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Abstract

In this paper, we address the robust reduced-order filtering
problem for linear parameter-varying (LPV) systems using an
Hoo-setting. The stability and the performance in a £»-gain
sense of the filtering error is based on the existence of an
affine parameter-dependent Lyapunov function. Our synthesis
method gives sufficient conditions for the filter design which
are expressed as new easily tractable LMI feasibility conditions
with equality constraints. A numerical example illustrates the
applicability of our method.

1 Introduction

There are many motivations to study the linear parameter-
varying (LPV) systems : many physical systems can be mod-
elled as a linear system whose state space representation ma-
trices are functions of a set of parameters that can be time-
varying. The gain scheduling methodology conceptually in-
volves a linear parameter-dependent plant and thus the impli-
cation of parameter-dependent systems theory is obvious.

These reasons justify the efforts in the extension of H . -type
control to time-varying or LPV systems. Earlier stability anal-
ysis and control synthesis results were based on quadratic sta-
bility using a single quadratic Lyapunov function [3, 2] which
is usually conservative. Recently, some progress have been re-
ported on the use of parameter-dependent Lyapunov functions
[2, 9, 5]. Thereis an increasing interest in the robust # ., litera-
ture, apart from the robust control area, and a number of papers
addressed the problem of robust state estimation. Reduced-
order (or functional) filters are often desirable to reduce the
conservatism of the full-order filter design results as well as
the complexity and computational burden of the real-time fil-
tering process. The interested reader can see [8, 13] and the
references therein for reduced-order robust filtering problems
of linear time invariant systems. In [4], we find a solution to
the optimal unbiased reduced-order filtering problem for lin-
ear time-varying systems. The case of uncertain systems was

considered in [7] for polytopic systems and in [12] for systems
with a nonlinear dependence in the uncertain parameter. In the
case of LPV systems, the filter synthesis methods are based on
the measurability of the parameters and we find only few works
on the reduced-order robust parameter-dependent filter design.
In [10], a robust full-order filter with reduced-order state output
is synthesized using LMI conditions.

In this paper, we address the reduced-order parameter-
dependent filter design problem for affine LPV systems. In
order to guarantee exponential stability with performance in
a L»-gain sense for the filtering error, we use the parameter-
dependent ~-performance notion which is a generalized LPV
version of the standard H ., problem. This notion uses a
parameter-dependent Lyapunov function and it is expressed
as a parameter-dependent version of the bounded real lemma.
First, we give new sufficient conditions for the filter synthesis
in terms of LMI with equality constraint resolution. Second,
the use of affine structures for the unknown design matrices and
the application of the multiconvexity concept allow to formu-
late the filter synthesis problem as a finite-set LMI feasibility
problem with equality constraint.

The paper is organized as follows. In Section 2, we present
the problem under consideration and in Section 3 we present
our robust filter synthesis method. We end this paper by an
illustrative example and the conclusions.

Notations: The notations used throughout this paper are stan-
dard. Uppercase letters denote matrices of appropriate dimen-
sions and lowercase letters denote vectors or scalars. The nota-
tion A > 0 (A > 0) stands for a positive definite (semi-definite)
symmetric matrix. In long matrix expressions, we use (x) for
terms that are induced by symmetry. (-)* denotes the Moore-
Penrose generalized inverse of a matrix.

2 Problem statement

The problem addressed in this paper is the following. Consider
we are given the class of linear parameter-varying (LPV) sys-



tems represented by:

&(t) = A(p)z(t) + B(p)u(t) + Bu(p)w(t) (la)
y(t) = Cp)a(t) + D(p)u(t) + Dw(p)w(t) (1b)
2(t) = La(t) (1c)

where z(t) € IR" is the state vector, u(t) € IR™ is the

control input vector, y(t) € IR” is the measured output vec-

tor and w(t) € IR™ is the disturbance vector. The vector

z(t) € IR? is the output to be estimated as a linear combi-

nation of state x(¢). The matrices A(p), B(p), Bw(p), C(p),

D(p) and D,,(p) are parameter-dependent matrices of appro-
By,

priate dimensions which are affine, that means:
B [ Ao | Bo
C(p) [ D(p) Dulp) ] B [ Co [ Do Du, ] i
N
where A;, B;, B,,,, Ci, D; and D,,,, are known matrices. With-

out loss of generality, we can assume that the matrix L is con-
stant.

g
>
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The parameter vector p(t) = [p1(t) pa(t) pN(t)]T is
assumed to be real, continuous, time-varying and satisfying the
following constraints:

1. each parameter p;(t) is real time measurable and it ranges
between known extremal values p;(t) € [p;, pi]

