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Abstract

This paper presents a multi-objective output-feedbackH2/H∞
synthesis framework with non-common Lyapunov variables
(NCLV’s) for continuous-time systems, and clearly summa-
rized the numerical algorithms for controller design. This
H2/H∞ synthesis framework is less conservative than the tra-
ditional one with common Lyapunov variables (CLV’s). Al-
though the computation of this new method is more time-
consuming, the controller obtained remains the same order as
the one designed by the traditional method. Furthermore, this
framework is ready to be extended to a more general multi-
objective framework with slight changes. The advantage of this
framework is illustrated by a numerical example.

1 Introduction

In the past decade,H2/H∞ control has been studied exten-
sively. Early work [2, 15, 8, 30, 28] focused on designing
sub-optimal controllers by solving algebraic Riccati equations
(ARE’s). Later on, the linear-matrix-inequality (LMI) tech-
nique [3], a numerically attractive alternative, was applied to
H∞ control [11, 14]. It was convenient to combine different
specifications in terms of LMI’s and design a multi-objective
controller [19, 16]. Unfortunately, in order to linearize bilinear
variables, one had to equalize all the Lyapunov variables, i.e. a
CLV was used, which resulted in a conservative design.

Recently, there has been some progress in designing less-
conservativeH2/H∞ controllers. Roughly speaking, there ex-
ist three methods for less conservative design: Youla parame-
terization, convergent synthesis iterations and dilated LMI’s.

[20, 13, 21, 22, 7] utilized a Youla parameterization technique
to compute sub-optimal controllers. The objective value con-
verged to the true optimum at a cost of controller dimension
increase.

[23, 24, 10] presented anH2/H∞ synthesis framework via suc-
cessive iterations. [23, 24] substituted non-positive quadratic
terms with their upper bounds and proposed a convergent
(strictly speaking, non-divergent) iterative algorithm. Because
the iterative algorithm could not guarantee the global optimiza-
tion, the more substitutions one used, the more conservative the
design would be.

[5, 6, 1, 10] decoupled the Lyapunov and controller variables
by “dilating” LMI’s and introducing a new common variable.
This novel idea initially came from [5] and was then applied
to a discrete-timeH2/H∞ synthesis framework. [1] presented
the so-called reciprocal projection lemma to split certain Lya-
punov terms, thus extending results in [6] to continuous-time
systems. Although some work [1, 9] has been carried out to
designH2 and eigenstructure assignment orD-stability con-
trollers for continuous-time systems, it still remains open and
challenging to incorporateH∞ control into the existing frame-
work [1]. This difficulty comes from the fact that certain terms
are always in the same row and column of the LMI forH∞
control. In this paper, we present anH2/H∞ framework for
continuous-time system via LMI dilation and give an iterative
algorithm.

The paper is organized as follows. Section 2 states system
models and gives a preliminary lemma. Section 3 derives the
new characterizations forH∞ analysis and lists the compatible
LMI’s for H2 analysis, while Section 4 addresses theH2/H∞
synthesis problem. Section 5 demonstrates the advantage of
this framework by an example and Section 6 makes concluding
remarks and maps out future research directions. The notation
is standard.A1 ⊕ A2 is the direct sum of matricesA1 andA2,

i.e.
(

A1 0
0 A2

)
. G ? K denotes the Redheffer star-product ofG

andK.

2 Preliminaries

The system models used throughout this paper are continuous-
time multi-input, multi-output (MIMO) and linear-time-
invariant (LTI). The plantG is given by the state-space equa-
tions  ẋ = Ax + Bww + Bu

z = Czx + Dzww + Dzu
y = Cx + Dww

(1)

wherew, u, z, andy are the vectors of exogenous inputs, con-
trol inputs, regulated outputs, and measured outputs respec-
tively.

The plantG can be partitioned into two channelsG1 andG2

by a linear transformation

Gj , (Lj ⊕ I)G(Rj ⊕ I) (2)

,

(
A Bj B
Cj Dj Ej

C Fj 0

)
wherej ∈ {1, 2}, and the matricesLj andRj select the appro-



priate input and output channels respectively.

