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Abstract

The paper firstly presents the model of an irrigation canal, ob-
tained by linearizing Saint-Venant equations around a steady
state. Classical control politics for an irrigation canal are then
interpreted using automatic control tools. The time-delay from
upstream discharge to downstream water level induces a limi-
tation in the real-time performance of the controlled system for
the so-called distant downstream control, that is not present in
the local upstream control. A mixed controller combining dis-
tant downstream and local upstream control is proposed. The
problem is casted into theH∞ optimization framework, and
experimentally tested on an experimental canal located in Por-
tugal.

Keywords: Open-channel system, Saint-Venant model,H∞
control, Time Delay Systems, multivariable control.

1 Introduction

Water demand for irrigation purposes is an increasingly impor-
tant issue worldwide. Irrigation canals managers face conflict-
ing demands: they must satisfy water users (clients that pay
water and ask for an efficient service) and at the same time
manage the water resource by withdrawing from the resource
only the quantity of water needed.

This is a difficult task for open-channel systems, since there is
a long time-delay between the upstream water resource and the
user. Indeed, a drastic way to satisfy water demands would be
to let the maximum discharge flow in the canal, so that user
can withdraw water whenever they need it, letting the rest of
the discharge flow downstream. In practise, this solution leads
to a wastage of water resource, and necessitates an adaptation.
However, in traditional systems, there is no global informa-
tion available on the system, therefore only local regulations
are possible. This has lead to the so-called water turns, where
each user takes water during a pre-specified period of time. The
management constraints are then entirely put on the users.

The problem considered in this paper is the following: Can au-
tomatic control techniques maintain the water distribution effi-
ciency and at the same time improve the water resource man-
agement?

Modernization of irrigation canals, i.e. the use of automatic
control techniques can modify their traditional management by
using a distant downstream control [9]: in this case, the up-
stream gate of a pool is used to control the downstream wa-

ter level of the pool. This solution leads to a economic man-
agement of the water resource, since only the necessary water
is withdrawn from the resource. However, the real-time effi-
ciency of this solution is limited by the time-delay.

We propose in the paper to use automatic control techniques
to 1) interpret the two classical control structures (local up-
stream and distant downstream) as monovariable controllers,
2) show that the compromise between water resource manage-
ment and real-time efficiency can be solved by using a multi-
variable controller and 3) propose a methodology to realize the
desired compromise usingH∞ optimization.

The paper is structured as follows: the model (based on Saint-
Venant equations) is first presented, then the two classical con-
trol structures are interpreted as particular cases of a multivari-
able control architecture, then aH∞ control method is pro-
posed. The methodology is validated on an experimental canal
located in Portugal.

2 Canal description

The automatic canal used in the present study is a component of
the experimental facility of the Hydraulics and Canal Control
Center (NuHCC) of the University of́Evora (Portugal). A more
detailed description is given in [7].
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Figure 1: Schematic representation of the experimental canal

The experimental canal is a trapezoidal and lined canal, with
a general cross section of bottom width 0.15 m, sides slope
1:0.15 (V:H) and depth 0.90 m. The last downstream 7 m of
canal also have a rectangular cross section of width 0.7 m. The
overall canal is 145.5 m long and the average longitudinal bot-
tom slope is about1.5× 10−3. The design flow is 0.09 m3s−1.

A longitudinal view of the canal is schematized in figure 1.

The canal inlet is equipped with a motorized flow control valve,
that delivers a dischargeu1. The downstream end is controlled



with a rectangular sluice gateu2 (overshot gate).

An offtake p is located at the downstream end of the pool,
equipped with an electromagnetic flowmeter and a motorized
butterfly valve.

A water level sensor is installed within an offline stilling well
at the downstream end of the pool, measuring the downstream
water depthy. The sensor is of float and counter-weight type
attached by a stainless steel tape; this tape runs over a sprocket
wheel. The wheel movements are transmitted to a potentiome-
ter that transmits to the controller the analogical inputs corre-
spondent to the water surface.

