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Abstract

It is an important question whether nonlinear controller design
is needed for a particular application or whether linear con-
trollers are sufficient to achieve the desired control goals. The
present paper introduces the closed-loop optimal control law
(OCL) nonlinearity measure, a new tool that provides a scheme
to quantify the degree of nonlinearity of an optimal state feed-
back controller for a given control problem. The method builds
upon the Optimal Control Structure (OCS) method introduced
by Stack and Daoyle I11 [9]. The new closed-loop OCL method
is compared to the OCS approach and numerical examples il-
lustrate the theoretical results.

1 Introduction

Continuously increasing economic demands force engineers to
optimize industrial processes. The process control strategy has
to be included into the optimization effort in order to improve
performance and reliability to its best. But in the economic
context, not only a mediocre performance of the process causes
loss in productivity, but high research and development costs
have to be taken into account as well. For linear systems, many
suitable and easy-to-implement controller designs are avail-
able like PID control, internal model control, Hy- and Hoo-
synthesis or model predictive control (MPC). Accordingly very
satisfying results can be achieved with little effort. Controller
design for nonlinear systems is much more involved. As most
real processes show nonlinear behaviour, an important question
to ask is: in which cases is nonlinear controller design neces-
sary or of advantage?

There exist many approaches to define a quantitative measure
for the plant nonlinearity. But most measures rely on the open-
loop behaviour of the plant. Many measures can be interpreted
as some kind of prediction error of the best linear approxi-
mation [7, 1]. Other nonlinearity measures can be found in
[4, 8, 3]. However, the question raised above rather concerns
the structure of a suitable controller than that of the plant.
In view of this, Stack and Doyle Il [9] suggest to measure
the nonlinearity of a controller instead of the nonlinearity of

the plant. This method is termed control-relevant nonlinearity
quantification. In the present work, controller nonlinearity and
control problem nonlinearity will be used as synonyms.

A method to describe a benchmark controller for a general class
of nonlinear systems is given by the classical optimal control
theory. The controller structure is not restricted in advance but
only the optimization criterion must be specified. In order to
circumvent the derivation of the exact solution for the optimal
state feedback controller, Stack and Doyle 11l define the so-
called Optimal Control Structure (OCS) [9]. By this means,
interesting questions can be examined like the dependence of
control-relevant nonlinearity on the set-point and region of op-
eration [8], the relation between nonlinearity and controller ag-
gressiveness [9, 6] and the severity of certain classes of nonlin-
ear behaviour [6]. Extensions to measurement feedback have
also been made [8, 6].

This paper introduces a new nonlinearity measure and aims
at clarifying the relation between the nonlinearity of the op-
timal control law (OCL) and the corresponding Optimal Con-
trol Structure (OCS). The present work will consider the state
feedback problem. Thus, the nonlinearity that is captured by
the described method concerns the input-to-state nonlinearity,
as the information available for feedback is assumed to be the
full state information. Output nonlinearities thus do not affect
the value of the nonlinearity measure. The basics of control-
relevant nonlinearity quantification will be reviewed in Section
2. In Section 3, the new closed-loop OCL nonlinearity mea-
sure is introduced that captures the nonlinearity of an optimal
state feedback controller in a closed-loop setup. The differ-
ences between the OCS approach and the OCL nonlinearity are
discussed. In Section 4, numerical results illustrate the theoreti-
cal insights of precedent sections with the help of two example
systems. Section 5 summarizes the key points and draws the
conclusions.

2 Control-relevant nonlinearity quantification

2.1 A nonlinearity measure

Nonlinearity tests can classify systems to be linear or nonlinear.
But there is a vast variety of different nonlinear behaviours, and
many nonlinearities are weak and do not affect the controller
design process. This fact shows the need to be able to not only
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Figure 1: Setup for comparison of a nonlinear system N with
a linear approximation G.

qualify a system to be nonlinear, but to quantify the degree
of nonlinearity inherent to the system. For this purpose, we
will use the following nonlinearity measure as introduced in
Refs. [1, 5].

Definition (nonlinearity measure) The nonlinearity mea-
sure ¢% is defined as

1G[u] — Nlulllz,
INTulllz,

where N : U — Y is the nonlinear operator that describes
the input-output behaviour of the plant. G: U4 — Y is
an approximation of N belonging to the class of linear
operators G. U C Lo is the space of admissible input
signals.