The dynamical controller isK = CK(sI −AK)−1BK + DK .
Then, the closed-loop systemT = G ? K has the following
realization(
A B
C D

)
=
(

A + BDKC BCK Bw + BDKDw

BKC AK BKDw

Cz + DzDKC DzCK Dzw + DzDKDw

)
(3)

and the closed-loop subsystemsTj = Gj ? K = LjTRj for
different channels are given by(

A Bj

Cj Dj

)
,

(
A + BDKC BCK Bj + BDKFj

BKC AK BKFj

Cj + EjDKC EjCK Dj + EjDKFj

)
(4)

To facilitate subsequent derivations, we state the following
lemma [1] without proof.

Lemma 1 (Reciprocal Projection Lemma) For any P > 0,
the following statements are equivalent:

(i): Ψ + S + ST < 0

(ii):
(

Ψ + P − (W + W T ) ST + W T

S + W −P

)
< 0 is feasible with re-

spect toW .

3 New Characterizations forH2/H∞ Analysis

3.1 H∞ Analysis

Theorem 1 (H∞ Analysis) The following statements, involv-
ing a symmetric variableX1 and general variables̄L1 andV ,
are equivalent.

(i) : A is stable and‖T1‖∞ < γ.

(ii): ∃X1 > 0 such that(
AT X1 + X1A X1B1 CT

1
BT

1 X1 −I DT
1

C1 D1 −γ2I

)
< 0 (5)

(iii): ∃X1 > 0, L̄1, andV such that−(V T + V ) V TA+ X1 V TB1 0 V T

AV + X1 −X1 0 0 0

BT
1 V 0 −I DT

1 0
0 0 D1 Π C1
V 0 0 CT

1 −X1

 < 0 (6)

whereΠ = −γ2I + Φ(X1, C1, L̄1) andΦ(X1, C1, L̄1) ,
L̄T

1 X1L̄1 − L̄T
1 CT

1 − C1L̄1.

Proof: The equivalence between (i) and (ii) is a standard re-
sult [11, 18, 29]. In the sequel, we will prove the equivalence
between (ii) and (iii).

DefineY1 , X−1
1 . A congruence transformationY1⊕ I ⊕ I to

(5) yields (
Y1AT +AY1 B1 Y1CT

1
BT

1 −I DT
1

C1Y1 D1 −γ2I

)
< 0 (7)

By the reciprocal projection lemma, (7) is equivalent toY1 − (W + W T ) AY1 + W T B1 Y1CT
1

Y1AT + W −Y1 0 0

BT
1 0 −I DT

1
C1Y1 0 D1 −γ2I

 < 0 (8)

DefineV , W−1 (W is assumed to be invertible, which is al-
ways possible by perturbation if necessary [1]). A congruence
transformationV ⊕X1 ⊕ I ⊕ I to (8) yieldsV T X−1

1 V − (V T + V ) V TA+ X1 V TB1 V T X−1
1 CT

1
AT V + X1 −X1 0 0

BT
1 V 0 −I DT

1
C1X−1

1 V 0 D1 −γ2I

 < 0

(9)
Let

Ψ ,

−(V T + V ) V TA+ X1 V TB1 0

AT V + X1 −X1 0 0

BT
1 V 0 −I DT

1
0 0 D1 −γ2I − C1X−1

1 CT
1


Then, (9) can be written as

Ψ +

(
V T

0
0
C1

)
X−1

1 (V 0 0 CT
1 ) < 0 (10)

By the Schur lemma [3], (10) is equivalent to
−(V T + V ) V TA+ X1 V TB1 0 V T

AT V + X1 −X1 0 0 0

BT
1 V 0 −I DT

1 0

0 0 D1 −γ2I − C1X−1
1 CT

1 C1
V 0 0 CT

1 −X1

 < 0

(11)

We will show in the following that (11) is equivalent to (6).