3 Modelling of an irrigation canal

The linearized Saint-Venant equations and the model for hy-
draulic structures are presented in this section, leading to a
transfer matrix representation of the system (see [7] for a more
complete description).

3.1 Linearized Saint-Venant equations

The hydraulic behavior of an open-channel irrigation canal is
well described by the so-called Saint-Venant equations, which
are hyperbolic nonlinear partial differential equations involv-
ing the average dischargeQ(x, t) and the water depthY (x, t)
along one space dimensionx [1].

Considering small variations of water depthy(x, t) and dis-
chargeq(x, t) around stationary values defined byY0(x) (m)
and Q0(x) (m3/s) leads to the linearized Saint-Venant equa-
tions:
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tion slope,I the bed slope,F0 is the Froude numberF0 = V0
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andP0 is the wetted perimeter (m). Throughout the paper the
flow is assumed to be subcritical, i.e.F0 < 1.

The boundary conditions are the upstream and downstream dis-
chargesu1(t) = q(0, t) andq(X, t), with X the pool length.

The friction slopeSf0 is modelled with Manning-Strickler for-
mula [1]:

Sf0(x) =
Q2

0n
2

A0(x)2R0(x)4/3
(3)

with n the roughness coefficient (sm−1/3) andR0(x) the hy-
draulic radius (m), defined byR0 = A0/P0.

3.2 Linearized hydraulic structures equations

The hydraulic structure (over shot gate) is modelled using the
linearized equations [4]:

q(X, t) = k1y(X, t) + k2u2(t) (4)

with q(X, t) the discharge through the structure,y(X, t) the
water depth upstream of the structure,u2(t) the sill elevation.
Coefficientsk1, k2 are obtained by linearizing the structure
equation around a given functioning point, corresponding to
the hydraulic stationary regime.

3.3 Linear model for design

We proposed in [5] a method to compute the transfer matrix
for the linearized Saint-Venant equations. This model is ag-
gregated with the linearized hydraulic structures equations in
order to get the model for control design.

In the following, y denotes the controlled water level (down-
stream of the pool),G1(s) andG2(s) respectively the transfer
functions fromu1 andu2 to y, andG̃(s) the transfer function
from the perturbationp to y. The canal pool is therefore repre-
sented by:

y = G1(s)u1 + G2(s)u2 + G̃(s)p

wherey is the downstream water level,u1 the upstream control
(the upstream dischargeq(0, t)), u2 the downstream control
(the downstream sill elevation), andp is the downstream per-
turbation (corresponding to the unknown withdrawal).p acts as
an additive perturbation on the downstream dischargeq(X, t),
therefore the transfer function is given bỹG(s) = G2(s)/k2 .

3.4 Model analysis

We have shown in [5] that the transfer functions obtained from
Saint-Venant model have the following inner-outer factoriza-
tion [2]:

G1(s) = G1o(s)e−τ1s

G2(s) = G2o(s)

with τ1 the time-delay for downstream propagation and where
G1o andG2o are outer.

In the general case, the delayτ1 is obtained as:

τ1 =
∫ X

0

dx

V0(x) + C0(x)
(5)

The local transferG2 (relating the downstream controlu2 to
the outputy) is outer,while the distant oneG1 (relating the up-
stream controlu1 to the outputy) has an inner part which is a
pure time-delay. This remark may seem obvious for hydraulic
engineers, but has important implications in terms of control,
as will be demonstrated below.



Remark 1 (Simplified model) In order to clarify the dynam-
ics of the system, a simplified interpretation of this complex
model is given here. In a first approximation, a canal pool can
be viewed as a delayed integrator. This is in fact a good ap-
proximation of the system for low frequencies, where the mass
transport is predominant. For higher frequencies, the gravity
waves are predominant, one then gets an oscillating behavior.

