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Abstract: The existing methods of decentralized control suffer
from two major restrictions. First, almost all of them hinge on
Lyapunov's method, and second, they do not address the
problem of performance robustness. A novel methodology to
overcome the above defects is presented in this paper. Central
to this approach is the notion of a finite-spectrum-equivalent
descriptor system in the input-output decentralized form. By
way of this notion, a new formulation of the interaction which
introduces some degrees of freedom into the design procedure
is offered. The main result, i.e. a sufficient condition for
decentralized performance stabilization in a desirable
performance region and maximal robustness to unstructured
uncertainties in the controller and plant parameters,
nevertheless, is in terms of regular systems. Based on minimal
sensitivity design of isolated subsystems via eigenstructure
assignment, an analytic method for the satisfaction of the
aforementioned sufficient condition is also presented.

1 INTRODUCTION

Many real-world large-scale systems, such as urban traffic
networks, digital communication networks, cooperating robotic
systems, power systems and economic systems, comprise a
number of small interconnected subsystems. For such systems,
a centralized controller is difficult to design and very costly to
implement. As a result, decentralized control theory emerged in
the 1960s and developed to a pole of attraction for the system
and control community thereafter.

In the broad sense, existing results on large-scale systems
appear in two main directions, see [2-9,11] and the references
therein. On the one hand some structural properties have been
explored and on the other hand stabilization methods have been
developed. With reference to stabilization, the complex nature
of the problem has encouraged the use of nonlinear control
and/or Lyapunov's stability criteria in almost all of the existing

methods. Lyapunov's method, none the less, provides only a
sufficient condition for stability and one may search in vain for
a stabilizing control. Moreover, the stability property of the
system is highly dependent on the choice of the Lyapunov
functions for the subsystems. Thus, linear controllers which
have the advantage of being simpler, more feasible and
economical than the nonlinear ones, are of particular importance
in decentralized control, especially if they can be designed
without using Lyapunov's method. This is one of the underlying
motivations for this research work.

A central issue in control systems design is that of robustness.
The existing decentralized robust control schemes mostly
address the problem of robust stabilization, not robust
performance, and hinge on Lyapunov's method. A step towards
performance robustness was taken in [1] by the introduction of
the so-called guaranteed cost control. This, although being used
in decentralized control methods, provides only an upper bound
on a given performance index, does not address the
uncertainties in the controller itself, and is based on Lyapunov's
stability criteria as well. The above mentioned shortcomings are
other motivations for this work.

It is well-known that especially for large-scale systems state
estimation is often infeasible and may even result in the curse of
dimensionality. Thus, output feedback control is of special
significance for high-order systems. This is the third motivation
for this research work.

A number of existing results have some other special
restrictions. For instance, in [2,3] it is assumed that the system
is generically (i.e. in almost all cases) stable, minimum-phase
and square. There are also some H.,, -based methods which are

all iterative. It should also be noted that there are only few
output-feedback linear design methods for decentralized
control. In particular some results can be found in [4-6] which
all pivot on Lyapunov's method. In addition, in [4] all the
isolated subsystems were restricted to be invertible and have
their transmission zeros in the open left half plane; local



controllers were then synthesized using observer-based high-
gain feedback strategy.

Very recently the above-mentioned defects were partly rectified
in [7-9]. In [7,8], without using Lyapunov's method, a sufficient
condition for output feedback linear decentralized stabilization
of large-scale systems was introduced. Then, based on [7,8,10],
the problem of linear output-feedback decentralized robust
exponential stabilization was addressed in [9]. The method
provides a desirable rate of decay and maximal robustness to
unstructured perturbations in the system and controller
parameters. However, the system is restricted to be in the input-
output decentralized form.