Motivated by the idea in [24], we construct the following in-
equality

(L̄T
1 − C1X−1

1 )X1(L̄1 −X−1
1 CT

1 ) ≥ 0 (12)

which is always satisfied sinceX1 is positive. Then, we obtain

−C1X−1
1 CT

1 ≤ L̄T
1 X1L̄1 − L̄T

1 CT
1 − C1L̄1 = Φ(X1, C1, L̄1)

(13)

It is clear that (6) is a sufficient condition for (11). Also, by
settingL̄1 = X−1

1 CT
1 , (11) becomes (6), i.e. (11) is a sufficient

condition for (6). Hence (11) is equivalent to (6).

Therefore, the statements (i), (ii), and (iii) are equivalent. The
proof is completed. �

Remark 1 The itemΦ(X1, C1, L̄1) in (6) is not linear. How-
ever, if L̄1 is set to a constant matrix,̄LT

1 X1L̄1 will be linear
and (6) will become a sufficient condition for(5). Under this
condition the computed objective value is an upper bound on
the true optimum.

3.2 H2 Analysis [1]

For completeness, we also list the LMI characterizations for
H2 control. Readers can refer to [1] for the details.



Theorem 2 (H2 Analysis) For a given systemT2 with D2 =
0, the following statements, involving symmetric variablesX2,
Z2 and a general variableV , are equivalent.

(i): A is stable and‖T2‖22 < α.

(ii): ∃X2 > 0, Z2 > 0 such that(
AT X2 + X2A X2B2

BT
2 X2 −I

)
< 0 (14)

(
X2 CT

2
C2 Z2

)
> 0, Trace Z2 < α (15)

(iii): ∃X2 > 0, Z2 > 0 andV such that−(V T + V ) V TA+ X2 V TB2 V T

AT V + X2 −X2 0 0

BT
2 V 0 −I 0
V 0 0 −X2

 < 0 (16)

(
X2 CT

2
C2 Z2

)
> 0, Trace Z2 < α (17)

4 Multi-objective H2/H∞ Synthesis

In this section, we adopt two techniques to linearize the ma-
trix inequalities in Section 3 and present anH2/H∞ synthesis
framework.

• The term such asV TA, V TB1, andV TB2 in Theorem 1
and Theorem 2 will become bilinear when the synthesis
problem is concerned. We follow [11, 19, 1] and lin-
earize these bilinear matrix inequalities (BMI’s) via vari-
able changes.

• The termΦ(X1, C1, L̄1) in (6) is not linear and can not be
linearized by simple algebraic operations. In this paper,
motivated by [24], we use successive iterations to solve
this problem. Specifically, we set the variableL̄1 to an
initial value and solve the LMI’s with respect to variables
X1, X2 andV . The objective value is an upper bound
on the true optimum. Once we obtain a controller and its
associated variables, we resetL̄1 and design a new con-
troller. The new objective value is always no more than
the old one, i.e., the system performance converges to a
sub-optimal value.

Partition the variableV andV −1 as follows:

V ,
(

V11 V12
V21 ?

)
, W = V −1 ,

(
W11 W12
W21 ?

)
(18)

where V11, V12, V21,W11,W12,W21 ∈ Rn×n. Let ΠV ,(
V11 I
V21 0

)
and ΠW ,

(
I W11
0 W21

)
, then WΠV = ΠW and

V ΠW = ΠV .

Define

Â , V T
21AKW21 + V T

21BKCW11 + V T
11BCKW21

+V T
11(A + BDKC)W11

B̂ , V T
21BK + V T

11BDK

Ĉ , CKW21 + DKCW11

D̂ , DK

U , V T
11W11 + V T

21W21

(19)

Then, we obtain

ΠT
W V TAΠW ,

−−−→
V T A =

(
V T

11A + B̂C Â

A + BD̂C AW11 + BĈ

)
ΠT

W V TBj ,
−−−→
V T Bj =

(
V T

11Bj + B̂Fj

Bj + BD̂Fj

)
CjΠW ,

−→
Cj = (Cj + EjD̂C CjW11 + EjĈ)

ΠT
W V ΠW ,

−→
V =

(
V11 I

UT W T
11

)
ΠT

W XjΠW ,
−→
Xj

(20)

To be compatible with the variable changes,Φ(X1, C1, L̄1) is
re-defined as

Φ(
−→
X1,
−→
C1, L1) , LT

1 ΠT
W X1ΠW L1 − LT

1 ΠT
WCT

1 − C1ΠW L1

= LT
1

−→
X1L1 − LT

1

−→
C1T −

−→
C1L1

whereL1 = Π−1
W X−1

1 CT
1 = (

−→
X1)−1(

−→
C1)T . WhenL1 is set to a

constant matrix, we denote the above expression byΦ(
−→
X1,
−→
C1).

