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tering in the linear case applying the duality principle to the solution
of the optimal filtering problem [15], this paper exploits the
Abstract same idea for designing the optimal control in a linear system

with time delay in control input, using the optimal filter for

This paper presents the optimal regulator for a linear systéifear systems with delay in observations. In doing so, the op-
with time delay in control input and a quadratic criterion. Thémal regulator gain matrix is constructed as dual transpose to
optimal regulator equations are obtained using the duality pritee optimal filter gain one and the optimal regulator gain equa-
ciple, which is applied to the optimal filter for linear system#on is obtained as dual to the variance equation in the optimal
with time delay in observations. Performance of the obtainélier. The results obtained by virtue of the duality principle
optimal regulator is verified in the illustrative example againspuld be rigorously verified through the general equations of
the best linear regulator available for linear systems withoilite maximum principle [20, 14] or the dynamic programming
delays. Simulation graphs and comparison tables demonstragthod [4, 18] applied to a specific time-delay case, although
ing better performance of the obtained optimal regulator die physical duality seems obvious: if the optimal filter exists
included. in a closed form, the optimal closed-form regulator should also
exist, and vice versa [3]. It should be noted, however, that ap-
plication of the maximum principle to the present case gives
one only a system of state and co-state equations and does not

A|though the Op“mal control (regulator) prob'em for |ineaprOVide the eXpliCit form of the co-state vector. SO, the dua“w
system states was solved, as well as the filtering one, in 1960ciple approach actually provides one with the explicit form
[15, 1_‘]_], the Opt|ma| control prob'em for linear Systems W|tﬁf the Optlmal control and co-state VeCtOl‘, which would be then
delays is still open, depending on the delay type, specific sysiPstituted into the equations given by the rigorous optimality
tem equations, criterion, etc. Such complete reference book&fls and thereby verified.

the area as [12, 13, 17,7, 5] disqussing the maximum prinﬁirnally, performance of the obtained optimal control for a lin-

ple [14] or the dynamic programming method [18] for systemgy; system with time delay in control input and a quadratic cri-
with delays, note that finding a particular explicit form of thearion is verified in the illustrative example against the best lin-
optimal control function might still remain difficult. A partic- ear regulator available for linear systems without delays. The
ular from of the criterion must be also taken into account: thgmylation results show small but definite advantage of the ob-

studies mostly focused on the time-optimal criterion (see th§neq optimal regulator in both the criterion value and the
paper [19] for linear systems) or the quadratic one [9, 6, 21k e of the controlled variable.

Virtually all studies of the optimal control in time-delay sys-

tems are related to systems with delays in the state (see, f@hould be noted that the paper considers the case of one fixed
example, [1]), although the case of delays in control input is §§lay in control input, however, the delay value can also be

less challenging, if the control function should be causal, i.¥ariable: neither the resulting equations nor the derivation tech-
does not depend on the future values of the state. An immeR#gue would be changed. Moreover, itis clear how to obtain the

bibliography existing for the robust control problem for tim@ptimal regulator for a linear system with various delay values

delay systems (such as [8, 16]) is not discussed here. in control inputs, including a control input without delay, using

) ) ) the duality principle approach. The results should be formal-
This paper concentrates on the solution of the optimal cont{pkq and revealed soon.

problem for a linear system with delay in control input and a _ _ _ _
quadratic criterion, which is based on the duality principle ihhe paper is organized as follows. Section 2 states the optimal
a closed-form situation [3] applied to the optimal filter for lincontrol problem for a linear system with time delay in control

ear systems with delay in observations, obtained in [2]. Taki#igPut and describes the duality principle for a closed-form sit-
uation [3]. For reference purposes, the optimal filtering equa-

