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Keywords: Multi-objective optimization, H.,, H2, Non- [5, 6, 1, 10] decoupled the Lyapunov and controller variables

common Lyapunov variables, Iteration algorithm. by “dilating” LMI's and introducing a new common variable.
This novel idea initially came from [5] and was then applied
Abstract to a discrete-timé{2/H ., synthesis framework. [1] presented

the so-called reciprocal projection lemma to split certain Lya-

This paper presents a multi-objective output-feedidagk{,, Ppunov terms, thus extending results in [6] to continuous-time
synthesis framework with non-common Lyapunov variableystems. Although some work [1, 9] has been carried out to
(NCLV'’s) for continuous-time systems, and clearly summalesign’, and eigenstructure assignment/orstability con-
rized the numerical algorithms for controller design. Thigollers for continuous-time systems, it still remains open and
HalH o Synthesis framework is less conservative than the trehallenging to incorporat# ., control into the existing frame-
ditional one with common Lyapunov variables (CLV’s). Al-work [1]. This difficulty comes from the fact that certain terms
though the computation of this new method is more tim@re always in the same row and column of the LMI fgr,
consuming, the controller obtained remains the same ordercastrol. In this paper, we present &ty/H. framework for

the one designed by the traditional method. Furthermore, tB@ntinuous-time system via LMI dilation and give an iterative
framework is ready to be extended to a more general mugilgorithm.

objective frz_;\m_eworkwith slight changes. The advantage of thIiﬁe paper is organized as follows. Section 2 states system
framework is illustrated by a numerical example. models and gives a preliminary lemma. Section 3 derives the
new characterizations fét .., analysis and lists the compatible
1 Introduction LMI's for H, analysis, while Section 4 addresses HgH ..
) synthesis problem. Section 5 demonstrates the advantage of
In the past decadei{»/H., control has been studied extenyjs framework by an example and Section 6 makes concluding
sively. Early work [2, 15, 8, 30, 28] focused on designingsmarks and maps out future research directions. The notation

sub-optimal controllers by solving algebraic Riccati eq“atiori“ssstandardAl @ A, is the direct sum of matriced; and A,
(ARE’s). Later on, the linear-matrix-inequality (LMI) tech-. (Al

0
nique [3], a numerically attractive alternative, was applied to~" \ © A?)' G » K denotes the Redheffer star-productf
H.. control [L1, 14]. It was convenient to combine differen@"dZ-
specifications in terms of LMI's and design a multi-objective
controller [19, 16]. Unfortunately, in order to linearize bilinea  Preliminaries
variables, one had to equalize all the Lyapunov variables, i.e. a
CLV was used, which resulted in a conservative design. The system models used throughout this paper are continuous-
. o time multi-input, multi-output (MIMO) and linear-time-
Recently, there has been some progress in designing I§8$ariant (LTI). The plants is given by the state-space equa-
conservative>/H, controllers. Roughly speaking, there exjgns

ist three methods for less conservative design: Youla parame- & = Az+ By,w+ Bu
terization, convergent synthesis iterations and dilated LMI’s. z = Cx+ Dyyw+ Dyu Q)
y = Czx+ Dyw

[20, 13, 21, 22, 7] utilized a Youla parameterization technique
to compute sub-optimal controllers. The objective value cowherew, u, z, andy are the vectors of exogenous inputs, con-
verged to the true optimum at a cost of controller dimensidrol inputs, regulated outputs, and measured outputs respec-
increase. tively.

[23, 24, 10] presented dt»/H ., synthesis framework via suc-The plantG can be partitioned into two channels andGq
cessive iterations. [23, 24] substituted non-positive quadralg a linear transformation

terms with their upper bounds and proposed a convergent
(strictly speaking, non-divergent) iterative algorithm. Because
the iterative algorithm could not guarantee the global optimiza- < CA_ 5 B >
tion, the more substitutions one used, the more conservative the o p_,j o
design would be.

