (m) and current trajectoryy (m)
versusx; (m).
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Figure 3: Steering angbe, (rad) versus timegeq.
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