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Abstract

This paper focuses on the problem of computing a reachable
upper bound for the throughput of transitions in live and safe
free choice nets. Starting from the consideration that a live a safe
free choice net can be viewed as an interconnection of live and
safe marked graphs, previous results on the throughput upper
bound computation for marked graphs are extended to live and
safe free choice net case. We propose a decomposition in terms
of marked graph components induced by minimal T-invariants
in order to compute a reachable throughput upper bound for a
live and safe free choice net. Such bound is expressed as linear
combination of throughput upper bounds of the marked graph
components induced by minimal T-invariants.

Keywords – Free choice nets, performance evaluation, through-
put upper bound, T-invariants, net decomposition technique.

1 Introduction

In this paper we consider a subclass of Petri nets called Free
Choice Nets (FCNs). The main feature of this subclass is that
every arc from a place is either a unique outgoing arc or a unique
incoming arc to a transition. We suppose that a timed activity
is associated to each transition; in order to avoid the coupling
between resolution of conflicts and duration of activities, tran-
sitions in conflict are supposed to be immediate and the con-
flict is solved according to routing rates associated to each sub-
set of conflicting transitions (generalized stochastic Petri nets
[1]). The problem to determine at steady state a reachable up-
per bound for the throughput of a transition of this net sub-
class is addressed. The bound computation requires less com-
putation effort with respect to the exact solution. FCNs model
not only concurrency and synchronization of activities as the
Marked Graph (MG) subclass, for which the bound computa-
tion has been solved [2, 3], but also decisions. We restrict our
analysis to live and safe FCNs. This net subclass [4] admits
a cyclic behavior and thus the steady state performance makes
sense. Furthermore, a live a safe FCN can be viewed as an in-
terconnection of live and safe MGs [4, 5], allowing to extend
previous results on the throughput upper bound computation for
MGs to live and safe FCN case.

The key point of the approach followed in this paper is to con-
sider a special FCN decomposition in terms of MG-components.
If a live and safe FCN net exhibits a cyclic behavior, we prove
that a T-invariant can be associated with the firing count vec-
tor of a firing cyclic sequence and viceversa. In addition, any
T-invariant can be expressed as linear combination of minimal

T-invariants and to each minimal T-invariant a MG-component
can be associated. For safe FCNs, any MG-component can be
activated, i.e. there exists a reachable marking under which
the MG-component is live. Starting from these considerations,
we express any cyclic sequence in terms of a number of MG-
component activations and so we obtain a reachable throughput
bound for a live and safe FCN from the MG-component bounds.
We also provide a procedure to determine the number of acti-
vations at steady state of each MG-component by using routing
rates.

When the net safeness is lost, the simultaneous firing of two
conflicting transitions is possible. In this case the routing rate
satisfaction is not sufficient to express the cyclic behavior of the
FCN in terms of MG-components and the obtained bound is not
reachable.

The paper is organized as follows. In Section 2 we provide a
short background on Petri nets. In Section 3 the decomposition
of a live and safe FCN in terms of MG-components induced
by minimal T-invariants is discussed. In Section 4 a reachable
throughput upper bound for live and safe FCN is devised and
some considerations about the non-safe case are provided. In
addition a manufacturing example is presented as case study.
Conclusions are finally drawn in Section 5.

2 Background

A place/transition (P/T) net is a structure N =
〈P, T,Pre,Post〉 where: P is a set of n places repre-
sented by circles; T is a set of m transitions represented by
bars; P ∩ T = ∅, P ∪ T 6= ∅; Pre (Post) is the | P | × | T |
sized, natural valued, pre-(post-)incidence matrix. For instance,
Pre(p, t) = w (Post(p, t) = w) means that there is an arc from
p (t) to t (p) with weight w. A P/T net is called ordinary if all
of its arc weights are 1’s. For pre- and post-sets we use the con-
ventional dot notation, e.g. •t = {p ∈ P | Pre(p, t) 6= 0}. The
incidence matrix C of the net is defined as C = Post − Pre.
A marking is a m × 1 vector m : P → N that assigns to each
place of a P/T net a non-negative integer number of tokens. A
P/T system or net system 〈N,m0〉 is a P/T net N with an initial
marking m0. A transition t ∈ T is enabled at a marking m iff
m ≥ Pre(·, t). If t is enabled, then it may fire yielding a new
marking m′ = m + Post(·, t) − Pre(·, t) = m + C(·, t).
The notation m[t > m′ means that an enabled transition t
may fire at m yielding m′. A firing sequence from m0 is a
(possibly empty) sequence of transitions σ = t1...tk such that
m0[t1 > m1[t2 > m2..[tk > mk. A marking m is reachable
in 〈N,m0〉 iff there exists a firing sequence σ such that



m0[σ > m. Given a net system 〈N,m0〉 the set of reachable
markings is denoted R(N,m0). The function σ : T → N,
where σ(t) represents the number of occurrences of t in
σ, is called firing count vector of the fireable sequence σ. If
m0[σ > m, then we can write in vector form m = m0 +C ·σ.
This is known as the state equation of the system.

