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Abstract 

 
In this paper a bond graph approach to build reduced order 
observers for linear time invariant systems is shown.  This 
approach uses the bicausality concept to simplify the 
construction and the calculation of the observer.  The method 
is based on the Luenberger’s algebraic method for the design 
of reduced order observers; some classical matrix calculations 
are simplified and the calculation of the inverse of matrices is 
not needed, which is an important improvement mainly for 
large-scale systems.  The calculation of the observer gain is 
based on the pole placement techniques for linear systems 
modelled by bond graph.  As application, one example with 
multiple outputs is developed. 

 

1  Introduction 
 

In some applications of automatic control, it is assumed that 

the entire state vector is measurable an thus available for 

feedback. Often, however, this is not the case; it is either 

impractical to measure some or all of the states, or the quality 

of the measurement, in terms of signal to noise ratio, is poor 

enough to reduce the utility of the compensator. In these 

instances we must estimate the unavailable state variables, 
using an observer. This approach will normally enable us to 

implement the compensator with acceptable performance.  

For linear systems, one of the most used observers is the 

Luenberger observer [4].  When implemented in an 

observable system, Luenberger observers can be designed in a 

way that the difference between the actual system states and 

the states of the observer can be driven to zero.  

If an observer is used to provide estimates of all state 

variables, it is referred to as a full-order state observer. 

Sometimes, however, it is possible to obtain a satisfactory 

measurement of some, but not all, states. In these instances a 

reduced-order state observer may be implemented, targeting 
the estimation of only the inaccessible states.  In this paper, 

we will consider the design of reduced order linear state 

observers. 

The main advantage for implementing a reduced order 

observer is that it will estimate only the state variables that 

cannot be accessible by the measurements; the order of the 

observer model will be lower than the order of a complete 

order observer, and thus the computational cost to estimate 
these variables is also lower. 

From an algebraic point of view, the Luenberger’s method [4] 

considers an observable linear time invariant system modelled 

by the following state equation: 

Cxy

BuAxx

=
+=&

   (1) 

with A ∈ ℜn × n
, B ∈ ℜn × p

,
 
C ∈ ℜm × n

, y regroups the outputs 
of the system. 

The method for building reduced order observers consists in 

dividing the state variables of the model into accessible 

variables and non-accessible variables.  The accessible 

variables are the state variables that can be directly measured 

from a sensor or can be calculated from the measurement of 
the sensor.  With this classification, the state equation of the 

system can be written as a function of the accessible (xa 

∈ ℜm
) and non-accessible (xb ∈ ℜn −m

) variables as follows: 
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Afterwards, with a linear transformation, the state equation is 

written as a function of the output and the non-accessible state 
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where: 
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With this representation the inverse of the Ca matrix is 

needed.  Because of that, after the selection of xa, the 
condition: rank(Ca) = m must be verified to guarantee the 

existence of Ca

-1
. 

From the state equation (3), the equation for 
b

x̂ is: 

( )
babbabbbbbbab

x̂ A  xAK uBx̂ A  y Ax̂ −+++=&      (5) 

with K ∈ ℜ(n-m) × m
. 

Thus, the dimension of the observer is equal to (n – m), where 

n is the total number of state variables and m is the number of 

outputs of the system.  

As xb is non-accessible, in equation (5) the term 
bab
xA  must 

be substituted by an expression derived from equation (3), 

which is a function of y and u as shown in equation (6): 

uByAyxA
aaabab

−−= &
         (6) 

Afterwards, to avoid the time derivation of the output, the 

estimated state is calculated by means of an auxiliary 

variable, ẑ : 

Kyx̂ẑ
b

−=    (7) 

With this variable and an algebraic manipulation, the state 

equation for the estimated states is: 
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The observer gives the following dynamics for the estimation 

error, e =
bb

x̂x − : 

e)AKA(e
abbb
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  (9) 

Luenberger [4] showed that if the model in equation (1) is 

observable, the pair )A,A(
abbb

is also observable, therefore, 

the eigenvalues of )AKA(
abbb

− can be arbitrary selected to 

define the error dynamics. 

The bond graph implementation is based on the Luenberger’s 

method for reduced order observers in linear system [4].  

Because of that, it is necessary for the bond graph model to be 

equivalent to equation (1).  That means that in the bond graph 

model there are nor causal loops between R-elements neither 
derivative causalities that could generate an implicit state 

equation. 

Taking advantage of the structural properties of bond graphs, 

in this work the technique showed by [9] is used to verify the 

structural observability of the model, which is a necessary 

condition for building the Luenberger’s observers. 