2. the variation rate of each parameter p;(t) is limited by
known upper and lower bounds, that is: p;(t) € [, 75

Note that the assumptions 1. and 2. are not restrictive. The
first one can always be achieved by a change of variable and
it means that the parameter vector p(t) is valued in a hyper-
rectangle with vertices defined by:
V= {(‘*)17‘*)27 s 7wN)| w; € {&7%]’]’
The second assumption defines a hyper-rectangle for the rate
of variation of the parameter vector whose vertices are
S={(r,m,...,78)| 1 € {1, Ti} }.
In the sequel of this paper, the parameter dependence upon time

is suppressed for clarity. In fact, p or p; stands for p(t) or p;(t)
respectively.

In this paper, we are concerned with the design for system (1)
of a robust parameter-dependent reduced-order filter or estima-
tor in the form

2(t) = H(p)2(t) + J(p)u(t) + K (p)y(t) ®3)

where Z(t) is an estimate of z(¢). The problem of the filter de-
sign consists in finding the functional matrices H(p), J(p) and

K (p) of appropriate dimensions which provide good robust es-
timation of the output z(t) i.e. which provide an uniformly
small estimation error

e(t) = z(t) — 2(t) = La(t) — 2(1) (4)

for all £»-bounded disturbance input vector w(t). In order to
solve this synthesis problem, we proceed using an H . -setting
as presented in the following section.

3 Robust H filtering

The robust ‘H ., filtering problem consists in finding the fil-
ter that minimizes the worst case estimation error energy
|| e(t) ||z, over all bounded energy disturbances w(t). Based
on the induced £2-gain property of the H ., norm, we address
this problem by using the parameter-dependent ~y-performance
notion.

By parameter-dependent y-performance we mean the existence
of a parameter-dependent quadratic Lyapunov function ensur-
ing asymptotic stability of an LPV system and a bound on its
L gain. We recall this notion in the following.

Definition 3.1. Given alinear system of the form
1(t) = Alp)n(t) + B(p)w(t)
y(t) = Clp)n(t) + D(p)w(t)

and the performance level v > 0, the parameter-dependent -
performance problemis solvable if there exists a positive defi-
nite matrix P(p) such that the following inequality

[A(p)TP(p) + P(p)A(p) + P(p) P(p)B(p) CT(p)]
BT (p)P(p) -1 D¥(p)| <0
i Clp) D) I ]

holds for all admissible trajectories of the parameter vector p.

Remark 3.1. i) The parameter-dependent quadratic Lya-
punov function is V (1, p) = 77 P(p)n and this function
ensures that the system is asymptotically and exponen-
tially stable and its £, gain does not exceed +. That means

7(@) le,<v [ w(®@) [le,

for all £,-bounded input w(t). In the following, we ap-
ply the parameter dependent ~y-performance notion on the
filtering error system.

ii) When the Lyapunov matrix is affine parameter-dependent
i.e
P(p)=PFPy+p1PL+...4+pnPn

then the Definition 3.1 is identical to the affine quadratic
Hoo performance given in [6]. In this case P(p) =
P(p) — Fo.

We use this H .. -setting in order to study the stability and guar-
antee the performance of the estimation error. Using the def-
inition of the estimation error (4), we find that its dynamic is



P(p)LA(p)LT =W (p)C(p)L* + Q(p)(I = LL™) +
B

w(p)L"P(p) — DL (p)W " (p)

() + P(p)+ 1 P(p)LBu(p) — W(p)Du(p)

ey <0 ©)

given by:

é = H(pe + (LA(p) — H(p)L — K(p)C(p))x +
+(LB(p) = J(p) = K(p)D(p))u
+ (LBuy(p) = K(p)Duw(p))w. (6)

In order to have an estimation error which is independent from
the control input and the system state, we put the following
conditions

LA(p) — H(p)L — K(p)C(p) =0 (7a)

J(p) = LB(p) — K(p)D(p). (7b)
If these relations are satisfied then the estimation error is given
by:

¢ = H(p)e + (LBu(p) — K(p)Duw(p))w. (8)

From the general solution of a linear matrix equation [11] it
follows that the equation (7a) has a solution if and only if

(LA(p) = K(p)C(p)) (I = L*L) =0 9

When this condition is satisfied, the solution of the equation
(7a) according only to the unknown matrix H(p) is given by
the following parametrization

H(p) = (LA(p) = K(p)C(p)) L + Z(p)(I = LLT) (10)

where Z(p) is an arbitrary matrix of appropriate dimensions.
This matrix intervenes as a supplementary degree of freedom
for the robust filter synthesis.