Right annuller vectors of C are called T-invariants (i.e. x :
T → N, x 6= 0 | C · x = 0). The support of a T-invariant
x is defined as ‖ x ‖= {t ∈ T | x(t) > 0}. A T-invariant x

has a minimal support iff there exists no other invariant x′ such
that ‖ x′ ‖⊂‖ x ‖. A T-invariant is canonical iff the greatest
common divisor of its components is 1. A T-invariant is said
to be minimal iff it is canonical and has a minimal support. A
T-invariant x is said to be positive iff x > 0.

An ordinary net N is a Marked Graph (MG) if •p = p• =
1,∀p ∈ P . An ordinary net N is a Free Choice Net (FCN) if
∀p ∈ P, |p•| ≤ 1 or •{p•} = {p}. A P/T system is live when,
from every reachable marking, every transition can ultimately
occur. A P/T system is safe if m(p) ≤ 1 ∀p ∈ P .

3 A characterization of cyclic sequence firing
count vector in terms of minimal T-invariants

In this section we first recall some previous results and then we
prove that the cyclic behaviour of a live and safe free choice net
can be characterized in terms of its minimal T-invariants.

Definition 1 Let N ′ be the subnet of a net N generated by a
non-empty set Σ of nodes. N ′ is a MG-component of N if:

• ∀t ∈ Σ, •t ∪ t• ⊆ Σ, and

• N ′ is a strongly connected MG.

Theorem 1 [5] If a live free-choice net system 〈N,m0〉 is safe
then N is covered by strongly connected MG components and
there is a marking m ∈ R(N,m0) such that each MG compo-
nent 〈N1,m1〉 is a live and safe MG, where m1 is m restricted
to N1.

Let us consider a minimal T-invariant x, we say that the subnet
generated by • ‖ x ‖ ∪ ‖ x ‖ ∪ ‖ x ‖• is induced by minimal
T-invariant x.

Theorem 2 [4] Let N be a live and bounded free choice net.

1. Minimal T-invariants induce MG-components.

2. MG-components induce minimal T-invariants.

Let 〈N,m0〉 be a system. A marking m is a home marking of
〈N,m0〉 iff m ∈ R(N,m′),∀m′ ∈ R(N,m0).

Corollary 1 Given a live and safe free-choice net system
〈N,mh〉 where mh is a home marking, each MG component
〈N1,m1〉 is a live and safe MG, where m1 is mh restricted to
N1.

Proof: Given a net system 〈N,m0〉 each sequence σ such that
m0[σ > m0 implies that σ is a T-invariant, that is a linear com-
bination of minimal T-invariants. From theorem 2 it follows that
each minimal T-invariant induces a MG-component. Theorem
1 proves the existence of a reachable marking under which all
MG-components are live. If m0 is a home marking, each se-
quence σ such that m0[σ > can always be completed with a
sequence σ′ in order to get m0[σσ′ > m0. Therefore all MG-
components have to be live.

From now on we assume that nT is the number of minimal T-
invariants.

Theorem 3 [4] Live and bounded free-choice systems have
home markings.

In the following theorem we prove that in a live and bounded
free-choice systems any T-invariant can be associated with a
fireable cyclic firing sequence, i.e. a sequence σ such that
m0[σ > m0, assuming m0 a home marking. Such invariant
can be expressed as linear combination of minimal T-invariants.

Theorem 4 Let 〈N,m0〉 be a live and safe free choice system
and let m0 be a home marking. y is a T-invariant of 〈N,m0〉
if and only if there exists a cyclic firing sequence σ such that
σ = y. Moreover, σ includes a number of αi firings of all the
transitions that belong to the minimal T-invariant xi such that
y =

∑nT

i=1 αixi.

Proof: (⇒) From theorem 2 it follows that all minimal T-
invariants have non-zero elements equal to one, since the unique
T-invariant of each MG-component is a vector having all ele-
ments equal to one. Moreover, from corollary 1 all transitions
of each MG-component will be enabled. Since any T-invariant y

can be expressed as linear combination of minimal T-invariants,
i.e. y =

∑nT

i=1 αixi , it follows that, if m0 is a home marking,
there exists a sequence σ such that σ = y. The firing of σ im-
plies that any MG-component induced by a minimal T-invariant
fires αi times, being one the non-zero elements of xi.