The integrator gain can be linked to the derivative of the vol-
ume of the pool with respect to the downstream water elevation
Ad = ∂V

∂yX
. The time delay is obtained by equation (5). Includ-

ing the interaction with the hydraulic structure, a low frequency
approximation is therefore:

G1(s) ≈ e−τ1s

Ads+k1
and G2(s) ≈ − k2

Ads+k1
(6)

4 Real-time performance vs. water resource
management

As already mentioned in introduction, the control architecture
for a canal pool corresponds to a given compromise between
water resource management and the service to water users. In
this section, it is shown that a multivariable control architecture
offers enough free parameters to realize this compromise.

To this end, the two classical architectures used in canal control
(local upstream and distant downstream control) are shown to
be particular cases of a multivariable controller, each one being
specifically in charge of one of the control objectives. This
analysis finally leads to consider the multivariable architecture
as a means to mix the advantages of each solution.

4.1 Control objectives

A naive analysis of the control problem for irrigation canals
would be to consider that the control specifications can be re-
duced to rejecting unmeasured perturbations by controlling the
downstream water level. To reduce the problem to this classical
control problem neglects an essential aspect of the specifica-
tions: the water resource management. Indeed, even if a linear
description of the flow is locally licit, it hides the fact that wa-
ter flows from upstream to downstream. Then, the model is
valid for variations around a functioning point, and the sign of
the control variables corresponds to the sign of discharge vari-
ations upstream or downstream. The control architectures can
now be interpreted based on this remark.

In fact, a control architecture using the upstream control vari-
able leads to an economic water management, since e.g. faced
to a decreasing demand, the upstream discharge is decreased.
In other terms, the upstream control variable adapts to the con-
sumed discharge in the pool, therefore uses only the necessary
water to satisfy the effective water demand.

On the opposite, a control architecture using the downstream
control variable leads to an expensive water management. In-
deed, faced to a decreasing demand, the only way to maintain
the downstream water level by manipulating the downstream
control variable is to let the superfluous discharge go down-

stream.

After this short discussion, the control objectives can be clari-
fied:

• maintain the downstream water levely by rejecting un-
measured perturbations induced by water users,

• ensure that the effect of perturbationsp on the downstream
discharge have a zero mean value.

4.2 Multivariable architecture: a mixed control politic

In a canal pool, one has two control action variablesu1 andu2

in order to control one controlled variabley, the downstream
water level. The controller design problem leads to finding a
controllerK(s) that relates the tracking errore to the control
vector(u1, u2)

K(s) =
(

K1(s)
K2(s)

)

The open-loop transfer matrix is given by:

G(s)K(s) =
(

G1(s)K1(s) + G2(s)K2(s)
)

As shown in this section, this controller corresponds to the
combination of the two classical control architectures used in
canal control. Indeed, this controller can be written as the sum
of a distant downstream controller and a local upstream one:

G(s)K(s) = G1(s)K1(s)︸ ︷︷ ︸
Distant downstream contr.

+ G2(s)K2(s)︸ ︷︷ ︸
Local upstream contr.

4.3 Distant downstream control of a canal

Description

Distant downstream regulation of a canal pool consists in con-
trolling the downstream water levely by using the upstream
control variableu1. This corresponds toK2 = 0, and the
closed-loop system is then given by:





e = r − y
u1 = K1(s)e
y = G1(s)u1 + G̃(s)p

with r the reference water level ande the tracking error.

The water user sees the real-time performance as the ability
of the controller to reject unmeasured perturbations acting in
the pool. It is characterized by the modulus of the following
transfer function

e =
G̃(s)

I + G1(s)K1(s)
p = G̃(s)S1(s)p (7)

whereS1 is the sensitivity functionS1 = (1 + G1K1)−1. The
design consists in findingK1(s) such that|S1(jω)| is mini-
mum on the largest frequency bandwidth.



Performance limitation

We recall here an implication of a time-delay in the model. Let
us define the real-time performance of the controlled system as
the highest frequencyωs such asS1 stays below 1, or:

ωs = max{ω1 : |S1(jω)| < 1, ∀ω < ω1} (8)

Following the line of [8] and [3], it can be shown that

ωs ≤ π

3τ1
≈ 1

τ1

A pure time-delay therefore limits the maximal performance of
a controlled system.