For a given systemT in (3) with T1 measured by theH∞ norm
andT2 measure by theH2 norm, there are three typical multi-
objectiveH2/H∞ synthesis problems:

Problem (i): Minimize ‖T2‖2 subject to‖T1‖∞ < γ;

Problem (ii): Minimize ‖T1‖∞ subject to‖T2‖22 < α;

Problem (iii): Minimize k‖T1‖∞ + (1− k)‖T2‖22 wherek ∈
[0, 1].

In this paper, due to limited space we only consider Problem (i),
which can be interpreted as achieving optimalH2 performance
while guaranteeing a certain level of robust stability.

Now, we are in a position to present a sufficientH2/H∞ syn-
thesis framework for continuous-time systems.

Theorem 3 (SufficientH2/H∞ Synthesis) For a systemG in
(1) with a givenγ, there exists a controllerK for Problem (i) if
one can minimizeJ ,

√
α =

√
Trace Z2 while the following

LMI’s, involving variables
−→
X1,
−→
X2, U , V11, W11, Â, Ĉ, B̂, D̂,

are feasible.
−(
−→
V T +

−→
V )

−−−→
V T A +

−→
X1

−−−−→
V T B1 0

−→
V T

(·)T −
−→
X1 0 0 0

(·)T (·)T −I DT
1 0

(·)T (·)T (·)T −→
Π

−→
C1

(·)T (·)T (·)T (·)T −
−→
X1

 < 0 (21)



−(
−→
V T +

−→
V )

−−−→
V T A +

−→
X2

−−−−→
V T B2

−→
V T

(·)T −
−→
X2 0 0

(·)T (·)T −I 0

(·)T (·)T (·)T −
−→
X2

 < 0 (22)

(−→
X2

−→
C2

T

(·)T Z2

)
> 0 (23)

where
−→
Π = −γ2I + Φ(

−→
X1,
−→
C1), Φ(

−→
X1,
−→
C1) = LT

1

−→
X1L1 −

LT
1

−→
C1T −

−→
C1L1 andL1 is set to a constant value.

Proof: The LMI’s (21)∼ (23) can be obtained by simple con-
gruence transformations on (6), (16) and (17) respectively. The
details are omitted here.�

Remark 2 When a solution to the LMI’s(21)∼ (23)exists, the
controller can be derived from the following scheme [1]:

• Compute the non-singular matricesV21 and W21 such
thatV T

21W21 = U − V T
11W11.

• Compute the controllerAK , BK , CK , andDK by revers-
ing the formulas in(19).

Theorem 3 gives a sufficientH2/H∞ synthesis framework and
the objective valueJ is an upper bound on the optimum. To
decrease the conservatism, we need the following algorithm to
decrease the upper bound.

Algorithm 1 (Synthesis Iterations) For a given systemG
with the control objective of minimizing‖T2‖2 subject to
‖T1‖∞ < γ, one can carry on the following non-divergent
iterations to compute the controller.

1. If the conventionalH2/H∞ synthesis framework in [19]
with CLV’s is feasible for the systemG, one can compute
the LMI’s to obtain the Lyapunov variableX and the as-

sociated closed-loop subsystemT1 =
(
A B1
C1 D1

)
; Oth-

erwise one can not continue the iteration to design a less
conservativeH2/H∞ controller.

2. Let W = −X−1AT + X−1 ,
(

W11 W12
W21 W22

)
, then

ΠW =
(

I W11
0 W21

)
. SetL1 = Π−1

W X−1CT
1 and compute

a solution to the LMI’s(21)∼ (23) with objective value
J =

√
Trace Z2. From (19) and (20), the controllerK

and
−→
X1,
−→
C1 can be obtained.