Conditions for the synthesis of robust LPV # ., filter are pro-
vided by the following result. This result gives sufficient condi-
tions for the quadratic parameter-dependent ~-performance of
the filtering error as defined in Definition 3.1.

Theorem 3.1. Thereexists agt”-order robust filter of the form
(3) for the LPV system (1) if there exist a symmetric matrix
P(p) > 0 and matrices Q(p) and W (p) of appropriate dimen-
sions satisfying the LMI (5) and the following equality con-
straint

(P())LA(p) =W (p)C(p))(I-LTL) =0  (11)

for all admissible parameter trajectories. Then the gain matrix
K (p) isgivenby P~ (p)W (p), Z(p) isgivenby P~ (p) Q(p)
and the matrices H (p) and J(p) are given by (10) and (7b)
respectively.

Proof. According to the Definition 3.1, the filtering error equa-
tion (8) satisfies the ~y-performance criterion if there exists a
matrix P(p) > 0 such that

{ P(p)H(p) + (x) + P(p) (%) I]

(LBw(p) = K(p)Du(p) P(p) —I 0
[ I 0 —’YIJ

<0 (12)

for all parameter trajectories. Applying the Schur complement,
replacing H(p) by the equation (10) and using the notations
Wi(p) = P(p)K(p) and Q(p) = P(p)Z(p), we find that this
inequality is equivalent to the inequality (5). As the matrix
P(p) is positive definite and consequently it is of full rank,
we can multiply to the left the equation (9) by P(p). Using
the above notations, we find that the equality constraint (11)
is equivalent to the condition (9) which guarantees the exis-
tence of a solution for the equation (7a). As the matrix P(p)
is positive definite we can compute the matrix gain K(p) as
P~ (p)W (p) and Z(p) as P~ (p)Q(p). O

In order to design the robust LPV filter, according to the The-
orem 3.1, we must solve the matrix inequality (5) with the
equality constraint (11) which are linear according to the un-
known matrices. Consequently we must solve a convex fea-
sibility problem. But, this problem involves a infinite number
of conditions to satisfy. In order to reduce this infinite num-
ber of conditions at a finite number and thus to formulate eas-
ily computationally tractable conditions, we use the notion of
multiconvexity as described in [6]. To this end, we must make
a choice on the structure of the unknown matrices P(p), W (p)
and Q(p). In the following, we suppose that the matrices P(p)
and W (p) are affine. As

P(p)H(p) = P(p)LA(p)LT =W (p)C(p)LT+Q(p)(I-LLT)

we chose for Q(p) a second order structure i.e.

N
Q(p) = Qoo + Z Qijpip; Where py = 1 by convention.
4,j=0
(5]

The next theorem gives a sufficient solution to the robust filter
synthesis problem based on the multiconvexity principle and
the choice of design matrices structures given above. This solu-
tion is expressed as a finite number of LMI with a finite number
of linear equality constraints and thus it is easily tractable nu-
merically. Note that the following result is based on the affine
quadratic H ., performance criterion of the estimation error.

Theorem 3.2. Consider theLPV system (1) andagiveny > 0.
Suppose that there exist positive scalars v; for i € {1,.., N},
symmetric matrices P; for ¢ € {0,.., N} and the matrices Q;;
fori,j € {0,..,N},i < j, W; fori € {0, .., N} such that the
LMIs (13), (14), (15) are satisfied with the following equality
constraints

(P,.LA; —W;Ci)(I-L*L) =0 forall i€ {0,...,N} (16)

(PiLAj + PjLAi — Wl'Cj — W]C@) (I — L+L) =0

foral 4,j€{0,...,N}andi #£j (17)



Pw)>0 forall weV

(13)

P(w)LAwW) Lt — W (w)C(W)L* + Qw)(I — LL*) + (%) + P(r) = Py + I P(w)LBu(w) — W (w) Dy (w)

By (w)LTP(w) — Dy (W)W (w)

N
—v2I + Z viwil
i—1

<0 forall (w,7) €V xW (14)

PZLA1L+ — WZCzL+ + sz(I - LL+) + (*) PiLBwi — Wtii .
B,fl_LTPi _ DiiWiT Vil >0 foral ie{l,...,N} (15)
where =
Pw)=Po+wPi+...+wvby 18 1o demonstrate the applicability of our method, we consider a
W(w)=Wo+wiWi+...+wxWy (19 numerical example in the next section.
N
Q(w) = Qoo + Z Qijwiw; and wo = 1. (20) _
=0 4 Numerical example
17

Then the g*-order filter (3) where K(p) is given by
P=Y(p)W(p), Z(p) is given by P~1(p)Q(p) and the matri-
ces H(p) and J(p) are given by (10) and (7b) respectively, is
a robust filter ensuring the affine quadratic # . -performance
index  for the estimation error.