The computational capabilities of the bicausality concept 

have shown that this is an adequate tool for solving the 

problem of inverse systems [2].  From the observability point 

of view, Gawthrop [2] showed how to determine the initial 

conditions of the states in a model with given inputs, outputs 

and parameters.  Ngwonpo et al. [6] used bicausality to derive 
the inverse system state equation from a bond graph model. 

With respect to the inverse of the Ca submatrix, Pichardo-

Almarza et al. [7] have shown how to determine the 

invertibility of the Ca submatrix and how to calculate it 

directly from the bond graph using the bicausality concept.   

The main objective of the present work is to use the results 

shown by [7] to generate a new procedure to build the 

observers in which some calculations are simplified; for 

example the calculation of Ca

-1
 to build the reduced order 

observer is not needed anymore, which is an important 

simplification mainly in large scale systems.   
As an application, one example with three outputs is studied 

where the measurements are dependents on several state 

variables.   

This paper is organized as follows:  section 2 shows the bond 

graph implementation of reduced order observers.  Section 3 

shows the principles to design the observer starting from a 

bond graph model.  Section 4 proposes the implementation of 

the method on one example. Finally Section 5 gives the 

conclusions of this work. 

 

2   Bond Graph Implementation 
 

As it has been shown until now, the Luenberger’s method for 

reduced order observers in linear systems needs the algebraic 

manipulation of matrices, which includes the calculation of 

the inverse of Ca submatrix.  In this paper a graphical method 

is shown that can be applied over a bond graph model directly 
to build the observers without generation or any  

manipulation of the state equations of the system. 

The bond graph implementation is based on the Luenberger’s 

method and it needs the calculation of the estimated state by 

means of the auxiliary variable, ẑ , as it is shown in equation 

(7).  Then, equation (8) to calculate the estimated states can 

be written as: 

φ++++= uB)Kyẑ(AyAẑ
bbbba
  

&

  (10) 

where: )  uBKy)ẑ (A yAK(
aabaa

+++−=φ                        (11) 

In the present work some results of [7] are taken regarding the 

structure of the observers and the use of the bicausality 

concept in this procedure is extended to build the reduced 

order observers and to avoid the calculation of Ca

-1
.   

 

2.1  Bg-rank of Ca submatrix 

As it is shown in equation (5) the
ij
A (i, j = a, b) matrices 

depend on Ca

-1
.  The rank of the C matrix can give 

information about the invertibility of Ca.   

From a bond graph point of view, the definition of bond 

graph rank (bg-rank) can be used to verify the rank of the 

model’s matrices.  The bg-rank is a structural rank in the 

sense of graph theory, but correspond in fact to the numerical 

rank because it takes into account parameter dependency 

through the causality.  Sueur and Dauphin-Tanguy [9] have 

shown the following property about the bg-rank[C]: 

Property 1.  The bg-rank[C] is equal to the number of 

detectors in a bond graph model that can be dualized without 

creating causality conflicts and while accepting the change of 

causality of the dynamical elements in integral causality.       
This property also gives information about the existence of 
redundant outputs.  Some redundant outputs might exist and 

might be neglected; thus the dimension of vector xa always 

has to be equal to the bg-rank[C]: 

dim(xa) = bg-rank[C] = m 

Taking only the outputs in the detectors that can be dualized 

without any causality conflict, Property 1 implies that there 

exists an invertible submatrix of C with dimensions m x m, 
called Ca, corresponding to a selection of components xa. 



After applying Property 1 to select the non-redundant outputs, 

the bicausality concept can be appropriately used to select the 
xa vector guaranteeing the existence of Ca

-1
.  The bicausality 

allows fixing or imposing at the same time a variable and its 

conjugate as bicausal bonds decouple the effort and flow 

causalities.  In the context of the inversion problem, imposing 

the output variable without modifying the energy structure (or 

constraint equations) of the system can be carried out by an 

SS element having a flow source /effort source causality [6].  

When this procedure is made, the conjugate variable on the 

detectors is equal to zero, because the detector is supposed to 

be ideal (no power dissipated or stored).  Then, to obtain 

information about Ca

-1
, the detectors can be substituted by SS 

elements leading to a null power flow on that bond.   From 
this analysis Theorem 1 can be introduced. 

Theorem 1.  The inverse of Ca submatrix exists (or the bg-

rank[Ca] = m),  if the following operations can be made in the 

bond graph model without introducing any causality conflict: 

(i) All detectors are substituted by SS elements as 

shown in Figure 1. 

(ii) The dynamical elements associated with xa 

change its integral causality into a bicausality 

as it is shown in Figure 2. 