% := inf sup
N GEG y(yeu

1)

In the further analysis, the Ly-norm

1

£, = </0°° |f(t)|2dt> i

defined on the space )Y C L» of output signals is used. Thus,
the measure is only well defined, if the system N is Ly-stable.
In general, the usage of different norms is possible.

This nonlinearity measure can be interpreted as the relative
prediction error of the best linear approximation. The given
measure corresponds to a relative error, because the error term
lle]ll = ||G[u] — N[u]|| is normalized by the norm of the cor-
responding output signal of the nonlinear system || N [u]||. Note
that the description “best approximation” refers to the approx-
imation, that minimizes the worst case error and not the aver-
age or some other kind of weighted error. The measure tales
on a value between zero (if NV is linear) and one (if N is highly
nonlinear) [1]. An illustration of the setup for the comparison
of the nonlinear system N with a linear approximation G is
shown in Fig. 1. ¢% can be calculated by different computa-
tional schemes. For the results of this paper, we used the con-
vex optimization method to get the best possible results. See
Refs. [1, 5] for details on the computational methods.

By choosing the considered input signals such that the relevant
amplitude range of the input or state signals are captured, the
nonlinearity can be computed for different regions of operation
of the process.

2.2 Aim of control-relevant nonlinearity assessment

An important question to the control engineer is whether a non-
linear controller is needed to achieve adequate performance or
whether a linear controller does the job. As already mentioned,
a nonlinear plant may or may not require a nonlinear controller.
Knowledge about the degree of nonlinearity of the plant is
therefore only of limited use. The consequent idea of control-
relevant nonlinearity as introduced by Stack and Doyle 111 is to
directly examine the nonlinearity of suitable controllers for a
given plant instead of just analyzing the plant’s open-loop be-
haviour [9]. The controller nonlinearity is determined by the
three factors

1. plant dynamics,
2. region of operation and

3. performance criterion.

Open-loop process nonlinearity measurement takes the first
two points into account. The third point is new in control-
relevant nonlinearity quantification. In a more general context,
not only the performance criterion has to be considered but the
controller design method has to be mentioned as well. Follow-
ing the idea of Ref. [9], optimal control theory with an integral
performance criterion is used here as it represents a benchmark
for the achievable performance.

2.3 Open-loop optimal control law nonlinearity

For the derivation of an optimal controller, a model of the plant
is assumed to be given in state-space form

&= f(x,u) (2

where z(¢t) € R™ is the state vector and w(t) € RP is the
control input. The controller is sought, which is optimal with
respect to the integral cost criterion

T
J(zo)lu] = [ Flz,u)dt. ®
to
where the trajectory of x(t) has to satisfy the plant dynamics

Eq. (2) and the initial condition z(to) = xo.

It is common knowledge that for a time-invariant system to-
gether with a time-invariant cost criterion and an infinite hori-
zon T = oo the resulting optimal control can be formulated
as a static state feedback control law u = k(z) [10], i.e. the
optimal control depends only on the current state vector of the
plant.

The goal of control-relevant nonlinearity quantification is to
measure the nonlinearity of this control law w = k(z) to de-
cide whether linear control is sufficient or not. To this end, it is
in principle possible to apply the previously defined nonlinear-
ity measure to the system

Nocr : ©+— u, u(t) =k (z(t)) Vt 4)
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Figure 2: Setup for (open-loop) comparison of the optimal con-
trol law u = k(x) with a linear dynamic approximation G.

describing the optimal control law (OCL) where the state vec-
tor x is the input to the controller and the control signal w is its
output, leading to the following definition.

Definition (open-loop OCL nonlinearity measure) The
open-loop optimal control law (OCL) nonlinearity for the
control problem at hand is defined as

it s ool =Gl

525
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Nocr *

where the set X (B) describes all input functions z(-) €
Lo, that only take values in the region of operation B C
R™.

The setup of open-loop nonlinearity quantification for the opti-
mal control law is illustrated in Fig. 2 in analogy to the general
framework in Fig. 1. The approach is termed open-loop non-
linearity because the considered input signals z(-) € X(B) do
not need to be possible state trajectories of the plant or of the
closed-loop system. This fact will become clearer in Sec. 3.

In accordance with what has been said in Sec. 2.2, the con-
troller nonlinearity ¢>ﬁg?L is influenced by (i) the plant dy-
namics of Eq. (2), (ii) the region of operation characterized by
the set BB and (iii) the performance criterion given by Eqg. (3).