4.4 Local upstream control of a canal

Description

Local upstream regulation of a canal pool consists in control-
ling the downstream water levely by using the downstream
control variableu2. In this case,K1 = 0 and the closed-loop
system is then given by:





e = r − y
u2 = K2(s)e
y = G2(s)u2 + G̃(s)p

In that case, the sensitivity is given by

e =
G̃(s)

I + G2(s)K2(s)
p = G̃(s)S2(s)p (9)

The design consists in findingK2(s) such that|S2(jω)| ≈ 0
on the largest bandwidth.

Performance

Contrarily to the distant downstream case, there is no delay
in the transfer functionG2(s) (and no right half-plane zeros).
Then, the achievable bandwidth has no structural limitation
(even if it is in practise limited by the actuators, transmission
delays and high frequency dynamics). This explains why the
local upstream control is more performing than distant down-
stream control from a monovariable point of view (in terms of
rejecting downstream perturbations).

4.5 Combining both politics

We have interpreted the two classical control politics for irri-
gation canals from a control point of view as particular mono-
variable cases of a multivariable controller architecture. The
design specifications can now be casted into a control architec-
ture. If the required performance can be satisfied by a distant
downstream controller, then there is no need to mix the control
methods. However, if the distant downstream controller cannot
satisfy the specifications, it is possible to use the local upstream
control for this purpose. It is then necessary to add a constraint

on u2. Since the discharge needs to come from upstream, we
would like to useu2 only for transitions, and ensure that in
steady state, onlyu1 has an effect ony.

This is a problem of actuators substitution, which can be taken
into account in a cascade framework [10].

The (rapid) upstream controlu2 is used to control the outputy:

u2 = K2(s)(r − y)

And the (slow) distant downstream controlu1 is used to regu-
lateu2 to a referenceru2 (ru2 = 0 in steady state).

u1 = K1b(s)(ru2 − u2)

The controller architecture can be schematized as in figure 2.
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Figure 2: Cascade architecture with two control variables
(u1, u2) to control one outputy

If ru2 = 0, one obtains a multivariable controller as noted
above withK1 = −K1bK2.

This architecture could be used to manually design simple con-
trollers (typically PI), but it is difficult to specify robustness
margins in this case.

A similar architecture is kept in the following, but recasting
the problem as anH∞ optimization problem, which can easily
take into account robustness issues. This architecture greatly
simplifies theH∞ design presented in [6].

5 H∞ controller design

We now propose a multivariable design method usingH∞ opti-
mization, in order to give a solution to the compromise between
performance and resource management.

The design specifications are casted into theH∞ framework.

5.1 Expression of design specifications asH∞ constraints

Following the approach used in [6], design specifications are
formulated using aH∞ 4-blocks type criteria. As a matter of
fact, let us consider that the system is described by:

y = Gu + G̃p



The closed-loop system which links the reference,r, and the
perturbation,p to the tracking error,e and the controlled input,
u is given by

[
e
u

]
=

(
S SG̃

KS KSG̃

) [
r
p

]
(10)

whereS = (I + GK)−1 (sensitivity function).

The design specifications are then formulated using the follow-
ing criteria, where the goal is to find the smallestγ > 0 and the
stabilizing controllerK such that

‖M‖∞ ≤ γ

with M the augmented system as described in figure 3.

W1,W
−1
1 ∈ RH∞ is used to specify tracking performances,

perturbation rejection and modulus margin. Here,W1 is cho-
sen diagonalW1 = diag(W11,W12). W2,W

−1
2 ∈ RH∞ is

used to specify high frequencies constraints on the controlled
inputs.W2 is also chosen diagonalW2 = diag(W21,W22), al-
lowing to constrain command effort and effects of sensor noise
command.W3 is a scaling factor acting on the perturbation.
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Figure 3: Augmented system forH∞ optimization

In order to constrain the downstream controlu2 to go asymp-
totically to zero,ru2 − u2 is feed back into the controller as a
tracking error. For usual functioning,ru2 is zero, which means
that specifying a weighting functionW12 with a high gain in
low frequencies imposes a low value foru2 at these frequen-
cies.

