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2 Problem definition and earlier work

Abstract _ L _ _ -
As a starting point in continuous-time Repetitive ContiRC|

In this paper it is shown that discretisation of a class ofl-welt is assumed that a mathematical model

known con_tinuous-time repetitive contr_ol algorithms vdk- #(t) = Az(t) + Bu(t)

stroy stability. In order to overcome this problem, a new op- y(t) = Cx(t) + Du(t) (1)
timality based Repetitive Control algorithm is proposed fo

discrete-time systems. Under mild technical conditionshen of the plant in question exists with(0) = zo, t € [0, ).
plant the algorithm will result in asymptotic convergenoedn Furthermore A, B, C and D are finite-dimensional matrices
arbitraryT-periodic reference signal and an arbitrary discretef appropriate dimensions. From now on it is assumed that
time linear time-invariant plant. Simulations highlighetdif- D = 0, because in practise it very rare to find a system where
ferent theoretical findings in this papeCopyright © 2003 the input functionu(t) has an immediate effect on the output
IFAC variabley(t). Furthermore, a reference sigmét) is given, and

it is known thatr(¢t) = »(¢t + T) for a givenT (in other words

the actual shape of¢) is not necessarily known). The control
design objective is to find a feedback controller that makes t
Many signals in engineering are periodic, or at least theybea System (1) to track the reference signal as accurately as pos
accurately approximated by a periodic signal over a large ti Sible (i.e. lim;_.c e(t) = 0, e(t) := r(t) — y(t)), under the
interval. This is true, for example, of most signals assedia assumption that the reference sign@) is 7-periodic. As was
with engines, electrical motors and generators, converter shown by (Francis and Wonhan, 1975), a necessary condition
machines performing a task over and over again. Hence it isf@hasymptotic convergence is that a controller

1 Introduction

important control problem to try to track a periodic signathw [Mu]t = [Ne|(t) @)
the output of the plant or try to reject a periodic disturbanc
acting on a control system. where M and N are suitable operators, has to have an in-

In order to solve this problem, a relatively new research’:uartemaI model or the reference signal inside the operafor
P ' y ecauser(t) is T-periodic, its internal model id — o7,

called Repetitive Control has emerged in the control commle o lorv)(t) = v(t —T) for v : R — R. Hence in

nity. The idea is to use information from previous period amamoto, 1993) it was suggested, that one possible (and

FO mo,d|fy the control signal S0 that the pverall SySte”_‘ wou viously computationally simple) RC algorithm for the 8IS
learn’ to track perfectly a givefl’-periodic reference signal. case could be

The first paper that uses this ideology seems to be (Inetiye . _
al., 1981), where the authors use repetitive control to obtain a w(t) = u(t = T) +e(t) 3)

desired proton acceleration pattern ina proton Synchm This algorithm has been analysed by several authorS, see for
netic power supply. example (Yamamoto, 1993), (Arimoto and Naniwa, 2000) and

] N ) (Owenset al,, 2001). It turns out that if the system (1) is pos-
Since then repetitive control has found its way to sever@tr jijye real (PR) then for(-) € L[0, 00) (this does not imply
tical applications, including robotics (Kaneko and Hortayi thatlim,_.. e(t) = 0)). The definition of a positive real sys-

1997), motors (Kobayashet al, 1999), rolling processesiem from (Anderson and Vongpanithred, 1973) is given in the
(Garimella and Srinivasan, 1996) and rotating mechanisggowing

(Funget al, 2000). However, most of the existing Repetitive
Control algorithms are designed in continuous time, angl thgefinition 1 (A PR system - continuous-time case)

either don't give perfect tracking or they require that @18  Consider the transfer function matri%(s) of the system (1)
process is positive real. In order to overcome these lifoital  \whereG(s) = C(sI — A)~' B+ D. System (1) is positive real
in this paper a new optimality based Repetitive Control algo

rithm is introduced for linear time-invariant discreteig Sys- 1) Each element of the transfer functi(ﬁ(s) are analytic
tems, which will result in perfect tracking under mild teatal for Res] > 0



2) G(s) is real for real positives

3) G(s) + G(s)* > 0for Re[s] >0

where the superscrigtdenotes complex conjugation.

1 can be understood as a statement that the Nyquist diagram
of the positive real syster& lies in the right-half plane (see
Fig. 1). Furthermore, it is a standard result in classical-co
trol theory that a control law(t) = — Ke(t) results in a stable
closed-loop system if the Nyquist diagram/éf= does not en-
circle the critical poin{—1,0). However, ifG lies in the right-

To see why positivity is required in the SISO case, considgaif plane, and> is multiplied with a positivek’, the resulting

now the following 'relaxed’ algorithm
u(t) = au(t —T) + Ke(t) (4)

wherea € (0, 1) is a relaxation parameter atfifl € R, K > 0.
An equivalent representation of the algorithm is given by

(5)

where it is assumed that-) € L{¢[0,00). The Laplace-
transform of (5) becomes (assuming tli&ts) is stable with
zero initial conditions)

1+ KGu|(t) =au(t—T)+ Kr(t)

ae*ST

T 1+ KG(s)

Kr(s)

u(s) 1+ KG(s)

u(s) + (6)

An easy application of the small-gain theorem (see (Ztal,,
1996)) gives that a sufficient condition for stability (i2g-) €
L-[0,00)) is that

o

—_— 1
1+KG(jw)| <

sup | (7)

w>0

Nyquist diagram will be still in the right-half plane as shoim
Fig. 1, and consequently a positive real system can tolarate
arbitrary large feedback gaifi.