In practice the optimal control law k& () only be computed
rarely and if so with significant effort, rendering the presented
measure impractical. The advantage of a nonlinearity measure
should be that it assesses prior to controller design whether
nonlinear control is necessary. The following sections will
therefore deal with approaches that try to quantify the nonlin-
earity of the OCL without explicitly deriving it.

2.4 The Optimal Control Structure (OCS) approach

The OCS approach, established by Stack and Doyle 111 in [9],
uses the following results from optimal control theory to ap-
proximately quantify the nonlinearity of the optimal control
law u = k(x) without explicitly deriving it.

If * is an optimal state trajectory and w* the corresponding
input history, then there exists a co-state trajectory A*, such

that the equations

#0) = £ 0u°(0) ©
0 = -2 @) ©
0 = 2@ @,u ) ©

with the Hamiltonian defined as
H(z,\u) = F(z,u) + A f (z,u) )

are satisfied for all times 0 < ¢ < T and the boundary condi-
tions

z*(to) = o
AT = o

(10)

hold. If it is known, e.g. from physical reasoning, that exactly
one optimal control exists, then the solution of this boundary
value problem with split boundary conditions determines the
optimal control signal.

Eq. (6) represents the plant dynamics. In Ref. [9], Egs. (7, 8)
are viewed as a dynamical system that represent the controller
behaviour under certain circumstances and these equations are
called the Optimal Control Structure (OCS). Within the OCS
approach, the boundary conditions are neglected and only the
OCS equations are examined. If the OCS equations are linear,
then the resulting optimal controller is linear as well. This fact
allows for example to examine analytically whether a controller
qualitatively tends to linearity if a parameter of the plant or cost
criterion tends to a limit value [9].

To get quantitative results, the nonlinearity of the OCS system
can be assessed by different nonlinearity measures. In the orig-
inal work [9], coherence analysis is used which can cause prob-
lems in the case of higher-order systems. In the present work
as in Ref. [6], the nonlinearity measure of Eq. (1) is used, pro-
viding the advantage that it can treat the general case z € R™.

Definition (OCS nonlinearity measure) The OCS nonlinear-
ity measure is defined as

INocslz] — Glz]ll,

¢XTE
INocslz]ll,

Nows = inf  sup

GE€Y zcx(B)

11)

with the transfer operator Nocgs given by Fig. 3. For the
system Nocs,  represents the input,  is the output and
the adjunct variable A is an internal state. The set X'(B)
describes all input functions z(-) € L. that take values in
the region of operation B C R™.

Note that the time in the state equations in Fig. 3 is reversed as
comparedto Eq. (7) by £ = T —t, i.e. the sign of the right-hand
side is changed to its opposite. This is done for two reasons:

1. In most cases, the plant and the OCS locally have comple-
mentary stability properties, i.e. the linearization of the
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Figure 3: Setup for (open-loop) comparison of the Operator
Nocs with a linear dynamic approximation G in the Optimal
Control Structure (OCS) approach.

OCS Egs. (7, 8) has the same poles as the linearization of
the plant Eq. (6) but mirrored at the imaginary axis. Thus,
if the plant is stable, the OCS system is anti-stable. If the
time is reversed, the OCS becomes stable again and the
nonlinearity measure can be computed.

2. For a finite horizon, the end condition in (10) is only
equivalent to the zero initial condition of the OCS system
in Fig. 3 if the time is reversed.

However, there are some drawbacks to the OCS approach. First
of all, the OCS is a dynamical system whereas the optimal con-
trol law is a static relationship. Thus the question remains if the
OCS structural nonlinearity reflects properly the structural non-
linearity of the optimal control law. Moreover, dynamical sys-
tems can show much richer behaviour and the OCS behaviour
strictly corresponds to the optimal controller only if the state
trajectory is an optimal trajectory (marked by a star in Egs. (6-
8)). This could lead to the conjecture that the OCS nonlinearity
could be an upper bound on the optimal control law nonlinear-
ity. In Sec. 4 an example will illustrate that this is in general
not the case.

Summarizing, the OCS method is an approach to control-
relevant nonlinearity assessment that does not require the com-
putation of the optimal controller, but utilizes first-order nec-
essary conditions for optimality to examine the structural non-
linearity. A big advantage of the OCS analysis is that for some
pairs of plant structure and cost criterion the OCS equations
can be studied analytically [9]. For most practical applications,
a numerical evaluation can be done for the defined measure.
But the characterized problems show that there are serious con-
cerns whether the OCS nonlinearity measure correctly reflects
the nonlinearity of the optimal control law.