3. Initializei← 1 and letJ (0) = J , K(0) = K,
−→
X1

(0) =
−→
X1

and
−→
C1(0) =

−→
C1 .

4. SetL1 =
{−→

X1
(i−1)

}−1 {−→
C1(i−1)

}T

and compute the

LMI’s (21)∼ (23) in Theorem 3.

5. The objective value isJ =
√

Trace(Z2). The controller

K and matrices
−→
X1,
−→
C1 can be computed by(19)and(20).

LetJ (i) = J , K(i) = K,
−→
X1

(i) =
−→
X1 and

−→
C1(i) =

−→
C1.

6. If (J (i−1) − J (i))/J (i−1) < ε for someε > 0 then stop.

7. Seti← i + 1 and return to Step 4.

Theorem 4 For a given systemG, if the conventionalH2/H∞
synthesis with CLV’s [19] is feasible, the new LMI’s character-
izations in Theorem 3 are always feasible. Hence, the synthesis
iterations in Algorithm 1 can always be carried out. Further-
more, a sequence of controllersK(i) is given by Step 5 such
that

‖T (i)
1 ‖∞ < γ

and
Jopt ≤ · · · ≤ J (i) ≤ · · · ≤ J (1) ≤ J (0)

whereT
(i)
j = Gj ? K(i), J (i) = ‖T (i)

2 ‖2 andJopt is the real
optimum.

Proof: From Theorem 1, we know that if the conventional LMI
(5) for H∞ analysis is feasible, then the new LMI (6) with
L̄1 = X−1

1 CT
1 is feasible. We will show below that if a solution

for (5) is given, one can use it to derive a special solution for
(6) without computing the LMI itself.

By settingX1 = X andL̄1 = X−1CT
1 , (6) forH∞ analysis

becomes
−(V T + V ) V TA+ X V TB1 0 V T

AT V + X −X 0 0 0

BT
1 V 0 −I DT

1 0

0 0 D1 −γ2I − C1X−1
1 CT

1 C1
V 0 0 CT

1 −X

 < 0

(24)

Reversing the procedure for proving Theorem 1, we observe
that the above LMI is equivalent toY − (W + W T ) AY + W T B1 Y CT

1
YAT + W −Y 0 0

BT
1 0 −I DT

1
C1Y 0 D1 −γ2I

 < 0 (25)

whereY = X−1.

LetW = −X−1AT +X−1. Using the Schur lemma, we obtain(
AT X + XA XB1 CT

1
BT

1 X −I DT
1

C1 D1 −γ2I

)
< 0 andX > 0 (26)

which are the standard LMI’s forH∞ control as shown in the
statement (ii) of Theorem 1.

Using a similar technique and settingX2 = X andV = (I −
AT )−1X, we can show that the new LMI’s (16) and (17) for
H2 control include the conventional LMI’s (14) and (15) as a
special case.

Hence, if there exists a feasible solutionX1 = X2 = X for
(5), (14) and (15), one can always find a special solutionX1 =
X2 = X andV = (I −AT )−1X satisfying (6), (16) and (17).
We can obtain the similar results forH2/H∞ synthesis problem
using congruence transformation.

The proof of the non-divergence of the objective value is simi-
lar to that in [24], hence it is omitted here.�



5 Numerical Example

In this section, we give a numerical example to illustrate the ad-
vantage ofH2/H∞ control with NCLV’s. Consider an unstable
plant [19] with equations:

ẋ =

 0 10 2
−1 1 0
0 2 −5

x +

1
0
1

w +

0
1
0

u

y = x2 + 2w

and performance outputs:

z∞ =
(

x1

u

)
, z2 =

x2

x3

u


wherex, w, u, andy denote the state, disturbance, control and
measured signals respectively. We are interested in theH∞
performance fromw to z∞ and theH2 performance fromw to
z2. Let the closed-loop system fromw to z∞ is denoted byT1

and fromw to z2 by T2.

(a) Design of the optimalH2 controller: We design an opti-
malH2 controller for systemT2 using the function “h2lqg.m”
in theRobust Control Toolbox[4]. The controller is

Kopt =
−5.7266(s + 5.089)(s− 0.2718)
(s + 5.085)(s2 + 3.669s + 9.931)

and the closed-loop systemH2 performance is‖T2‖2 =
7.7484. With the controllerKopt, theH∞ performance is
‖T1‖∞ = 23.5873.