(iii) The dynamical elements associated with xb 

remain in integral causality.   
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Figure 1.  Substitution of detectors and bicausality of the SS 

elements.
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Figure 2.  Bicausality of the elements associated with xa.    � 

 

2.2  Proposition of a procedure to build the reduced order 

observers 
After applying Property 1 to select only the non-redundant 

outputs, the proposed procedure to build the reduced order 

observers from a bond graph model can be summarized as 

follows: 

Step 1.  Verification of the structural observability of 
the model. 

Step 2.   Selection of xa, verification of rank(Ca) = m and 

calculation of Ca and Cb. 

Step 3.  Suppression of the dynamical elements 

associated with xa. 

Step 4.  Sum of the term Ky (equation (7)). 

Step 5.  Sum of the term φ (equation (10)). 
The relevant steps in this procedure are 3 and 5, because they 

show how to use the bicausality concept in the bond graph 

implementation of the observer.  Step 3 shows how to avoid 

the calculation of Ca

-1
, whereas in step 5 two lemmas are 

proposed to facilitate the observer building.  

A brief description of each step is given now: 
Step 1.  The verification of structural observability of the 

bond graph model is made with the technique proposed by 

[9].  The authors showed that if all dynamical elements in 

integral causality are causally connected with a detector and 
all the I-C elements in integral causality are in derivative 

causality when a derivative assignment is performed over the 

initial bond graph, then the model is structurally state 

observable by the detectors. 

Step 2.  From a bond graph point of view any state variable of 

a dynamical element with a direct causal path with a detector 

can be defined as an accessible state variable.  The selection 

of xa must consider the conditions of Theorem 1 to verify 

rank(Ca) = m.  Then, the calculation of Ca and Cb is directly 

derived from the initial bond graph model by calculating the 

gain of the causal path of length one (1) from the I or C-

elements associated with the time derivative of xa and xb to 
the output y. 

Afterwards, the bond graph model of the observer is made 

from the bond graph model with bicausality generated to 

analyse the invertibility of Ca.  Steps 3, 4 and 5 specify the 

changes that are needed to conclude the construction of the 

observer. 

Step 3.  This step is made using Theorem 1.  When the 

causality of the dynamical elements associated with xa 

changes to a bicausality (Figure 2) and the detectors are 

substituted by SS elements (Figure 1), the complementary 

variables Za and the derivative of the state variables 
a

x& can be 

calculated knowing the output y.  Then in the observer model 

these dynamical elements are removed and substituted by 0-

junctions or 1-junctions as it is shown in Figure 3, and 

because of that, in this step occurs the order reduction and the 

calculation of Ca

-1
 is avoided. 
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Figure 3.  Suppression of dynamical elements in the bond 

graph model of the observer 

Step 4.  Sum of the term Ky. 

In the dynamical elements associated with 
b
x̂ , the term Ky is 

summed to calculate the state: 

Kyẑx̂
b

+=    (12) 

This operation is equivalent to add modulated sources in the 

dynamical elements (I or C) of the observer as it is shown in 

Figure 4. 
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Figure 4. Bond Graph model to sum Ky in: (a) an I-element; 

(b) a C-element  

Step 5.  Sum of the term φ. 

As in equation (11) to calculate ẑ
&

 the term φ is required.  

Using equation (2), the term φ is equal to: 

[ ]    

bbaa
ˆCˆCK ϕ+ϕ−=φ    (13) 

where,  

e = y f = 0 e = 0 f = y 
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( )  uBKy)ẑ (CCAAy CAˆ
abaaaabaaaa

++−+=ϕ −− 11
 (14) 

( )  uBKy)ẑ(CCAAy CAˆ
bbababbabab

++−+=ϕ −−
 

11
 (15) 

According to equation (13), the term φ can be added with a 
modulated source in the bond graph of the observer as it is 

shown in Figure 5. The term φ is a flow when the state 
variable xb is associated with a C-element (or an effort when 

xb is associated with an I-element).  
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Figure 5. Addition of term φ 

In the bond graph model of the observer, 
a

ˆϕ and 
b

ˆϕ will be 

flows when the state variables xa and xb are associated with a 

C-element (or efforts when xa and xb are associated with an I-

element). To identify the variables 
a

ˆϕ and
b

ˆϕ  directly in a 

bond graph model, the following two lemmas are proposed. 

Lemma 1.  The variables 
a

ˆϕ are equal to the output variables 

in the junctions (0 or 1) with bicausality that substitute the 
dynamical elements associated with xa as it is shown in Figure 

6. 