3 Closed-loop optimal control law nonlinearity

In Section 2.3 we presented an ideal but infeasible method for
control-relevant nonlinearity assessment that consisted of the
application of the nonlinearity measure from Sec. 2.1 to the
optimal control law. We then presented the OCS approach for

practical derivation of results. While this approach proves to
be very useful for analytical examinations, the numerical val-
ues have to be interpreted carefully due to the heuristics in-
herent to that approach. In this section we introduce a novel
method for control-relevant nonlinearity assessment based on
the previously presented nonlinearity measure and inspired by
the OCS approach. We will see that its definition stays closer to
the ideal method described in Sec. 2.3 and that it is even more
appropriate with respect to the philosophy of optimal control
theory.

Definition (closed-loop OCL nonlinearity measure) The
closed-loop optimal control law (OCL) nonlinearity for a
control problem is defined as

NOCL[:B;O] - kT:II;O

+B —
Nocr ™

inf sup Le (12)

v ds [Nooles, Il
with NOCL[a:;O] := u;, and z; being the solutiontothe
infinite horizon control problem for the initial condition
xo. The region B C R™ of initial conditions replaces the
set of considered input signals in comparison to the previ-
ous definitions. To be consistent, the set B C R™ should
be positive invariant for the closed-loop system, i.e. any
trajectory that starts from a point in 3 remains in 3 for all
times. If it is not positive invariant, then trajectories may
temporarily leave the specified region of operation and the
“real” region of operation is bigger than the specified one.

This definition is the application of the nonlinearity measure
from Sec. 2.1 to the optimal control law with respect to the
closed-loop trajectories. 1.e. the worst case input signal in the
nonlinearity measure calculation is taken from the set of opti-
mal trajectories instead of all Ls-signals with restricted ampli-
tude. This is justified by the fact, that the demanded control
task is to optimally regulate the system for a given initial con-
dition. In the case of further disturbances, the described con-
troller loses its optimality property. Thus, considering optimal
trajectories only amounts to taking account of the conditions,
under which the optimal control law is derived. Fig. 4 illus-
trates that the optimally controlled closed-loop “generates” the
trajectories that are used in the nonlinearity quantification. As
there is a one-to-one relationship between initial conditions and
trajectories, regarding optimal trajectories is equivalent to con-
sidering initial conditions. Therefore the supremum in Eq. (3)
is taken over initial conditions.

There is one more difference to the previously defined nonlin-
earity measures. Contrary to the OCS method, only static ap-
proximations of the optimal nonlinear controller are taken into
account. This is adequate, as it is known that the optimal con-
trol law is a static state feedback. As stability is no issue in the
case of static relations, a further big advantage of the closed-
loop OCL nonlinearity quantification is that it can be applied
regardless of the stability of the plant or of the OCS equations.
Only a solution to the optimal control problem needs to exist.
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Figure 4: Setup for closed-loop comparison of the Operator
Noc with a linear static approximation K.

The computational scheme is again based on convex optimiza-
tion. The optimal control problem is solved for a finite number
of points in the set 13 and for a finite but large horizon T'. For the
solution of these problems, any numerical method can be used
[2, 10]. Thus, even input or state constraints can be included.
Having computed the optimal trajectories, the remaining prob-
lem is reformulated as a constrained minimum search over the
static controller gain matrix K. A sufficiently large horizon
can be found by increasing 7' until &ﬁou does not change
any more. Even though the computations are not trivial, the
problem considered is still much simpler than the problem to
explicitly compute the nonlinear optimal feedback law, as only
optimal open-loop trajectories need to be computed here.

In this section, the optimal control law (OCL) nonlinearity
measure has been introduced. The definition follows that in
Section 2, but stays closer to the original problem of measur-
ing optimal control law nonlinearity. Important definitions of
control-relevant nonlinearity have been adapted from the OCS
approach: the three-fold problem structure with plant dynam-
ics, region of operation and cost criterion as well as the concept
of using optimal control theory. The important extension here
is to consider exact solutions for the optimal control problem.
By this means, a certain degree of approximation inherent to
the OCS method is released and a further step is made toward a
real closed-loop measure. Moreover, the methodology here is
applicable to a broader class of systems.