G; & (LyoDGR;®I) 2

>

wherej € {1,2}, and the matriced; andR; select the appro-



priate input and output channels respectively. By the reciprocal projection lemma, (7) is equivalent to

The dynamical controller i& = Cx (s — Ax ) 'Bx + Dr. Yi—(W+ wT) Aavi+wT B, vict
- — i Y; w —-Y; 0 0
Thep, the closed-loop systei = G ~ K has the following 1A31T+ o Yopr | < 0 (8)
realization vy 0 Dy =21
( z = ) = BkC Ak Br Du DefineV = W1 (W is assumed to be invertible, which is al-
C.+D.DxC D.Cx | D:w+D.DkD,

ways possible by perturbation if necessary [1]). A congruence

and the closed-loop subsysteffis= G; x K = L;TR; for transformation” © X, & I ® I'to (8) yields

different channels are given by VTXflTV ~(VT+V) VTA+X, VTB, VvTx;lcl
ATV + X —-X 0 0
A+ BDgC  BCk B; + BDF; BTy o I pr <0
(54 5 ) = Bk C Ax ‘ Bx F; Cix-ly 0 D, ey
I I C;+E;DkC E;Cx | D;+E;DkF; ! 9)
Let
To famhtate_subsequent derivations, we state the following _WT4V) VALK, VB 0
lemma [1] without proof. A [ATvEx _ X, 0 0
- Bfv 0 -1 ot
2 —1,T
Lemma 1 (Reciprocal Projection Lemma) For any P > 0, 0 0 i = 0X TG
the following statements are equivalent: Then, (9) can be written as
T
): U+ S5+5T<0 v
® U+ 0| X7P(v o0 0 e)<0 (10)
i (YHPSOEMTSTEET) < 0is feasible with re- &
spect tolV. By the Schur lemma [3], (10) is equivalent to
. . . -(vT+v)y vTa+x, v 0 vT
3 New Characterizations forHs/H ., Analysis ATV + X, -X; 0 0 0
BTv 0 —I DT 0 <0
. 27 —1,T
3.1 H. Analysis 8 8 131 v CclTle ¢ 7C)1(1
(11)

Theorem 1 (H ., Analysis) The following statements, involv-

ing a symmetric variablel; and general variable€, andV,  we will show in the following that (11) is equivalent to (6).

are equivalent. ) . _ L
Motivated by the idea in [24], we construct the following in-

(i) : Ais stable and|T} || < 7. equality
(i): 3X; > 0such that (LT =i XX (L — X 'ef) > 0 (12)
ATX, + XA x1B, cf which is always satisfied sinck, is positive. Then, we obtain
( BT X, -1 pf ) <0 (5) ~ - ~ ~ -
C1 D1 _'YQI 7C1X1_1CT S L{XlLl - L{C? - ClLl - ®(X17C17 Ll)
_ (13)
(ii): 3X; > 0, Ly, andV such that ) ) o N
It is clear that (6) is a sufficient condition for (11). Also, by
_f(\‘\;fo‘f) VT:“;I X, viB 0 VI settingL; = X;'C7, (11) becomes (6), i.e. (11) is a sufficient
BTV 0 -1 DpT o <0 (6) condition for (6). Hence (11) is equivalent to (6).
0 0 D, I C1
1% 0 0 cr Xy Therefore, the statements (i), (i), and (iii) are equivalent. The

_ _ proof is completed. OJ
wherell = —72] + @()gl,Cl, Ll) and<I>(X1,Cl, Ll) £

o _
LiXaly — L€y —Cila. Remark 1 The item®(X;,C;, Ly) in (6) is not linear. How-

ever, if L, is set to a constant matrix,? X, L; will be linear

Proof: The equivalence between (i) and (ii) is a standard r8nd (6) will become a sufficient condition f¢6). Under this
sult [11, 18, 29]. In the sequel, we will prove the equivalené@”d't'on th_e computed objective value is an upper bound on
between (i) and (iii). the true optimum.

DefineY; £ X{l. A congruence transformatidn 1 ¢ I to 3.2 H,

Analysis [1
(5) yields nalysis [1]

YIAI;TF AYy B} YllchlT <0 e For completeness, we also list the LMI characterizations for
3 D H- control. Readers can refer to [1] for the details.