Motivated by the aforementioned arguments, the results of [9]
are extended to performance robustness of generic systems, i.e.
systems not in the input-output decentralized form. This paper
is organized as follows: In Section 2, in order to simplify the
design procedure and to get rid of the interaction due to input-
output centralization, for a given large-scale system a finite-
spectrum-equivalent descriptor system [7] in the input-output
decentralized form is introduced. The proposed formulation
enjoys some flexibility (degrees of freedom) which is exploited
in the design procedure. In Section 3, it is proved that this
descriptor system is regular, impulse-free, and its finite
spectrum is exactly the same as the spectrum of the original
system. Thus, stability of the finite spectrum of this descriptor
system is (necessarily and sufficiently) equivalent to the
stability (of the spectrum) of the original system. The design
procedure will be based on this descriptor system. However, the
final result is in terms of nonsingular systems - the descriptor
system vanishes. In Section 4, the problem of performance
stabilization is defined and a necessary and sufficient condition
for that of descriptor systems is presented. A sufficient
condition for decentralized performance stabilization of large-
scale systems is then derived. To incorporate maximal
robustness (minimal sensitivity) into the above condition, the
newly developed analytic approach of [9,10], resulting in a
compact-form sufficient condition, is utilized. The main result
of the paper, i.e. a sufficient condition for performance
stabilization in a desirable performance region and maximal
robustness to unstructured uncertainties in the controller and
plant parameters by decentralized linear output feedback of
generic large-scale systems, is established thereafter. An
analytic solution to the problem arising from the
aforementioned sufficient condition is hence available.

Throughout the paper it is assumed that the desirable closed-
loop eigenvalues are distinct, since they possess better
robustness properties than the repeated ones. In addition,
because the design of a linear dynamic controller can be
reduced to that of a linear static one [9], and also for notational
implicity, only static controllers are addressed. All the results
are presented for output feedback; state feedback thus follows
directly.

2 PROBLEM FORMULATION
Consider a large-scale system G with the state-space equations

x=Ax+Bu

V=Cx ey

where Ae R™", BeR"™"and CeR”*" are the system state,
input and output matrices. The system is partitioned into N
linear-time-invariant subsystems G;(s) described by
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and Z]]V:I Cyix; describe the interactions with other subsystems.

In this work, in contrast to the literature, the
subsystems, i.e. the triples (A;,B;;,C;) i=1...N,

isolated
are not

restricted to be minimal (see Remark 4.1).

To simplify the design procedure and to get rid of the
interaction due to input-output centralization, for the above
system a finite-spectrum-equivalent descriptor system in the
input-output decentralized form is introduced. To this end,
similar to the behavioral approach [12], the augmented state
vector is defined by [7]
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by which Equatios (1) are transformed to
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for i=1,...,N, the descriptor system (E,Zd,é,é), denoted by
G, will be in the input-output decentralized form. As will be
proved, G is regular and impulse-free, and its finite spectrum is
exactly the same as the spectrum of G ; this is also valid for

their isolated subsystems. Therefore, stability of the finite
spectrum of G is equivalent to the stability of (the spectrum of)

G, and G is called a finite-spectrum-equivalent descriptor
system for G. Hence, the design procedure is simplified and

based on each isolated subsystem G; given by
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provided a sufficient condition, which is derived in Section 4.4,
is satisfied. Thus, the objective of this paper is to design, for

each isolated subsystem C~},- (i=1..,N), a local static output-
feedback controller X;

U; = K;(R, - Cy X)) (18)
where R, is the ith reference input vector, such that the overall

system is stabilized in a desirable performance region with
maximal robustness to unstructured uncertainties in the
controller and plant parameters.

By the application of the linear decentralized output-feedback
controller K = diag{K;} to system (4), i.e. G plus uncertainty
A the will  be

H, closed-loop
A? 4+ BKC+H = AL.I +H where A= diag{ﬁdi} in  which

state matrix

Adl. = A¢ — B;K,C; denotes the closed-loop state matrix of the

ith isolated subsystem.

Remark 2.1: In the design procedure A , which embodies the
interactions, will be treated as an uncertainty in A% . The

definition of H (interaction measure) in decomposition (9)
introduces some flexibility into the design procedure by the

freedom in choosing A¢ (i=1...N) up to the following

structure
X
Dpixpi  Cii X
1d _ X X
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in which (A7,B;,C;) forms any arbitrary-element minimal
triple, X represents arbitrary elements, and D,, denotes any

full rank diagonal matrix. It is clear that there are always
infinite number of choices for A .

Remark 2.2: In [13] it has been shown that for a minimal
representation (1) a generic (i.e. for almost all systems)



sufficient condition for linear output feedback pole assignment
is that mp>n. Thus, eigenvalues of Adi (i=1,..,N) are
assignable if m;p; >m; + p; +n; . Consequently, the order (and
number) of the subsystems is dictated by this condition.