1 Introduction



tions for a linear state and linear observations with delay [3] Optimal filter for linear state equation and

are briefly reminded in Section 3. The optimal control problem |inear observationswith del ay

for a linear system with time delay in control input is solved

in Section 4, based on application of the duality principle # this section, the optimal filtering equations for a linear state
the optimal filter of the preceding section. Section 5 presei@@uation over linear observations with delay (obtained in [2])
an example illustrating the quality of control provided by thare briefly reminded for reference purposes. Let the unobserv-
obtained optimal regulator for linear systems with time delaple random procesgt) be described by an ordinary differen-

in control input against the best linear regulator available f§al equation for the dynamic system state

systems without delays. Simulation graphs and comparison ta-

bles demonstrating better performance of the obtained optimd&X(t) = (@(t) +-a(t)x(t))dt +bt)dWi (1),  X(to) =Xy, (3)

regulator are included. and a delay-differential equation be given for the observation

process:
2 Optimal control problem for linear system
with time delay in control input dy(t) = (Ag(t) +AMUX(t —h))dt+F ()W, (t),  (4)

Consider a linear system with time delay in control input ~ Wherex(t) € R"is the state vectoyt) € R™ is the observation
process, the initial conditior, € R" is a Gaussian vector such

thatx,, W, (t), W, (t) are independent. The observation process
dx(t) = (ag(t) +ay (t)x(t))dt + B(t)u(t —h)dt, 1) y(t) )(;Oepeln(d)s onz'Eh)e delayed state— h), wherehis a fixed de-

lay shift, which assumes that collection of information on the
with the initial conditionx(s) = @(s), s [—h,0], wherex(t) € system state for the observation purposes is possible only after
R" is the system statey(t) € R™ is the control variable, and a certain timeh. The vector-valued functiom,(s) describes
@(s) is a piecewise continuous function given in the intervahe effect of system inputs (controls and disturbances). It is
[—h,0]. Existence of the unique solution of the equation (IJssumed tha(t) is a nonzero matrix anBl (t)F ' (t) is a posi-
is thus assured by the Caratheodori theorem (see, for examgie, definite matrix. All coefficients in (3)—(4) are deterministic
[10]). The quadratic cost function to be minimized is definefdinctions of appropriate dimensions.

as follows: oo . , .
The estimation problem is to find the estimate of the system

1 T statex(t) based on the observation proc&gs) = {y(s),0 <
I =S XM XM+ s<t}, which minimizes the Euclidean 2-norm

LT L 3= E[(x(t) = X(t)T (x(t) = X(1))]

T T
5) U (SR(s)u(s)ds+ 5 X (SL(s)x(s)ds,  (2)  at each time moment In other words, our objective is to find
0 0 the conditional expectation

where ), R, L are positive (nonnegative) definite symmetric m(t) = R(t) = E(x(t) | RY).
matrices, and > t; is a certain time moment.

The optimal control problem is to find the controft), t € As usual, the matrix function

[tE,T}, that minimizes the criteriod alqng_ with 'Fhe trajectory P(t) = E[(x(t) — m(t))(x(t) — m(t))T | FY]
X*(t),t € [ty, T], generated upon substitutiog(t) into the state

equation (1). To find the solution to this optimal control prolis the estimate variance.

lem, the duality principle [15] could be used. For linear sys-

tems without delay, if the optimal control exists in the opti-
mal control problem for a linear system with the quadratic co

function J, the optimal filter exists for the dual linear systerﬁ
with Gaussian disturbances and can be found from the optimal
control problem solution, using simple algebraic transforma-

tions (duality between the gain matrices and between the gain L T

matrix and variance equations), and vice versa. Taking into P(t)exp(—'/tiha (S)ds)A" (1)

account the physical duality of the filtering and control prob- 1

lems, the last conjecture should be valid for all cases where  (F(HF (1))~ (dy(t) — (Ay(t) +A(t)m(t —h))dt).

the optimal control (or, vice versa, the optimal filter) exists in _ T T

a closed finite-dimensional form [3]. This proposition is how dr(t) = (P(;[)a () +aP(®) +b(H)b’ (1 (®)
applied to the_opUmgI filtering pro_bler_n for linear system state_s P(t) exp(—/ aT(S)dS)AT ) (F (t)FT(t))71><

over observations with delay, which is dual to the stated opti- t—h

mal control problem (1),(2), and where the optimal filter has t

already been obtained (see [2]). A(t) exp(— /t _ha(s)ds)P(t))dt

he solution to the stated problem is given by the following
ystem of filtering equations, which is closed with respect to
e introduced variables(t) andP(t):

dm(t) = (ay(t) +a(t)m(t))dt+ (5)