ClYl Dl 7'}/2[



Theorem 2 (H, Analysis) For a given systerfi; with D, = Define
0, the following statements, involving symmetric variabtes

Z, and a general variablé’, are equivalent. A S VAW + VABKCWn o+ VT BCK W
—i—VlI;(A + BDKC)WII
A A T T
(i): Ais stable and|T» |2 < a. g ; ?;ﬁ/ili‘%lfc?ﬂil
N D £ Dg
(ii): 3X2 > 0, Z; > 0 such that U 2 VIW,, +VIW.
= 11 "V11 21¥V21
(ATX2T+ X2 A Xsz) <0 (14) )
By X» -1 Then, we obtain
) A
(i:(f Cz%) >0, Trace Z> <« (15) Iy VIATLy £ VA = (ﬁf;ﬁcc s+ Bé)

N N .
T TR, 2 yTR. — (ViiBi +BF;
Iy VB =V BJ_(BJ+B]5Fj

(ii): 3X, > 0, Zy > 0 andV such that ¢,y A C—Y; — (¢, + BEDC  C; Wi + B,E)
. . T . o vy 2V = (% L
—(TV +V) VIA4+ X, VvIiBy, V %% w vt wk
BV - S, | <0 (16) I, X,y £ X;
% 0 0 —Xs (20)
To be compatible with the variable changés,X,Cy, L) is
()sz CZE ) >0, TraceZs < (17) re-defined as
2 2

Q()Tl), C_1>, L)) & Lim,Xx\OwL, - LT1,cf — Cilw Ly
L : — ITX, L, - LTGT -G L
4 Multi-objective Hy/H,, Synthesis = L1 Xalh =11 G 114

. . . . . el laT N1 NT .
In this section, we adopt two techniques to linearize the mahereL, = II;;; X; C{ = (X;)"'(C1)". WhenL, issettoa

trix inequalities in Section 3 and present®a/H.. synthesis constant matrix, we denote the above expressiaﬁ(@?L C—f).
framework.
For a given systeri#’ in (3) with T3 measured by th#{,, norm

- . T andT> measure by th&{, norm, there are three typical multi-
e The term such a¥* A, V* By, andV* B, in Theorem 1 objectiveHa/H.., synthesis problems:

and Theorem 2 will become bilinear when the synthesis
problem is concerned. We follow [11, 19, 1] and Iin-P bl N Minimize 17 biect tol| T ]
earize these bilinear matrix inequalities (BMI's) via vari: '0°'€M (0): Minimize || 73| subject to T1[|oc < ;
able changes. Problem (ii): Minimize ||T1|| subject to|T3||3 < «;
e The term®(X1,Cy, L) in (6) is not linear and can not beProblem (jii): Minimize k|| T} ||s + (1 — k)||T%||2 wherek €
linearized by simple algebraic operations. In this paper, [0, 1].
motivated by [24], we use successive iterations to solve

this problem. Specifically, we set the varialdlg o an |, s paper, due to limited space we only consider Problem (i),
initial value and solve the LMI's with respect to variableghich can be interpreted as achieving optifialperformance

X1, Xp andV. The objective value is an upper bound e guaranteeing a certain level of robust stability.
on the true optimum. Once we obtain a controller and its

associated variables, we redat and design a new con-Now, we are in a position to present a sufficiétt/H . syn-
troller. The new objective value is always no more thaifiesis framework for continuous-time systems.
the old one, i.e., the system performance converges to a

sub-optimal value. Theorem 3 (SufficientH./H ., Synthesis) For a systen( in
(1) with a giverry, there exists a controllek for Problem (i) if
Partition the variablé” andV ~! as follows: one can minimizg £ \/a = y/Trace Z, while the following

. . . _— — ~ ~ ~
LMTI's, involving variablesX,, X», U, V11, W11, A, C, B, D,

Ve (E Viz) C wevla (%i W*w) (18) are feasible.

—-(VT+V) vTaA+X, VvTB VT
where V117V12,‘/217W11,W12,W21 e R, LetIIy £ ( (); ) _i{ 0 (O) 0
Vin I I Wi AT AT _ T
(v21 0) and Iy, 2 (0 Wm), then Wil = IIy and EiT E;T (.)1; oL <0 (21)
Vilw = Iy 7 7 OO =X



6. If (JO=D — J@)/JG-1) < ¢ for somee > 0 then stop.

~(VT+V) VTA+X; V'B, V o
()T -X 0 0 0 22 7. Seti «— i+ 1 and return to Step 4.
T G P IS (22)
o7 o8 O X
% ar Theorem 4 For a given systerty, if the conventional»/H
((.)T Zs ) >0 (23) synthesis with CLV'’s [19] is feasible, the new LMI’s character-

— ) — — — — oo izations in Theorem 3 are always feasible. Hence, the synthesis

Wh‘ie 11 =7 I+ (I_)(Xl’cl)' ®(X1,61) = LiXiLi = jterations in Algorithm 1 can always be carried out. Further-

