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Abstract " : > o
stability radius determination by an iterative procedure.

A new stability margin for discrete-time systems is proposed in

the system characteristic polynomial coefficient space making Reflection coefficients of Schur polynomials
use of, so-called, reflection vectors of monic Schur polynomi-

als. Reflection vector margins give the distance to the stabilidypolynomiala(z) of degreen with real coefficients,; € R ,
boundary in directions ofn reflection vectors of an-th de- i =0,...,n
gree polynomial. The relations between the reflection vectors

and its roots on the unit circle are obtained. An iterative proce-

dure for stability radius determination is proposed. is said to be Schur if all its roots are placed inside the unit
circle. A linear discrete-time dynamical system is stable if its
characteristic polynomial is Schur, i.e. if all its poles lie inside
the unit circle.

Some serious problems of so-called robust stability arise Wlﬁgsides the unit circle criterion some other criteria are known
the parameters of systems are not exactly known [1,3]. Thati$ ohecking the stability of a linear system. It is interesting to
why several stability margins are defined in different domaing;q o that the well-known Jury’s stability test leads precisely
gain and phase margin in frequency domain, minimal distange, o stapility hypercube of reflection coefficients . In the fol-

from imaginary axis (or unit cwcle) in pole domain, Stablllt>1owing we use the stability criterion via reflection coefficients.
radius in system parameter domain.

a(z) =apz" + ...+ a1z +ap

1 Introduction

For interval or polytopic type of parametric uncertainties Sorr)I;eet us recall the recursive definition of reflection coefficients
. o ! . . . € R of a polynomiak: 71:
kind of stability margin can be obtained by the Kharitonov the- poly (2)[7]

orem [4] or edge theorem[2]. ki = —al?, (1)
An alternative approach is to use the boundary crossing the- o™ = an*i’ i=1,..n; @)
orem to define the stability radius in polynomial coefficient ! an

space. You need to determine the distances to the real pole (1) o + k0D

boundary and to complex poles boundary and select the min-  a;" ' = #, j=1,..,i—1. (3)

imal of them. The first task is simple but the second one is
quite complicated for high order systems because the sweegRlection coefficients are well-known in signal processing and

over the frequency range [1] or over the complex poles phaggital filters. The stability criterion via reflection coefficient is
domain [3] is needed. as follows [7].

In this paper the reflection coefficient stability criteria [7] for

discrete-time systems is used to define a Schur stability megmma 1. A polynomial a(z) will be Schur if and only if
gin in polynomial coefficient space. The reflection vectors @ reflection coefficients;,i = 1, ..., n lie within the interval
ann-th order system will be introduced as specific points —1 < k; < 1.

on the stability boundary. The line segments between an ar-

bitrary Schur polynomial (a point in coefficient space) and it& polynomiala(z) lies on the stability boundary if somig =
reflection vectors will be Schur stable. So the minimal distangel i = 1,...,n. For monic Schur polynomials;, = 1,
between a polynomial and its reflection vectors can be usg@re is a one-to-one correspondence between the vecters
as a stability margin for linear discrete-time systems. Starting,, ..., a,, ;)" andk = (ky, ..., k).

from the crucial reflection vector by the use of line segment.?] i i .
on the stability boundary the stability radius in the ponnomiJI € transfolrmatlon frgm reflectloln coefﬁqerﬁgto polyno.-
coefficients space can be found. By this procedure the nealtgﬁl coe.ff|C|entSai_1fz = 1,...,n is multilinear. For monic
point on the stability boundary and the critical direction will @°1YNoMials we obtain from (1)-(3)

determined too. a = a™.
i n—i’
The paper is organized as follows. In section 2 we recall thel(",) = —ki, ,
stability condition via reflection coefficients and introduce re«'? = =" — k=1 i=1,.n;j=1,..i—1

J J i—j



Lemma 2[6] Through an arbitrary stable point = e forioddr(1) = —1,
[ao, a1, ..., an—1] In polynomial coefficient space you can put and(i — 1)/2 pairs of complex roots(j),
n stable line segments j =2,..,20nthe unitcircle.

conv[a’ (£1)] = {alk; € (-1,1)} The proof is given in [6].

whereconv[a’(+1)] denotes the convex hull obtained by vary-
ing the reflection coefficienit; between-1and1 ,i = 1,..,n. 4 Stability radius via reflection vectors

Now let us introduce the reflection vectors of a monic polynggow we can introduce some kind of a stability margin via re-
mial G(Z) They will be useful for introducing a new Stab|||tyf|ect|on vectors of a Schur po'ynomial_

margin in the polynomial coefficient space. o )
Definition : Let us call the distance between a Schur stable

Definition. Let us call the vectors polynomiala(z) and its reflection vectar’(+1) ,i = 1,...,n
i . the stability margin in coefficient space in direction #oth
a'(1) = (alk; =1).i=1,.n . N coc . !
reflection vector or simply-th reflection vector margirand
positive reflection vectorand denote it byd;(£1).