(⇐) If σ is a cyclic sequence, then σ is a T-invariant directly by
definition.

4 A reachable throughput upper bound for tran-
sitions of live and safe FCNs

From now on we consider FCN systems 〈N,m0〉 where m0 is
a home marking.

4.1 Preliminary concepts

The introduction of a timing specification is essential in order to
use Petri net models for performance evaluation of distributed
systems. We consider nets with deterministically or stochasti-
cally timed transitions with one phase firing rule, i.e. a timed
enabling (called the service time of the transition) followed by
an atomic firing. The service time of transitions are supposed to
be mutually independent and time independent.



Let us denote by m and σ∗ the limit average marking and the
limit vector of transition throughputs defined as follows

m = lim
τ→∞

1

τ

∫ τ

0

mu du (1)

σ∗ = lim
τ→∞

στ

τ
(2)

The existence of the limits m and σ∗, which is called weak
ergodicity of the marking and firing processes, is assured for
live and bounded free choice nets as proved in the following
theorem.

Theorem 5 [7] Let 〈N,m0〉 be a live and bounded free choice
net with deterministic or stochastic service times of transitions.
Then, both the marking and the firing processes of 〈N,m0〉 are
weakly ergodic.

Theorem 4 let us to express the limit vector of transition
throughputs σ∗ as follows

σ∗ = lim
τ→∞

στ

τ
= lim

τ→∞

∑nT

i=1 αi(τ)xi

τ
=

nT
∑

i=1

[ lim
τ→∞

αi(τ)

τ
· xi] =

nT
∑

i=1

αi · xi

where αi = limτ→∞
αi(τ)

τ
is the average number of occur-

rences of the i-th MG-component MGi associated to the mini-
mal T-invariant xi. Notice that we are assuming that all cyclic
sequences have finite length.

Now we briefly recall some results presented in [8].

In order to avoid the coupling between resolution of conflicts
and duration of activities, we suppose that transitions in con-
flict are taken according to routing rates associated to imme-
diate transitions (generalized stochastic Petri nets). In other
words, T ′ = {t1, ..., tk} ⊂ T that are in generalized free
(or equal) conflict (i.e. having equal pre-incidence function:
Pre(., t1) = ... = Pre(., tk)) are considered immediate (they
fire in zero time), and the constants r1, ..., rk ∈ N

+ (routing
rates) are explicitly defined in the net interpretation in such a
way that when t1, ..., tk are enabled, transition ti ∈ T ′ fires
with probability (or with long run rate, in the case of determin-
istic conflicts resolution policy) ri/(

∑k

j=1 rj).

We can restrict to deterministic resolution policies, which for
safe FCNs give the same performance than any probabilistic
routing, in steady state.

The vector of visit ratios, normalized to transition tj , is defined
as follows

v(j) =
1

σ∗(tj)
σ∗ = Γ(j) σ∗ (3)

where Γ(j) is called the mean interfiring time of tj , that is the
inverse of its throughput.

Theorem 6 [7] For any net system, a lower bound for the mean
interfiring time Γ(j) of transition tj can be computed by solving

the following linear programming problem

Γ(j) ≥ maxy yT · Pre · D(j)

s.t.







yT · C = 0
yT · m0 = 0
y ≥ 0

(4)

where D(j) is a vector defined as:

D(j)(tk) = v(j)(tk) · d(tk), being d(tk) the time delay of tran-
sition tk.

For a live and bounded marked graph, the bound derived from
theorem 6 has been shown to be reachable [7] under the earliest
firing policy, otherwise it is a lower bound; it is the same for
all transitions and so we can speak of lower bound of the MG-
component mean interfiring time. However, this is not true in
the case of FCN systems.

For a live and bounded free choice nets, v(j) can be computed
in polynomial time, from the net structure and routing rates at
conflicts, as follows

• the vector of visit ratios must be a right annuller of the in-
cidence matrix, i.e.

C · v(j) = 0; (5)

• the components of v(j) must verify the following relations
with respect to the routing rates for each subset of transi-
tions T ′ = {t1, ..., tk} ⊂ T in structural conflict

r2v(j)(t1) − r1v(j)(t2) = 0

r3v(j)(t2) − r2v(j)(t3) = 0 (6)
. . .

rkv(j)(tk−1) − rk−1v(j)(tk) = 0.