0

1 (a) 

1

0 (b) 

Figure 6.  Variable
a

ˆϕ  in the bond graph model of the  

observer associated with (a) I-element; (b) C-element � 

Proof.  When the causality of the dynamical elements 

associated with xa change to a bicausality (Figure 2) and the 

detectors are substituted by SS elements (Figure 1), the 
complementary variables Za and the derivative of the state 

variables 
a

x& can be calculated knowing the output y.  Then 

the calculus of 
a

x& corresponds to: 

( )  uB xCCAAy CAx
abbaaaabaaaa

+−+= −− 11
&

 (16) 

If the dynamical elements associated with xa are substituted 

by 0-junctions or 1-junctions according to the Figure 3, then 

the equation of the output variable of these junctions,
a

ν , has 

to be equal to equation (21). 

 ( )  uB xCCAAy CA
abbaaaabaaaa

+−+=ν −− 11
 (17) 

Then, as the bond graph model of the observer keeps the same 

causality relations, the output variable of the junctions 

associated with xa must have the same form as equation (22). 

( )  uBKy)ẑ (CCAAy CAˆ
abaaaabaaaa
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 � 

Lemma 2.  In the bond graph model of the observer, when xb 

is associated with a C-element, 
b

ˆϕ  is the flow before the 

addition of φ (in the case where the dynamical element 

associated with xb is an I-element, then 
b

ˆϕ is the effort before 

the addition of φ).                 
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Figure 7.  Variable 
b

ˆϕ  in the bond graph model of the 

 observer associated with (a) I-element; (b) C-element      

Proof.  By equation (11):  φ++++= uB)Kyẑ(AyAẑ
bbbba
  

&  

Then in the bond graph model of the observer, if the effort 

variable before the addition of φ is taken (when xb is 
associated with an I-element) or the flow variable before the 

addition of φ is taken (when xb is associated with a C-

element), then this effort or flow variable has to be 
b

ˆϕ  and 

has to be equal to: 

uB)Kyẑ(AyAˆ
bbbbab
  +++=ϕ  

Then, using equation (5): 

( )  uBKy)ẑ(CCAAy CAˆ
bbababbabab

++−+=ϕ −−
 

11
    � 

In conclusion, using the last two lemmas, the addition of the 

term φ can be represented as it is shown in Figure 8.  In this 

figure, according to Lemma 1 and Lemma 2, 
a

ˆϕ  is the effort 

in the 0-juntion associated with xa (in the case where the 

dynamical element associated with xa is a C-element, then 

a

ˆϕ would be the flow in the 1-junction associated with xa and 

b
ˆϕ  is the flow in the observer bond graph before the addition 

of φ). 
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Figure 8. Addition of term φ 

 

3  Observer design 
 

The observer design is based on the pole placement 

techniques proposed in [8] like in the approach proposed in 

[7].  The characteristic polynomial of the reduced observer 

( )s(P
)abAKbbA( − ) is selected and then the calculation of K is 

based on the polynomial coefficients.  This calculation is 

possible considering the information signals associated with 

K and applying the proposed Theorem 2.   Although in this 

case the bond graph model of the observer contains 
bicausalities, the Theorem 2 can be applied.  

Theorem 2.  The value of each coefficient of the 

characteristic polynomial )s(P
)abAKbbA( −  is equal to the total 

a
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gain of the i
th

-order families of causal cycles in the bond 

graph model: 

)s(P
)abAKbbA( − = s

n
 + α1 s

n-1
 + … + αn-1 s + αn 

The gain of each involved family of causal cycles must be 
multiplied by (-1)

d
 if the family is constituted by d disjoint 

causal cycles.                                      
Thus, the causal analysis to calculate K is made only with the 

family of causal cycles in the observer’s bond graph. 

 

4  Example 
 

Model with three outputs.  In this example, a simple model to 
design seat belts and to generate crash test simulations was 

selected [3].  The model is composed by the car (M), the crash 

test dummy (m), his seat belts (k1, b1) and the shock-

absorbing bumper of the car (k2, b2).  The model considers the 

car when it hits a wall (Figure 9).  The bond graph model is 

shown in Figure 10.   In the model, the state variables are the 

variables associated with the dynamical elements and the 

outputs are the force in the seat belts, the force in the bumper 

and the velocity of the car. 

x = [x1, x2, x3, x4]
T
 = [ ]T
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Mm 21
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Figure 9.  Example.  Vehicle crash test 
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Figure 10. Bond graph model of the example. 

After applying Property 1 it is possible to determine that y1 , 

y2 and y3 are non-redundant outputs, then applying the 

procedure 2.2 for building the reduced order observer: 

Step 1.  The structural analysis [9] for this model reveals that 

the system is structurally observable by the detectors. 