Proof. The proof is based on Theorem 3.1. Consider the func-
tion f(p, p) given by (21) where X' € IR+,

Choosing a Lyapunov matrix with affine parameter dependence
and according to Theorem 3.1, the filtering error (8) satisfies
the parameter-dependent ~y-performance conditions given by
Definition 3.1 or more precisely the affine quadratic H ., per-
formance conditions if f(p, p) < 0 with P(p) > 0 are satisfied
for all the admissible parameter trajectories and for all X’ # 0.
We require that the function f(p, p) be bounded by a multicon-
vex function

Feono(p: ) = Flp, 9)+XT Y viplX > f(p, ) where v; > 0.

(2

Hence, the equation (8) satisfies the affine 1 ., performance
conditions if f.ony(p, p) < 0 with P(p) > 0 affine for all the
admissible parameter trajectories and for all X' # 0.

The inequalities (13) and (14) imply that f..n.(p, p) IS nega-
tive definite and P(p) is positive definite at the vertices V x S
and respectively V of the domain containing all the parameter
trajectories.

The inequalities (15) are the multiconvexity conditions of the
function f.on.(p, p) according to the Lemma 5.1 (see Ap-
pendix) with a partial degree d, = 2 fork = 1,... ,N and
a total degree d = 2. As the matrix P(p) is affine on the pa-
rameters, to ensure that it is positive definite, it is sufficient to
impose the condition (13).

Consider an affine LPV system depending on one parameter
described by the set of matrices

-13 11 02 -1.2 0.6

Ao = [0.3 —2.2]'A1 - {—1 1 ]'BO - [1.2]'
1 0 0.2

B = [0.5]3’“’ - [0.1]3’“ - [—0.3}0‘) =l 1],

C1 =107 0.1], Do = [0.1], D1 = [0.5], Dy,
Dy, = [0.1].

I
R
S
[SV]
22,

The parameter p ranges in [—0.4, 0.4] and its rate p €
[-0.5, 0.5]. We want to estimate z = z; using the syn-
thesis result given by the Theorem 3.2. The implementation
of this theorem allows us to obtain the following matrices:
P(p) = 0.6973 + p0.0697, W(p) = 0.7671 — p0.8368. As
I — LLT = 0, the matrix Q does’nt intervene in the filter de-
sign.

The smallest performance index achievable with the conditions
of Theorem 3.2 is v = 0.4. The filter estimation error is indi-
cated in Figure 1(b) and this error corresponds to an evolution
of the parameter as shown in Figure 1(a). For this simulation
we choose a perturbation signal bounded by || w(#) || ¢, < 1.31.
We can see on Figure 1(b) that the estimation error is exponen-
tially stable and bounded.

5 Conclusion

In this paper, a systematic framework for robust parameter-
dependent reduced-order filter design has been addressed in
Ho-setting. The main contribution of this paper lies in the
proposed method which gives an easily tractable LMI solution
with equality constraint to the filtering problem. This solu-
tion is based on the existence of a parameter-dependent Lya-
punov function and uses a parameter-dependent version of the



27 [£(p,8) = P)LA(P)LY = W (p)C(p)LT + Q(p)(I — LLT) + (%) + P(p) = Po+ 1 P(p)LBuw(p) = W (p)Du (p)

BL(p)LT P(p) — DL (p)W T (p)

vy X ()

) 10 1z
Time (s)

(a) The parameter p; (t).

s ) 12
Time (9)

(b) Estimation error

Figure 1: Simulation results
bounded real lemma.

Appendix: Mathematical tools

Our approach relies on the concept of multiconvexity that is
convexity along each direction of the parameter space. The
concept of multiconvexity for scalar quadratic functions is
given in [6] and a similar result for polynomial functions is
presented in [1]. We state here the concept of multiconvexity
for a polynomial function.

Lemma5.1 ([1]). Consider a general polynomial function
f(p1,...,pn) of arbitrary order. Denote d;, the partial de-
gree with respect to the variable pi,, K = 1,... , N and d the
total degree of the polynomial function. Then f(-) is negative
(resp. positive) in the hyper-rectangle whose vertices are given
by V whenever

f(p) <0, (resp.>0) VpeV, (22)

and

9> f(p)
- m% < . >
(-1) 80121 ---(%fm <0 (resp.>0) VpeV, (23)

where

1<h << <ln<N, 1<m<d/2

Card({l; =k,j € {1,... ,m}}) <dip/2, k=1,2,...
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