The above homogeneous system of equations can be expressed
in a matrix form: RT ′ ·v(j) = 0, where RT ′ is a (k−1)×m ma-
trix. Now, by considering all structural conflict sets T1, ..., Tr,
it follows that R · v = 0, where R is a δ × m matrix (δ is the
number of independent relations fixed by the routing rates)

R =







RT1

...
RTr






(7)

Theorem 7 [9] Let 〈N,m0〉 be a live and bounded free choice
net. Let C be the incidence matrix of N , and R the matrix pre-
viously defined. Then, the vector of visit ratios v(j) normalized,
for instance, for transition tj , can be computed from C and R

by solving the following linear system of equations
(

C

R

)

· v(j) = 0, v(j)(tj) = 1. (8)

4.2 Computation of Γ(j) in a live and safe free choice net

Let {x1, ...,xnT
} be the set of minimal T-invariants on N and

X = [x1 x2 ... xnT
] a block matrix built up by placing vectors

xi side by side. Of course (C ·xi = 0)i=1,...,nT
⇒ C ·X = 0.
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Figure 1: A live and safe free choice system (a) and its MG-components MG1 (b) and MG2 (c).

Since σ∗ =
∑nT

i=1 αi · xi = X · α, where α = [α1, ..., αnT
]T ,

it follows that

v(j) = Γ(j) σ∗ = Γ(j) X · α.

From (8)

Γ(j)

(

C

R

)

· X · α = 0 =⇒ R · X · α = 0. (9)

Although the αi terms have been defined with respect to an infi-
nite time horizon, they can be computed considering a finite time
horizon of length ∆ after some considerations. We consider live
and safe FCNs 〈N,m0〉, where m0 is a home marking, which
have finite length sequences σ such that R ·σ = 0, i.e. all rout-
ing rates are met; in order to compute the αi terms, the shortest
of such sequences, called σmin, can be considered. It follows
that

αi =
qi

∆
=

qi
∑nT

i=1 qiΓLB(i)
(10)

where ∆ is the time duration of σmin, qi are defined as the num-
ber of activations of the i-th MG-component MGi in σmin and
ΓLB(i) is the lower bound of MGi mean interfiring time.

Directly from the definition of the qi terms, it follows that they
can be computed by solving the following IPP

minqi

nT
∑

i=1

qi

s.t.















(R · X) · q = 0
∑nT

i=1 qi ≥ nT

qi ∈ N

qi ≥ 1, i = 1..nT

(11)

where qi is the i-th component of vector q.

4.3 Main Result

Theorem 8 Let 〈N,m0〉 be a live and safe free choice system.
Let mh be a home marking of 〈N,m0〉. Let X = {x1, ...,xnT

}

be the set of minimal T-invariants on N . Let tj ∈ T be a transi-
tion whose mean interfiring time Γ(j) has to be calculated. Let
us define I(j) = {i ∈ {1, ..., nT } | tj ∈ ‖xi‖, xi ∈ X}. A
reachable lower bound ΓLB

(j) for the mean interfiring time Γ(j)

of transition tj can be computed as follows

Γ(j) ≥ ΓLB
(j) =

1
∑

k∈I(j)
qk

nT
∑

i=1

qiΓ
LB(i) (12)

where the qi terms are solutions of the IPP (11) and ΓLB(i) is
the lower bound of MGi mean interfiring time.

Proof: Since xk(tj) ∈ {0, 1}, if we define I(j) = {k ∈
{1, ..., nT } | tj ∈ ‖xk‖, xk ∈ X}, it follows that

σ∗(tj) =

nT
∑

k=1

αk · xk(tj) =
∑

k∈I(j)

αk

Γ(j) =
1

σ∗(tj)
=

1
∑

k∈I(j)
αk

From (10) we obtain

ΓLB
(j) =

1
∑

k∈I(j)
qk

nT
∑

i=1

qiΓ
LB(i)

and thus, depending on the firing policy adopted, we have that
Γ(j) will be greater or equal then ΓLB

(j) .

Of course, a reachable upper bound for the throughput of tj is
1/ΓLB

(j) .

Example 1 Let us consider the system depicted in fig. 1(a). Let
d3, d4, d5, d6 and d7 be the mean service times associated with
t3, t4, t5, t6 and t7, respectively. Let t1 and t2 be immediate
transitions (i.e. they fire in zero time). Let r1 and r2 be the rout-
ing rates defining the resolution of conflict at place p1. Minimal



T-invariants are

x1 =
[

1 0 1 0 1 1 1
]T

x2 =
[

0 1 0 1 1 1 1
]T

.

Fig. 1(b),(c) shows MG-components MG1 and MG2 induced
by T-invariants x1 and x2, respectively.