The system of filtering equations (4) and (5) should be com- exp(/t a(s)ds)Q(t)x(t)dt,  X(ty) =X,
plemented with the initial conditionsi(t,) = E[x(ty) | th] and t—h ’ 0 ’

_ T Y .
P(to) = E[(x(to) — m(t)(X(to) —m(ty)" | Rl As noted, this Noe that if the real state vectart) is unknown (unobserv-
system is very similar to the conventional Kalman-Bucy filtepp|e), the optimal controller uniting the obtained optimal filter
except the adjustments for delays in the estimate and variaggg regulator equations, can be constructed using the separa-
equations, palculated due to the formula Cauchy for the lingggy principle [15] for time delay systems, which should also
state equation. be valid if solutions of the optimal filtering and control prob-
In the case of a constant matebin the state equation, the opti-8ms existin a closed finite-dimensional form.

mal fiIteTr takes the especially simple form (€xp/;’ a"ds) =  The results obtained in this section by virtue of the duality prin-
exp(—a'h)) ciple could be rigorously verified through the general equations

_ T\ AT of the Pontryagin maximum principle [20, 14] or Bellman dy-
am(t) = (2(t) +am(t))dt +P(t) exp(-a AT () (7) namic programming [4, 18]. It should be noted, however, that

EOFET ) L (dv(t) — t) + A)m(t — h))dt application of the maximum principle to the present case gives
( HF )) (dy(t) = (Ag(t) +At)m( )at), one only a system of state and co-state equations and does not
dP(t) = (P(t)a’ +aP(t)+b(t)b' (t)— (8) provide the explicit form of the co-state vector. So, the duality

principle approach actually provides one with the explicit form
of the optimal control and co-state vector, which would be then

Thus, the equation (5) (o (7)) for the optimal estimaté) and substituted into the eq_uations given by the rigorous optimality
the equation (6) (or (8)) for its covariance matBx) form a tools and thereby verified.

closed system of filtering equations in the case of a linear state

equation and linear observations with delay. 5 Example

P(t) exp(—a" hAT (t) (F(t)FT (1)) “A(t) exp(—ah)P(t))dt.

. . This section presents an example of designing the regulator for
4 Optimal control problem solution a system (1) with a criterion (2), using the scheme (9)-(10), and
{:é)mparing it to the regulator where the mat@xs selected as

Let us return to the optimal control problem for the linear sta _ . i
g the optimal linear regulator for a system without delays.

(1) with time delay in linear control input and the cost functio
(2). This problem is dual to the filtering problem for the lin{_et us start with a scalar linear system
ear state (3) and linear observations with delay (4). Since the

optimal filter gain matrix in (4) is equal to X(t) =x(t) +u(t-0.1), (1)
t with the initial conditions«(s) = 0 for s€ [-0.1,0) andx(0) =
K= P(t)exp(—/ a' (s)ds)AT (t)(F(t)FT (1)1, 1. The control problem is to find the controft), t € [0, T],
t=h T = 0.25, that minimizes the criterion
the gain matrix in the optimal control problem takes the form 1 1 /T
of its dual transpose J=3SXT)- X%+ E/o u?(t)dt, (12)
Ke = (R(t)) BT (t)exp(/t a(s)ds)Q(t), whereT = 0.25, andx* = 10 is a large value of(t) a priori
t—h unreachable for tim&. In other words, the control problem is
and the optimal control law is given by to maximize the state(t) using the minimum energy of control
u.