(b) Design of a conventionalH2/H∞ controller: Using the
function “hinfmix” in the LMI Control Toolbox[12], we de-
sign a mixedH∞/H2 controller. To compare with the opti-
malH2 controller, we minimize theH2 norm‖T2‖2 subject to
‖T1‖∞ ≤ 23.5873 and obtain the controller

Kmix =
−7.5978(s + 5.098)(s− 0.05412)
(s + 5.099)(s2 + 4.256s + 10.26)

TheH2 upper bound is 8.9625 which is15.67% higher than the
optimum, while the actualH2 performance is‖T2‖2 = 8.0704.

(c) Design of aH2/H∞ controller with NCLV’s: Now, we
design theH∞/H2 controller with NCLV’s. The program for
the synthesis framework presented in this paper can be obtained
by contacting the authors. To compare with the conventional
mixed control, we also minimize theH2 norm ‖T2‖2 subject
to ‖T1‖∞ ≤ 23.5873.

When the convergence tolerance isε = 1×10−4, i.e. (J (i−1)−
J (i))/J (i−1) < 1 × 10−4, the results of synthesis iterations
are shown in Table 5. It is clear that, only through three itera-
tions, the objective valueJ (i) decreased from 8.9602 to 8.4947,
which is9.63% greater than the optimum. The best controller
we can obtain is

Knew =
−7.2791(s + 5.125)(s− 0.2081)
(s + 5.127)(s2 + 4.123s + 9.703)

Iter. Upper bound Relative error Actual Actual

i J (i) J(i−1)−J(i)

J(i−1) ‖T2‖2 ‖T1‖∞
0 8.9602 8.0711 17.8957
1 8.4957 5.184× 10−2 8.0031 18.1886
2 8.4948 1.0593× 10−4 8.0027 18.1958
3 8.4947 1.1771× 10−5 8.0028 18.1957

Table 1: Synthesis iterations.

with ‖T2‖2 = 8.0027.

Note that, although the newH2/H∞ synthesis framework is
less conservative than the traditional one [19], the improvement
in this example is not as significant as one would expect. The
future work is to further decrease the conservatism of the de-
sign.

6 Concluding Remarks

This paper presented a continuous-timeH2/H∞ synthesis
framework, which was a counterpart of de Oliveria’s discrete-
time synthesis framework [6]. The main contribution is to in-
corporateH∞ control into Apkarian’s continuous-time synthe-
sis framework for eigenstructure assignment andH2 control
[1]. To achieve this objective, we decoupled the controller and
Lyapunov variables by introducing a new auxiliary variable,
and substituted a non-linear term with a sequence of conver-
gent (strictly speaking, non-divergent) linear upper bounds.

Compared with the Youla parametrization technique, this
framework computes a controller with the same order as the
generalized plant, which is important to controller implemen-
tation. As demonstrated in the example, the synthesis itera-
tions can more quickly converge to a sub-optimum than those
presented in [24] since only one non-linear term need to be
substituted by a sequence of upper bounds.

The conservatism of this work comes from two factors: (1) A
common auxiliary variable was used for different control spec-
ifications. (2) A sequence of upper bounds are utilized to sub-
stitute the non-linear item. Although the synthesis framework
in this paper is less conservative than the traditional one with
CLV’s, more computation is needed due to increased number
of decision variables and synthesis iterations.

The results in this paper are ready to be extended to set up
a more general multi-objective synthesis framework, e.g. a
mixed generalizedL2 control, generalizedH2 control,H2 con-
trol framework with pole placement. When more control objec-
tives are involved, the advantage of the framework presented
in this paper will be much more clear. It will be of great in-
terest to apply this framework to a real system, such as ac-
tive suspension control system, which is by its very nature a
multi-objective optimization problem [27, 26]. A challenging
question is whether one can linearize the non-linear term (e.g.
C1X−1

1 CT
1 ) via other less conservative techniques.
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