By applying theorem 8, a reachable lower bound for the mean
interfiring time of t7 can be computed as follows

q1 = r1, q2 = r2;

q′1 =
r1

r1 + r2
, q′2 =

r2

r1 + r2
;

ΓLB
(7) = q′1Γ

LB(1) + q′2Γ
LB(2) =

q′1(max{d5, d3 + d6} + d7) +

(1 − q′1)(max{d6, d4 + d5} + d7) =

max{q′1d3 + d6, (1 − q′1)d4 + d5,

q′1d3 + (1 − q′1)d4 + (1 − q′1)d5 + q′1d6,

q′1d5 + (1 − q′1)d6} + d7.

It is the exact mean interfiring time of t7 (a reachable lower
bound), while by solving the linear programming problem in
theorem 6 we obtain the following lower bound

max{(1 − q′1)d4 + d5, q′1d3 + d6} + d7.

that is clearly lower than ΓLB
(7) .
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Figure 2: Layout of a manufacturing cell.

Example 2 Fig. 2 shows the layout of a manufacturing cell.
Each arriving raw part can be routed to machine M1 or ma-
chine M2 (it depends on local policies). Machine M1 (M2) pro-
duces two parts, one called part A1 (B1), and another is a non-
terminal part. This last part is loaded into machine M3 (M4)
which produces a part called A2 (B2). Finally, product A1 and
A2 (B1 and B2) are assembled in machine M5 in order to obtain
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Figure 3: PN of the manufacturing cell.

the final product A (B). Only when the whole process is finished
a new raw part can be loaded into machine M1 or machine M2.
In fig. 3 is shown a Petri net system modelling the manufactur-
ing cell. Notice that it is a live and safe free choice system. Let
us assume the following deterministic conflict resolution policy
at place p1: select twice machine M1, then once machine M2,
and repeat it. Let d1 = d2 = d3 = 1 min, d4 = 2 min and
d5 = 3 min be the mean service times associated with M1, M2,
M3, M4 and M5, respectively. Let us compute an upper bound
for the throughput of M5. Minimal T-invariants are

x1 =
[

1 0 1 0 1 1 0
]T

x2 =
[

0 1 0 1 1 0 1
]T

.

Making use of (12), we can compute ΓLB
(5) as follows

q1 = r1, q2 = r2;

q′1 =
r1

r1 + r2
, q′2 =

r2

r1 + r2
;

ΓLB
(5) = q′1Γ

LB(1) + q′2Γ
LB(2) =

q′1(d1 + d3 + d5) + q′2(d2 + d4 + d5) =

q′1(d1 + d3) + (1 − q′1)(d2 + d4) + d5.

q′1 =
2

3
⇒ ΓLB

(5) = 5.333 min.

An upper bound for the throughput of transition t5 (machine
M5) is 1/ΓLB

(5) = 0.1875 min−1.

In the non-safe case our approach does not work as explained
afterwards. By solving (12) for the net system in fig. 4 we ob-
tain ΓLB

(5) = 0.5, if r1/r2 = 2 and transitions t3 and t4 have
time duration equal to one second. On the other hand, the actual
mean interfiring time value is ΓLB

(5) = 0.409. This result can be
explained by observing that if the net system is not safe, under
a net marking more than one conflicting transition may fires or,
depending on the routing rates, or a single conflicting transition
may fire more than one time. Let us consider the initial mark-
ing of the net system in fig. 4. We have that t1, t2, t5 fire in



zero time and, depending on the conflict resolution, the marking
m1 =

[

0 2 1 1 0
]T

or m2 =
[

0 1 2 0 1
]T

can
be reached. After a time 1 second is spent, t5 fires two times
and m0 is reached again. Finally we have that m0[σ > m0 and
three firings of t5 are included in σ. Our approach do not con-
sider the simultaneous firing of two conflicting transitions, but
only two simultaneous firings of the same transitions. This is
the reason why the sequence σ described above cannot be con-
sidered by our approach. Further research has to be carried on
this topic.

5 Conclusions

For a live and safe free choice net it has been proved that any
cyclic sequence can be associated with a firing count vector that
is a linear combination of minimal T-invariants. Since mini-
mal T-invariant induced subnets are marked graphs, called MG-
components, it has been shown that a throughput upper bound of
a transition in live and safe free choice nets can be expressed as
linear combination of throughput bounds of minimal T-invariant
induced MG-components. Reachable throughput upper bounds
for marked graphs can be computed via a linear programming
problem, and thus a reachable throughput upper bound of a tran-
sition in a live and safe free choice net can be derived.

p
1


t
1
 t
2


p
2
 p
3


t
3
 t
4


p
4
 p
5


t
5


Figure 4: A non-safe FCN system.
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