The weighting functionsWij are chosen of the first order, and
tuned sequentially: firstW22 is tuned to specify the maximum
bandwidth for local upstream control, thenW11 is tuned to
specify the global performance, thenW12 is used to specify
the actuators substitution.W21 and the scalingW3 are used to
specify control effort and robustness requirements.

The optimization resulted inγ = 1.1, with a real multivariable
margin (static gain margin)∆G verifying:

−8 dB ≤ ∆G ≤ 15 dB

and a complex margin (modulus margin)∆M verifying:

−6.4 dB ≤ ∆M ≤ 6.5 dB

Figure 4 presents the transfer functions with associated con-
straints.
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Figure 4: Closed loop transfer functions and associated fre-
quency weighting functions

5.2 H∞ controller simulation

Figure 5 shows how the actuators substitution works for a
downstream perturbation of 0.01 m3/s: first the rapid local up-
stream controlu2 reacts in order to compensate for the decreas-
ing water level, then the slow distant downstream controlu1

increases and the substitution takes place. The controlu2 goes
back to zero in steady state, and the discharge is effectively de-
livered byu1. The overall performance is similar to the one
obtained with a pure local upstream controller.
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Figure 5: Actuator substitution in response to a downstream
withdrawal

5.3 Experimental results

Figure 6 gives the experimental results obtained with the mul-
tivariableH∞ controller. A downstream withdrawal of 10 l/s



(0.01 m3/s) is done at timet = 20 s and stopped at timet = 950
s. The controller reacts as expected: first the downstream over-
shot gate is closed in order to maintain the outputy at the target
yc = 0.6 m, then occurs the substitution with the upstream con-
trol; the downstream gate opens gradually while the upstream
discharge increases in order to compensate for the withdrawal.
In steady state (between 800 and 1000 s), the upstream dis-
charge is 10 l/s higher than the initial one, which corresponds
exactly to the withdrawal.

The multivariableH∞ controller enables to recover the real-
time performance of a pure local upstream controller while en-
suring that in steady state, the discharge is delivered by the
upstream control (as for a distant downstream controller).

In addition, one observes that the linear simulation reproduces
rather accurately the dynamic behavior of the closed-loop sys-
tem. The main discrepancy concerns the downstream actuator
u2, which possesses a 5 mm dead band which is not modelled
here. This, together with the important measurement noise ex-
plains the difference between the experiment and the simula-
tion. The response times are however very close and the con-
troller reacts as expected.
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Figure 6: Experimental response of the mixedH∞ controller to
a downstream withdrawal, comparison with a linear simulation

6 Conclusion

The paper has exposed and validated a methodology to design
automatic controllers for irrigation canals, based on the Saint-
Venant model. The interest of the method is to greatly simplify
the model calibration (asingle experiment is needed to cali-
brate the model in steady state). Linear models around differ-
ent reference points can then be obtained using recent results
[5]. The paper has examined the two classical control pol-
itics for an irrigation canal pool, namely local upstream and
distant downstream control. These two control politics are in-
terpreted as particular monovariable cases of a multivariable
control architecture. A mixed control architecture is proposed,
that combines the advantages of each control politic, in order
to give a solution to the compromise between real-time perfor-

mance (obtained with the upstream control politic) and the wa-
ter resource management (obtained with the downstream con-
trol politic). This design problem is formulated as anH∞
optimization problem, using appropriate frequency weighting
functions.

It is the first step towards a general methodology for design-
ing controllers realizing a desired compromise between water
resource and real-time efficiency. This paper presents the first
application (to the best of the authors’ knowledge) ofH∞ con-
trol to an experimental canal.
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