LTC;" — €Ly and L, is set to a constant value. more, a sequence of controllefs() is given by Step 5 such
that

Proof: The LMI's (21) ~ (23) can be obtained by simple con- 1Tl <

gruence transformations on (6), (16) and (17) respectively. Tgﬁd

details are omitted here.r Jopt <+ < JD << g < JO

Remark 2 When a solution to the LMI'®1) ~ (23)exists, the Wh?reTj@) = G+ KO, JO = | 1§75 and J,y is the real

controller can be derived from the following scheme [1]: optimum.

e Compute the non-singular matricd$, and W, such Proof: From Theorem 1, we know that if the conventional LMI
that Vol Wy, = U — VI W, (5) for H, analysis is feasible, then the new LMI (6) with
L, = 1CT is feasible. We will show below that if a solution
e Compute the controlledr, Bx, Cx, and D by revers- o, (5) |s given, one can use it to derive a special solution for
ing the formulas in(19) (6) without computing the LMI itself.

By settingX; = X andL,; = X~!C{, (6) for H,, analysis
Theorem 3 gives a sufficiefis/H ., synthesis framework and becomes
the objective value/ is an upper bound on the optimum. To ,

Trvy viaA4+x VvTs 0 vT
decrease the conservatism, we need the following algorithm oATv +X -X 0 0 0
decrease the upper bound. BiV 0 -1 DY 0o | <0
0 0 D1 7’}/2[ et C1Xflc’1T C1
A% 0 0 ct -X
Algorithm 1 (Synthesis Iterations) For a given systemG (24)

with the control objective of minimizing75||> subject to
71l < <, ONe can carry on the following non-divergen
iterations to compute the controller.

eversing the procedure for proving Theorem 1, we observe
hat the above LMl is equivalent to

-w+w?y Ay +w? B, vcT

. . . YAT +w -Y 0 0
1. If the conventionaHy/H ., synthesis framework in [19] BT 0 1 pr | < 0 (25)
with CLV'’s is feasible for the syste@, one can compute 3% 0 Dy 2T

the LMI’s to obtain the Lyapunov variabl® and the as-

_ A | B whereY = X1,
sociated closed-loop subsysté&in= L); Oth

D, B AT w1 . :
erwise one can not continue the iteration to design a les§tW = —X A" +X . Using the Schurlemma, we obtain
conservativéHs/H ., controller. ATX 4+ XA xB, cT

W w ( BT X -1 Df > <0andX >0 (26)
_ 71 T -1 A 11 12 1 1 —

2. LetW = —x1AT + X712 ([ o) then ¢ DAt

My = é gu SetL; = ;) X~'CT and compute which are the standard LMI's fok ., control as shown in the

a solution to the LMI's(21) ~ (23) with objective value statement (i) of Theorem 1.

J = \/Trace Z3. From (19) and (20), the controllerK  Using a similar technique and settiiy = X andV = (I —
anXm, C1 can be obtained. AT)~1X, we can show that the new LMI’s (16) and (17) for

N _, 'Ha control include the conventional LMI's (14) and (15) as a
3. Initializei < 1 and IetJ(O) =J, KO = K, Xl(o) =X; specia| case.

andC,© =, .
Hence, if there exists a feasible solutidh = X, = X for

4. Setl, — )71’(1-_1) -t a(i—l)}T and compute the (5) (14) and (15), one can always find a special solulign=
' , . X, = X andV = (I — AT)~' X satisfying (6), (16) and (17).
LMF's (21)~ (23)in Theorem 3. We can obtain the similar results fbf/H ., synthesis problem
5. The objective value i$ = \/Trace(Z,). The controller Using congruence transformation.
—

. —_—
K and matricesX;, C; can be computed Hi9)and(20). - The proof of the non-divergence of the objective value is simi-
LetJ® = J, KO = K, X;) = X; andC, () = (. lar to that in [24], hence it is omitted here



5 Numerical Example Iter. Upperbound Relative error Actual Actual

o . . . i J L=t Dl [T

In this section, we give a numerical example to illustrate the a¢ 0 89602 . 80711 17.8957
vantage ofH>/H. control with NCLV's. Consider an unstable 1 8.4957 5184 % 10-2 8 (')031 18 i886
plant [19] with equations: 2 8.4948  1.0593 x 10-* 8.0027 18.1958