t
u*(t) = Kex = (R(t)) BT (t)eXp(/t,h a(s)ds)Q(t)x(t), (9) Let us first construct the regulator where the control law and
' the matrixQ(T) are calculated in the same manner as for the
where the matrix functio(t) is the solution of the following optimal linear regulator for a linear system without delays in

equation dual to the variance equation (6) control input, that isi(t) = (R(t)) BT (t)Q(t)x(t) (see [15] for

reference). Sinc®(t) =1 in (11) andR(t) =1 in (12), the
dQ(t) = (—a" ()Q(t) — Q)a(t) +L(t)— control law is actually equal to
Q(t) exp( /t t haT(s)ds)B(t)Rfl(t) X u(t) = Q(t)x(t), (13)
: - t whereQ(t) satisfies the Riccati equation
BT a9 10 Q) = (~a Q) -~ Q) +L(1)-

with the terminal conditiorQ(T) = . Q)BH)R ()BT (1)Q(1)),

Upon substituting the optimal control (9) into the state equatig¥ith the terminal conditio®Q(T) = . Sincea(t) =1,B(t) =1

(1), the optimally controlled state equation is obtained in (11), andL = 0 andy = 1 in (12), the last equation turns to

dx(t) = (ay(t) +a(t)x(t) + B(t)(R(t)) BT (t)x Q(t)=-2Q(t)— (Q(t))%, Q(0.25)=1. (14



Upon substituting the control (13) into (11), the controlled sy$§}pon denoting du, (t)/du) = M(t), the optimal control law is
tem takes the form obtained as

X(t) = x(t) + Q(t)x(t — 0.1). (15) ut(t) = —R1MT ()BT (t)q(t).

The results of applying the regulator (13),(14) to the systeTaking linearity and causality of the problem into account, let
(11) are shown in Fig. 1, which presents the graphs of the seelq(t) as a linear function ix(t)

controlled state (15)(t) in the interval[0, T], the shifted ahead

by 0.1 criterion (12))(t —0.1) in the interval[0.1, T +0.1], and q(t) = —QE)x(t), (20)

the shifted ahead by 0.1 control (13} — 0.1) in the interval ) . ] ) . .
[0,T]. The values of the state (15) and the criterion (12) at tH@ereQ(t) IS a square symmetric matrix of dimensionThis
final momentT = 0.25 arex(0.25) = 1.5097 andJ(0.25) = Yields the complete form of the optimal control

reoLr Ut =RIOMT OB HQWxY. (2D
Let us now apply the regulator (9)—(10) for linear systems with

time delay in control input to the system (11). Siraf¢) =
1 andh = 0.1 in (11) and, therefore, exg ,a' (s)ds) =
exp(0.1), the control law takes the form

u'(t) = exp(0.1)Q(t)x(t), (16)

whereQ(t) satisfies the Riccati equation

Note that the transversality condition [20, 14] fifiT ) implies
thatq(T) = —0J3/9x(T) = —yx(T) and, thereforeQ(T) = Y.

Using the co-state equatialg(t) /dt = —dH /dx, which gives

—dq(t)/dt = L(t)x(t) +a] (t)a(t), (22
) and substituting (20) into (22), we obtain

Q(t) = —2Q() — (exp(0.1)Q(1))*, Q029 =1 (17)
o _ Q()x(t) +Q(t)d(x(t))/dt = L(t)x(t) —a] ()Qt)x(t). (23)
Upon substituting the control (16) into (11), the controlled sys-

tem takes the form Substituting the expression fgft) from the state equation (1)

X(t) = x(t) +exp(0.1)Q(t)x(t — 0.1). (18) Into(23)yields

t)x(t t)a, (t)x(t t)B(t)u(t —h) =
The results of applying the regulator (16),(17) to the system QX Q2 ()x(1) + QB )
(11) are shown in Fig. 2, which presents the graphs of the con- L(t)x(t) —a] (t)Q(t)x(t). (24)
trolled state (18)(t) in the interval[0,T], the shifted ahead
by 0.1 criterion (12)J(t —0.1) in the interval[0.1, T+ 0.1, |n view of linearity of the problem, differentiating the
and the shifted ahead by 0.1 control (16)t —0.1) in the |ast expression inx does not imply loss of generality.
interval [0, T].  The values of the state (18) and the criterioypon taking into account tha@u(t — h)/ax(t)) = (du(t —
(12) at the final moment = 0.25 arex(0.25) = 1.5394 and h)/du(t))(du(t)/dx(t)) = MH)RLt)MT(t)BT (1)Q(t) and
J(0.25) = 72.1265. There is a certain improvement in the valjifferentiating the equation (24) i it is transformed into the
ues of the controlled state to be maximized and the criteri@ficcati equation
to be minimized, in comparison to the preceding case, due to
the optimality of the regulator (16),(17) for linear systems with Q(t) = L(t) — Q(t)ay(t) —a] (t)Q(t)—
time delay in control input.
QLBHMBR YHMT ()BT (1)Q(L). (25)