4 Examples

In this section, the nonlinearity measures for two simple scalar
example systems are compared, an input-affine system and a
Hammerstein system. Both systems belong to classes that are
commonly met in the modeling of processes. The cost criterion
for both systems is taken to be

T
T(z0)[u] = / (1) + au(t)*dt (13)

to

where z and u are scalars and the weight on the control action
a > 0 is the parameter that influences the controller aggres-
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Figure 5: Variation of different nonlinearity measures with
penalty weight on control action « for the Hammerstein ex-
ample system. Simulation parameters: Maximal amplitude of
inputs or initial conditions respectively |z| < 20.

siveness. Often the dependence of nonlinearity on a control
problem parameter is more of interest than a single value. In
the following, the dependence of the nonlinearity measures on
the controller aggressiveness will be explored.

The first system to be examined is of Hammerstein type with a
saturating input nonlinearity

& = —z + arctan(u). (14)
As this is a scalar system, the optimal control law can be cal-
culated and it is possible to evaluate the open-loop OCL non-
linearity measure. Fig. 5 shows the OCS, the open-loop OCL
and the closed-loop OCL nonlinearity measures as functions of
the parameter «.. All three measure give similar qualitative be-
haviours. For small values of «, corresponding to an aggressive
control policy, the controller nonlinearity is high. Whereas for
large «, the controller is only taking little action and the control
signal stays in the almost linear part of the input nonlinearity
and the controller structure needs not to be nonlinear.

Fig. 5 shows two more facts. Firstly, the results show that the
OCS nonlinearity is not an upper bound on the open-loop OCL
nonlinearity. Secondly, the closed-loop OCL nonlinearity in
this case is a lower bound on the open-loop OCL nonlinearity.
It can be expected that in most cases, the restriction of con-
sidered input signals will be more important than the smaller
class of linear approximations (i.e. static instead of dynamic
systems) resulting in the closed-loop OCL nonlinearity being
lower than the open-loop OCL nonlinearity. But recall that the
closed-loop OCL nonlinearity better takes account of the op-
timal control setup and is thus favorable as indicator for the
controller nonlinearity.

The second example system is a CSTR model taken from [6]
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Figure 6: Variation of different nonlinearity measures with
penalty weight on control action « for the input-affine CSTR
example system. Simulation parameters: Maximal amplitude
of inputs or initial conditions respectively |z| < 0.25.

and given by the equation

»  0.5(z —1.8)(z —0.3)
z — 0.55

& = —50(0.7 + z) (49.9074 + u)

(15)

where z is a concentration and « is a flow rate. Fig. 6 shows that
the OCS and the open-loop OCL nonlinearity are very close.
But in this case, for smaller values than o = 105 the OCS
structure is not stable. The OCS nonlinearity can thus only be
calculated for values of o larger than 10~5, whereas the OCL
gives results for the whole range.

The examples illustrate that the OCS is neither an upper nor
a lower bound on open-loop OCL nonlinearity, even if for the
presented example, the qualitative results are very similar. The
closed-loop OCL nonlinearity measure on the other hand better
reflects the controller nonlinearity and is, as seen, applicable to
a more general class of systems. Moreover, the closed-loop
OCL nonlinearity measure was the fastest to be computed, as
no simulation of the linear dynamic approximations is neces-
sary.

5 Conclusion

An important question is whether nonlinear controller design
is necessary. This leads to the idea of quantifying the degree of
nonlinearity of a suitable controller for a given control problem
instead of only analyzing the plant dynamics. Based on ideas
of the Optimal Control Structure (OCS) approach, the closed-
loop optimal control law (OCL) nonlinearity measure has been
introduced that gives a true assessment of the controller non-
linearity. This novel measure has several advantages. Firstly,
it reflects more exactly the desired information about the opti-
mal controller. Secondly, it is applicable to a broader range of

control problems, as stability of the plant or governing equa-
tions plays no role. Moreover, in principle input and state con-
straints can be included. Finally, the OCL nonlinearity proved
to be computationally more efficient for the example systems,
because the only time consuming calculation is the calculation
of the optimal trajectories and the simulation of the linear dy-
namic approximations is not necessary any more.

In summary, the closed-loop OCL nonlinearity measure repre-
sents an important step ahead, but it will probably not be the
last. Future work will concern output feedback problems and
the relation between controller nonlinearity and closed-loop
performance.
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