3 A FINITE-SPECTRUM-EQUIVALENT
DESCRIPTOR SYSTEM

It is well known that the existence and uniqueness of (classical)
solutions to a descriptor system (E,Ad,B,C) is guaranteed if the
pair (E‘,Ad) is regular, i.e., if det(/lE“—Kd) is not identically
In addition, the system is called impulse-free if
deg det(AE — AY) = rank(E) where Ae C.

Z€ro.

Theorem 3.1 [7]: The descriptor system G has (classical)
unique solutions. (Proof: Left to the reader.)

Theorem 3.2 [7]: The descriptor system G is impulse-free.
(Proof: Left to the reader.)

The problem of controllability, observability and duality in
descriptor systems has been extensively studied. There are
several controllability concepts with different meanings,
namely, c-controllability, r-controllability, i-controllability and
s-controllability. Observability is the dual of controllability, and
thus similar concepts exist for observability of descriptor
systems.

Theorem 3.3 [7]: All the isolated subsystems G; are strongly
controllable. (Proof: Left to the reader.)

Theorem 3.4 [7]: All the isolated subsystems G; are strongly
observable. (Proof: Left to the reader.)

Theorem 3.5 [7]: The decentralized controller K stabilizes G
iff it stabilizes the finite spectrum of G .

Proof: Clearly, there exists a similarity transformation by which
Equations (4) are transformed to

E% = AR+ Bu
y=Ck
where
0 PXp 0 pXn 0 pXm
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Since similarity transformations do not affect the eigenvalues,
poles of G the
det(AE — A+ BKC)=0 where AeC. On the other hand, it is
easily seen that

finite are given by roots  of

) ) Iy =C 0,
det(AE—A+BKC)=det| 0,, AM-A -B
K Ole‘l Il‘ﬂXl‘ﬂ

=det(Al - A+ BKC)

and because the reverse of the above argument is also valid,
stability of the finite spectrum of G is (necessarily and

sufficiently) equivalent to the stability of (the spectrum of) G.
A

Evidently, the above argument is also valid for all the isolated
subsystems of G and G. Thus, G is called a finite-spectrum-
equivalent descriptor system for G.

4 DECENTRALIZED ROBUST PERFORMANCE
STABILIZATION

4.1 PERFORMANCE STABILIZATION

Performance stabilization of a system refers to assigning the
poles of the system in some prescribed region which represents
the requirements on the stability and performance. From among
the common desirable performance regions, i.e. sector,
elliptical, vertical strip and parabolic regions, sector region is
adopted in the sequel. The proceeding analysis and synthesis,
nevertheless, is applicable to all of the abovementioned regions.

Q region: This represents the whole part of the left-half
complex s-plane left to both lines

y = Zcotan(8)(x + &) (20)
where x and y denote JR(s) and 3(s) in the complex s-plane,
respectively, 0<d<x/2 and a>0.

Theorem 4.1: The decentralized controller K assigns
(stabilizes) the finite spectrum of system (4) into Q region iff it
assigns (stabilizes) the finite spectrum of its associated



augmented system given by (21) into the open left-half complex
s-plane. (Proof: Left to the reader.)

Augmented System: The system described by
O(8) ® E2 = O(6) ® (A, + H + )z 1)
is called the augmented system associated with system (4),

where
—sind
cos o

with >0, 0<Jd <x/2 and where ® is the Kronecker product
of matrices.

cos o 22)

sind

0@) = {

Corollary 4.1: The decentralized controller K stabilizes the
performance of system G into Q region iff it assigns
(stabilizes) the finite spectrum of system (21) into the open left-
half complex s-plane.

4.2 DECENTRALIZED PERFORMANCE
STABILIZATION
A sufficient condition for decentralized performance

stabilization is presented in the following Theorem.

Theorem 4.2: The decentralized controller K stabilizes the
performance of system G into Q region, if

05 ® A, +0(5) ®4," :
<
2

(23)
O ®H+08) ®HT )

- ﬂ‘max( 7

in which A,,, denotes the maximum eigenvalue of (.).
(Proof: Left to the reader.)

4.3 MAXIMAL ROBUSTNESS DESIGN

Let the condition number of a matrix be defined as the ratio of
its greatest singular value to its smallest one.