6 Appendix , _ _ .

Let us find the value of matri#(t) for this problem. First
Proof of the optimal control problem solution. Define the of all, let us note [20, 14] that the Hamiltonian function
Hamiltonian function [20, 14] for the optimal control problenH (x*,u*,g*,t) is constant iri for the optimal control (210" (t),

(1),(2) as the corresponding optimal state {)t) and co-state*(t) sat-
1 isfying (20), andQ(t) satisfying the equation (25), and equal
H(x,u,q,t) = E(uTR(t)u+xT|_(t)x)+ to

1
H(x*,u*, g t) = E(u*TR(t)u*+

.
9" [3(t) +ay (H)x+ B{t)uy ()], (19 xTLH)X) +d(xTQ(t)x)/dt =C = const. (26

whereu, (u) = u(t — h). Applying the maximum principle con-
dition dH/du = 0 to this specific Hamiltonian function (19)Integrating the last equality from- htot yields
yields

t
dH/du=0= R(t)u(t) + (du,(t)/du)TBT (t)q(t) = 0. /t _h[U*T(s)R(s)u*(s) +xT(s)L(s)x*(9)|ds



+xT(H)Q()X* (t) —xT(t —h)Q(t — h)x* (t —h) = 2Ch. [3]
Differentiating the obtained formula respectddt) andu*(t)

and taking into account the optimal control expressions for
u*(t) andu*(t — h) given by (21), we obtain

RIOMT(®)BT(t) = (MT (1)) R Y(t—h)x (4]

't

MT (t — )BT (t — h) exp( / a’ (s)ds), 27)

t—h

5]
also using that

1 (6]
IX(t)/ax(t —h) = exp( /t  als)ds)

The last formula follows from the Cauchy formula for the so-
lution of the linear state equation (1)

[7]
X(t) = ®(t,t —h)x(t —h) + tihqn(t,r)ao(r)dpr 8]
tihdb(t, 7)B(1)u(t — h)dr,

9]

where®(t, 1) is the matrix of fundamental solutions of the ho-
mogeneous equation (1), that is solution of the matrix equation

10]
do(t, 1)

dt

=at)P(t,1), Pt,t)=1,

(11]

wherel is the identity matrix. In other wordsp(t,t — h)
exp/i pa(s)ds.

12
Furthermore, it can be noted, differentiating twice th[e ]

formula (26) with respect tox*(t), that the expression
R1(t)MT(t)BT (t)) does actually not depend &ft) or R(t)

as functions of tim¢. Thus, the value of the matriM(t) for [13]
this problem can be determined from (27) assuming that time
t —h is equal tot in the matrix functionR(t — h)MT (t —

h)BT (t —h)). Finally, the formula (27) admits the following

equality for calculatindv (t) [14]

MT (£)BT (t) = BT (t) exp( /tihaT(s)ds). (28)

Substituting the formula (28) into (21) and (25) yields the dél®]
sired formulas (9) and (10) for the optimal control laiit)

and the matrix functiol@(t). The optimal control problem so- [16]
lution is proved.
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Figure 1: Best linear regulator available for linear systengsgure 2: Optimal regulator obtained for linear systems with
without delays. Graphs of the controlled state (X&) in  time delay in control input. Graphs of the controlled state (18)
the interval[0,0.25], the shifted ahead by 0.1 criterion (12)t) in the interval[0,0.25], the shifted ahead by 0.1 criterion
J(t—0.1) in the interval[0.1,0.35], and the shifted ahead by(12) J(t — 0.1) in the interval[0.1,0.35], and the shifted ahead
0.1 control (13)u(t —0.1) in the interval[0,0.25]. by 0.1 control (16)W*(t — 0.1) in the interval[0,0.25).
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