Z—]_ = ki:—]_,-:].,..., - - 1
a'(=1) = (al )i " Taking into account the background of reflection vectors (ac-

negative reflection vectorf a monic polynomiak(z). cording to Theorem 1) we can claim that the most attractive

. . eflection vectors are the first of them. Indeed:
It means, reflection vectors are the extreme points of the Schur

Etalt_)le line ;e%mer:bﬁ:} [ad(?l')t]' throug?hthﬁ point dff'nzdz the” the first positive reflection vector margifi (1) gives us
yLemmac. Lue o the definition and the Lemmas L an € the distance to the real positive root boundary,

following assertions hold:

e the first negative reflection vector margin(—1) gives us

1) every Schur polynomial h&s: reflection vectors*(1) and the distance to the real negative root boundary,

a'(-1),i=1,..,n;

2) all the reflection vectors lie on the stability boundaky«  ® the second negative reflection vector margit—1) gives

£1); us the distance to the complex root boundary,

3) the line segments between reflection vectatél) and ¢ the second positive reflection vector mardifl) gives us

a'(—1) are Schur stable. the distance to the two different real root boundasy £
]-u ro = _]-)l

3 Roots of reflection vectors e the third positive reflection vector margiiy (1) gives us

_ . _ the distance to the real positive and complex root bound-
In this section we study the reflection vectors placement on the ary (= 1,3 = a+18i,a® + 82 = 1),

stability boundary. It means that every reflection vector has

one or more roots on the unit circle. The question is: howe etc.

many roots and of what type (real or complex)? The following

theorem gives the answer to these questions. As a matter of course the reflection vector margins do not give

, , . . the minimal distances to real and complex root boundaries, i.e.
Theorem 1.Reflection vectora*(+1) ,i = 1,...,n of amonic

Schur polynomiak(z) havei roots on the unit circle. The type min > p,
of rootsr(j), j = 1, ..,i is as follows:

dl(]-) > P+1,
1) the positive reflection vectar (1) has di(=1)>p_,
o forievenr(1) =1, wherep, p+1 andp_; are the stability radius and the minimal
r(2) = -1 distances to the positive and negative real root boundaries of
and(i — 2)/2 pairs of complex roots(5), a(z). However, the minimal distances to real and complex root
j =3,..,ion the unit circle, boundaries can be easily found by a simple search procedure in

o forioddr(1) = 1, directions of reflection vectors.

)
and(i — 1)/2 pairs of complex roots(5),

j =2,...i on the unit circle 1. For a given Schur polynomialz) find the reflection vec-

torsa'(1) , a'(—1) anda?(-1).

2) the negative reflection vectot(—1) has ) ) )
2. Choose one of these reflection vectors as a starting point

e for i eveni/2 pairs of complex roots(j), for iterative proceduré(0) = a* (j*), i* € {1,2},j* €
j = 1,..,4 0nthe unit circle, {-1,1}.



3. Find the reflection vectotd(l)(£1),i = 1,...,n; i # i*. o

G 1 B H
4. Putn — 1 line segmentsBi(l) = conv{[b(l)]’(£1)}, F/
i =1,..,n; i # i* through the poinb(l). All the line C \ D
segmentsB?(1) lie on the stability boundary. 0 K ,
1 I2 aq

2 1
5. Findb(I+1) as the nearest point of all line segmeRts!),

i=1,...,n;1 # i* to the pointa. 1A

6. If [b(I + 1) — b(l)| > e for some given small > 0 return

to step 4. Fig.1 Stability region and stability margins in directions of

reflection vectors (. = 2)

7. 0816(1+1) —b(1)| < eputps(5%) = |a—b(1)| and return

to step 2. , - . .
P To find the minimal distance to the negative real root bound-

ary we start from the first negative reflection vector (point D),
8. The stability radius of the poiatis b(0) = [1.5 0.5]. By varying the second reflection coef-
ficient ks, —1 < ke < 1, we get the line segment AH.
] . The point K = [1.125 0.125] with reflection coefficients
p = min; jpi(j~) kX =[-1 —0.125] is the nearest point on the negative real
root boundary and the distance to the negative real root bound-
and the nearest point on the stability boundary BYYisp— = 0.53.

b () (1) Similarly, starting from the first positive reflection vector
(pointC) we can find the minimal distance to the positive real