Step 2.  For this system, the momentum in the I-element of 

the car (M) and the displacements in the C-elements are 
selected as accessible state variables. 

xa  = [ ]T
CCI

q,q,p
M 21

 

By Theorem 1 the new bond graph shown in Figure 14 is 

generated: 
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Figure 11. Bond graph to analyse the invertibility of Ca

 

Figure 11 shows that there are no causality conflicts, then: 

bg-rank[Ca] = 3 = m 

Finally, the values of Ca and Cb derived from Figure 10 are: 
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Step 3.  The suppression of the dynamical elements associated 

with xa is made directly from the bond graph model with 
bicausality shown in Figure 11, obtaining the bond graph 

model shown in Figure 12. 
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Figure 12.  Suppression of the dynamical elements associated 

with xa. 

Step 4.  The sum of the term Ky = K1 y1 + K2 y2 +K3 y3 is made 

as it is shown in Figure 13. 
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Figure 13. Sum of term Ky in the model of the observer. 

Step 5.  Sum of the term φ: 
With this operation, the observer bond graph is complete as it 

is shown in Figure 14. 

 Observer design 

Applying Theorem 2 in the observer model (Figure 14), only 

one first order causal cycle is found; therefore the calculation 

of the desired coefficient α1 is a simple algebraic operation, 
because only one of the components of K matrix (K1) is 

associated with this causal cycle. 

Figure 14 is a first order model, then selecting α1 as the 
desired coefficient of the characteristic polynomial: 

1
α+=− s)s(P

)AKA( abbb

 

The calculus of K is directly derived from α1, because: 

)( = α
a

G
1

⇒ α1 = –K1 (1/m)(k1)    (18) 



Then, K1 is calculated directly from equation (18): 

⇒ K1 = –m (α1/k1)  (19) 

01

I

MSf

(-K  b  + K  b  - K   )/M221 1 3

0

-K  /(1/k  )2 2

1

-K  /(1/k  )11

1
K  b  /m
1 1

0

MSe

y
3

SS

y
2

y
1SS SS

RR

Sf

11

10

-K  /m2

-K  /m1

y
3

y
2

y
1

-K  /m3

Figure 14. Bond graph model of the observer 

Simulations 

Simulations have been made in 20-Sim software version 2.3 

[1].  As this software does not accept the bicausality 

assignment directly, it was needed to program new elements 

that allow the calculation of flows and efforts following the 

causality rules shown in the bond graph model of Figure 14. 

Figure 15 shows the estimation error dynamic.   
The values of the parameters in this case are: Sf = 0 m/s,       

m = 100 Kg, M = 1500 Kg, k1 = 1 x 10
4
 N/m, k2 = 3 x 10

5
 

N/m, b1 = 1200 Ns/m, b2 = 16000 Ns/m, α1 = 25, and the 
initial conditions are:  xa1(0) = 33530, xa2(0) = 0, xa3(0) = 0, 

xb(0) = 2235 and ẑ (0) = 0; the desired coefficient is:            

α1 = 31.25. With these parameters and the desired coefficient, 
the value of K1 is –0.3125. 

For the implementation, the values of the parameters of the 

observer with respect to the model of the system have a 

variation of  –10%. 
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Figure 15.  Estimation error ( )
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Figure 15 shows that the steady state estimation error has a 

value that represents 10% of the real value of xb.  This result 

is associated with the sensitivity of the Luenberger observers 

that depends heavily on the precise setting of the parameters 

and the precise measurement of the output vector.  Any 

disturbance (noise) in the measurement, parameter 

differences, or internal noises (which can include such things 

as different timing on the power stage of the amplifier as 

opposed to the model) can make the observer unusable [5].   
 

5  Conclusions 

 

In this paper, a bond graph method to design reduced order 

observers has been shown.  The new method presented 

depends on the output matrix C, as in the algebraic methods.  

However, the observer building for LTI systems modelled by 
bond graphs does not need the calculation of Ca

-1
, showing 

the advantages of using the bicausality concept in the state 

estimation problem.  The work presented in this paper 

represents a control tool for people who develop bond graph 

models, since it is possible to build a reduced order observer 

directly from a bond graph model where the matrix 

calculations can be directly derived from the observer’s graph 

(including the observer gain) and avoiding the algebraic 

manipulation of matrices.  From the procedure of the present 

work it is possible to build an observer with a structure 

simpler than the structure of the observer shown in [7] and 

because of that, the calculation of the observer’s gain is also 
simpler.  
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