0 10 2 1 0 3 8.4947 1.1771 x 10~5 8.0028 18.1957

zt=11-1 1 O Jz+0]Jw+[|1]u
0 2 -5 1 0 Table 1: Synthesis iterations.
Y=oy + 2w
and performance outputs:
1
Zoo = (u) ) 22 = | T3 Note that, although the ne#./H., synthesis framework is
u less conservative than the traditional one [19], the improvement

A this example is not as significant as one would expect. The

wherez, w, u, andy denote the state, disturbance, control ar‘[ ¢ K is to further d th i fthe d
measured signals respectively. We are interested irtthe uture work IS to lurther decrease the conservatism ot the de-

performance fromw to z,, and theH, performance fromw to sign.
z3. Let the closed-loop system fromto z., is denoted byl
and fromw to z, by T». 6 Concluding Remarks

(a) Design of the optimal{; controller: We design an opti- This paper presented a continuous-tif&/H., synthesis
mal H, controller for systen®; using the function “h2lag.m” framework, which was a counterpart of de Oliveria’s discrete-

in theRobust Control Toolbopd]. The controller is time synthesis framework [6]. The main contribution is to in-
—5.7266(s + 5.089)(s — 0.2718) corporateH ., control into Apkarian’s continuous-time synthe-
Kope = - : ' sis framework for eigenstructure assignment &g control

2
(5+5.085)(s” + 3.669s +9.931) [1]. To achieve this objective, we decoupled the controller and

and the closed-loop systeri{; performance is||Ty||; = Lyapunov variables by introducing a new auxiliary variable,
7.7484. With the controllerK,,;, the H,, performance is and substituted a non-linear term with a sequence of conver-
1T ||oo = 23.5873. gent (strictly speaking, non-divergent) linear upper bounds.

(b) Design of a conventionalH,/H, controller: Using the Compared with the Youla parametrization technique, this
function “hinfmix” in the LMI Control Toolbox[12], we de- framework computes a controller with the same order as the
sign a mixedH../H, controller. To compare with the opti- generalized plant, which is important to controller implemen-
mal H, controller, we minimize thé{, norm|/T5 ||, subject to tation. As demonstrated in the example, the synthesis itera-

71|00 < 23.5873 and obtain the controller tions can more quickly converge to a sub-optimum than those
presented in [24] since only one non-linear term need to be
—7.5978(s + 5.098)(s — 0.05412) substituted by a sequence of upper bounds.

mixr 2
(5 +5.099)(s* + 4.2565 + 10.26) The conservatism of this work comes from two factors: (1) A

TheH, upper bound is 8.9625 which1$.67% higher than the common auxiliary variable was used for different control spec-
optimum, while the actudt, performance i§7»||, = 8.0704. ffications. (2) A sequence of upper bounds are utilized to sub-
. . i stitute the non-linear item. Although the synthesis framework
(c) Design of aH,/Hoo controller with NCLV's: Now, We i, thig paper is less conservative than the traditional one with
design theﬂ."om2 controller with N(_:LV_S' The program for .CLV's, more computation is needed due to increased number
the synthe_3|s framework presented in this paper can be obf[al 2lecision variables and synthesis iterations.
by contacting the authors. To compare with the conventional
mixed control, we also minimize th&, norm ||T3||> subject The results in this paper are ready to be extended to set up
to || 71|00 < 23.5873. a more general multi-objective synthesis framework, e.g. a
, L i mixed generalized, control, generalizet{, control, H con-
V\élh)en tf(le_lc)onvergence_aolerr]ance rsl L% ]}0 R Ee' (‘]( K . trol framework with pole placement. When more control objec-
T < Ix 10 » the results of synthesis iterationg; e gre involved, the advantage of the framework presented
are shown in Table 5. Itis clear that, only through three itergy .1 i paper will be much more clear. It will be of great in-

tions, the objective valug'”) decreased from 8.9602 t0 8.4947,. .o+ 1o apply this framework to a real system, such as ac-

which |s9.63_%.greater than the optimum. The best controllq‘rve suspension control system, which is by its very nature a
we can obtain is multi-objective optimization problem [27, 26]. A challenging
—7.2791(s + 5.125)(s — 0.2081) question is whether one can linearize the non-linear term (e.g.
(s + 5.127)(s® + 4.123s + 9.703) C1X;'cT) via other less conservative techniques.

Kneu; =
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