Problem ®[9,10]: The problem of minimal sensitivity (maximal
robustness) of eigenvalues in linear output feedback is to find
an analytic solution for the static output feedback gain such
that: a) condition number of the modal matrix of the closed-
loop state matrix be at its minimum, i.e. one, and b) pole
assignment be accomplished in some admissible region Q
which represents the requirements on the stability and
performance. Region Q is restricted to produce nondefective
(completely diagonalizable) closed-loop system matrices, since

such matrices exhibit better sensitivity properties than the
defective ones.

A compact-form solution to Problem @ is given in the
subsequent Theorem.

Theorem 4.3 [9,10]: Let a linear-time-invariant multivariable
plant be described by Equations (1) with the output-feedback
linear controller u=—-Ky. If a real matrix Y can be found such
that

BBY(AT +v)CTC=AT +Y (24)
and b) be satisfied, then problem P is solved and the solution is
given by

K=-B"AT +v)C* (25)

where ()" denotes the pseudo-inverse of (.).

A natural method for finding Y is to use a random-number
generator. Yet, a better and faster approach is to invoke a
genetic algorithm. This way, part b) of the objective along with
some other design criteria - e.g. reliability, decoupling and low
actuator gain [14], and the flexibility in the decomposition (9)
which helps satisfy conditions (24), (27) and (29) - can easily be
incorporated in the design procedure.

Remark 4.1: No assumption is made on the controllability and
observability of the system, because condition number
minimization is accomplished by eigenvector assignment which
is possible for all poles. Hence, region Q must include the
uncontrollable and unobservable modes. With reference to
Sections 4.2,4.4, region Q represents part of the complex s-
plane described by (23), (26), (27) and (29).

44 DECENTRALIZED ROBUST PERFORMANCE
STABILIZATION

Utilizing Theorems 4.2,4.3, a sufficient condition for
decentralized performance robustness is established in the
following Theorem.

Theorem 4.4: If the eigenstructure of each isolated closed-loop
subsystem is assigned such that its eigenvectors compose a set
of orthonormal vectors and

) ® A, +0(5) ®A4," )
<

max Apgy (
i 2

(26)

O ®H +AH)+08) @ (HT + AHT))

- ﬂ’max( 7

where AH is the 2-norm bounded uncertainty in H, then
performance stabilization in Q  region with maximal



robustness to unstructured perturbations in the controller and
plant parameters of system G is assured.
(Proof: Left to the reader.)

The sequel Corollary follows from the above Theorem directly.
The analytical method for the satisfaction of its condition is
readily available by Theorem 4.3.

Corollary 4.2: If the decentralized controller K is designed
such that all closed-loop subsystems have symmetric state
matrices and

Max Apa (O ®A4,) <
(27)

08 ®H +AH)+05) ®HT +AF1T))

_ﬂ'max( )

then performance stabilization in Q region with maximal
robustness to unstructured uncertainties in the controller and
plant parameters of system G is guaranteed.

Remark 4.2: If only an upper bound of the interaction is
known, since

T
1 M+M

where o, () denotes the maximum singular value of (.) and

M is any square matrix, condition (27) can be substituted by

MaxX Ay (O(8) ® A) < =01y (O(8) ® (H + AH)) . (29)

5 CONCLUSIONS

The literature on decentralized control is lacking a method
which is not based on Lyapunov's stability criteria and/or
addresses the problem of performance robustness. This paper
offers a solution to the above defects. Central to the
methodology is the concept of a finite-spectrum-equivalent
descriptor system in the input-output decentralized form. The
main result, i.e. a sufficient condition for decentralized
performance stabilization in a desirable performance region and
maximal robustness to unstructured perturbations in the
controller and plant parameters, non the less, is in terms of
regular systems. Based on maximal robustness design of
isolated subsystems through eigenstructure assignment, an
analytic method for the satisfaction of the aforementioned
sufficient condition is also presented. In addition to addressing
the abovementioned shortcomings, the proposed methodology
has the sequel distinctions: a) minimal sensitivity to
unstructured uncertainties in the controller and plant
parameters, b) some flexibility introduced by a new formulation

of the interaction, c) applicability to nonminimum-phase and
nonsquare systems, and d) noniterativeness.
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