Remark : The above procedure gives an alternative way for thgot boundary (line segment AG). = 1.591.

stability radius determination. The convergence rate is not higiarting from the second negative reflection vector (point B)
because the search directions are determined by reflection wge-get the minimal distance to the complex root boundary (line
tors and the stability region is approximated by straight linesegment GHp, = 0.5. So the stability radius is

But in addition to the stability radius we get by this procedure

some usef_u_l information. about the _stab?lity region (di;tances p =min(py,p—, pe) = 0.5.

to the stability boundary in several directions, many points and

line segments on the stability boundary). This information can

be used for robust controller design via pole placement. Example 2: Let us now consider the example of Bhattacharyya

- L [3, pp-136-138] fom = 4
Example 1: Letn = 2. Then the stability region in the poly-

nomial coefficient space = (a1,a0) is the triangle AGH _ 4 3 2

(Fig.1). Let us find the stability margins for the polynomial a(z) = 27 +0.327 4 042"+ 022+ 0.1.
a(z) = 2% + 0.75z + 0.5 (point F in Fig.1). According to . -

L((ar%ma 2 we can put 2 stable line segments through the po-ll—rr?te reflection coefficients af(z) are
F. By varying the first reflection coefficiegt, —1 < k; < 1,

we get the line segment AB and by varying the second reflec-
tion coefficientks, —1 < k2 < 1, we get the line segment CD
By definition the second order polynomigl:) has 4 reflection

k* = [-0.1714 — 0.3246 — 0.1717 — 0.1].

‘Becausék?| < 1,i=1,...,4, a(z) is a Schur polynomial and
we can find its reflection vectorg(+1) and reflection vector

vectors : ,
marginsd;(+1) as follows:
1 .
Zlgl—)l) _ { _1155 g'g } Egg% g)) a'(l) = [ -12516 0.1069 0.0448 0.1 ],
20 = | P ]’ (point A)’ a'(-1) = [ 13974 06073 0.3097 0.1 ],
221 = [ 1 ) ]’ (point B)’ a®(1) = [ -11545 —1.0999 0.1545 0.1 ],
’ a*(-1) = [ 05317 11646 0.2232 0.1 |,
a*(1) = [ —-0.1975 0.1073 —1.0097 0.1 ],
and the stability margins in the directions of reflection vectorss®(—1) = [ 0.6517  0.6069  1.0551 0.1 ],
are determined by the line segments FC , FD , FAand FBreg*(1) = [ 0.1111 0 —0.1111 -1 ],
spectively. a'(-1) = [ 04545 0.7272 04545 1 |



di(1) = 1.5866, [3] S. P. Bhattacharyya, H. Chapellat and L.H. KBelbust
di(=1) = 11222, Control. The Parametric ApproaghUpper Saddle River:
d>(1) = 1.5679, Prentice Hall, 1995.

dy(=1) = 0.7993,

ds(1) = 1.3403, [4] V.L.Kharitonov ,"Asymptotic stability of a family of sys-
di(—1) = 0.9474, tems of linear differential equationBjfferential Equa-
ds(1) = 1.2256, tions vol.14, pp. 2086-2088, 1978 (in Russian).
di(-=1) = 1.0028.

5]
Starting from the reflection vectous (1) , a' (—1) anda?(—1)

the following minimal distances to real positive, real negative
and complex pole boundary have been found after 5 iteratiorlg]
pr1 = 1.0, p_1 = 0.5, p. = 0.4987. It confirms the result
given in [3]. The stability radius is

p = 0.4987
and the critical poinb on the stability boundary is
b = [ 0.2335 0.746 0.2818 —0.2434 ] .
The reflection coefficients of b(2) are
K = [ 0.0194 —-1.0 —0.36 0.2434 | . By

Theorem 1b(z) has a pair of complex roots on the unit circle.
Indeed, the roots df(z) are

r = 0.3756,
ro = —0.648,
rs.4 = 0.0194 % 0.9998i.

5 Conclusions

A new kind of stability margin for discrete-time systems is pro-
posed in the system characteristic polynomial coefficient space
making use of, so-called, reflection vectors of monic Schur
polynomials. Itis shown, first, that reflection vectors are placed
on the stability boundary with specific roots placement depend-
ing on the reflection vector number and the argument sign and,
second, that the line segments between an arbitrary Schur poly
nomial and its reflection vectors are Schur stable.

Even though the reflection vector margins do not give the min-
imal distance to the stability boundary nevertheless they are
quite informative: in addition to distances they give also the
directions of crucial points. An iterative procedure is given for
stability radius determination via reflection vectors.
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