Nyquist Diagram of a PR system
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where it is assumed thrﬁKo‘—G(s) is a stable system. Note that

if « = 1, this inequality is never met if(s) is strictly proper,
because for a strictly prop&¥(s), lim,, .. G(jw) = 0 and
however, ifa is selected o
non-zero tracking error.

thereforelim, o | Trra0)
i)e sufficiently small, resulting in

It can be shown that the sufficient condition (7) implies that
control law converges to‘&-periodic solution. In the limit the
control law (4) becomes

K
u(t) = 7=—e(t) ®)
andy(t) to converges to &-periodic solution
0= =y ©
METEEG

If @ now tends to one (giving the original law in previous se

tion), it is clear that this simple control law (5) generates
infinite feedback gain in the limit based on (8) amd) con-

| = 1. Stability can achieved,

Figure 1: The Nyquist diagram of a positive real system

8 A fundamental problem caused by implemen-
tation

As was shown in the previous section, the simple repetitive
control law (3) will result in convergentlearning when thége

inal continuous-time system is positive real. Howevers tie-
sult is not as useful as it sounds, because in practise ifgesm
sible to implement a delay block using analogue components.
Hence itis natural to ask, that if the original plant is dettred
with zero-order hold (which models exactly the behaviour of
the continuous-time system at the sampled time points)s doe
the sampled system remain positive real if the original icent
uous time plant is strictly proper and positive real? Firg t
éj_efinition of a positive real system in the discrete-timeedas
needed (see (Desoer and Vidyasagar, 1975) for details):

verges tor(¢) based on (9). However, a positive real systefa€finition 2 (A positive real system - discrete-time case)
can tolerate with infinite feedback gain, as was shown for ékonsider the following LTI discrete-time system
ample in (Owenst al,, 2001) with a Lyapunov-based approach

for the MIMO multi-periodic case. Thefore (9) is stable for a

arbitrarya € [0,1], anda: = 1 results iny(t) = r(t).

In the single-periodic SISO case there is a more visual waydad the corresponding transfer function matrix(z)

z(t +1) = Az(t) + Bu(t)

y(t) = Ca(t) + Du(t) (10)

prove that positive realness is a sufficient condition fon-coC(z1 — A)~! B+ D. The system (10) is said to be positive-real,

vergence with the algorithm (3): as a starting point Defomiti

if



1) G(z) is analytic for|z| > 1 is modelled in continuous-time as the original controllene
nected in series with a time delay, the resulting systembaill

2) G(z) is real for real positivez unstable.
3) REG(e’?)] > 0 forall § € [0, 2] (i.e. the Nyquist dia-
gram ofG(z) lies in the right-half plane) Example 1 (Digital implementation destroys stability)

N . o Consider a continuous-time system
The next proposition shows a rather disappointing resait th

for a discrete-time system (10) a necessary condition fei-po (p? + 5p + Dy(t) = (p+ 1)u(t) (13)
tive realness is thab # 0, and hence strictly proper discrete-
time systems cannot cope with infinite feedback gain: wherep := % andt € [0, 00). The system is supposed to track

a reference signat(t) = sin(¢). The control is chosen to be
Proposition 1 Suppose that the system (10) is positive real and

CB # 0 (the assumption that'B # 0 is almost always true u(t) =u(t —T) + e(t) (14)
for a continuous-time system sampled with zero-order hold)
This implies thatD # 0. The corresponding error signalt) is shown in top part of Fig.

2, which suggests asymptotic convergence. To make the simu-
Proof. Assume thatD = 0 but (10) is positive real. Consider
now the transfer function of (10) given by 1

Tracking error e(t) for the continuous-time case
T T T

G(z)=C(zI — A)~'B (11) 08 ]

It is a well-known result from classical control theory thia¢
stability of the system can be analysed with the root-locus
method, where the roots of the equation K G(z) are plotted -05 8
on the complex plane for different values &f > 0 (see

(Ogata, 1973)). Furthermore, according to (Ogata, 1978),t % w w0 w0 w0 50 eo 7o
poles of the closed-loop system approach the open-loofs zero Time t

(zeros ofG(z)) when K — oco. Because the relative degree  x10" Tracking error e() for the discrete~time case

of G(z) is one, it has a zero at 'infinity’. Hence one of the
closed-loop poles converges towards infinitylas— oo, and
therefore it cannot stay inside the unit circle for arbiriarge
values of K. Consequently the Nyquist-diagram@f =) does
not lie entirely in the right-half plane, and hence systef) (& -05r
not positive-real whe = 0. O Af
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However, a similar reasoning as in the previous section

shows that if the algorithm(¢) = u(t — T') + Ke(t) (now as

a discrete-time law) gives convergent learning, the afbori

results in infinite feedback gain. Therefore it is impossibl Figure 2: Tracking errog(t) for Example 1

to implement the control law (4) without instability but one

has to resort to the 'relaxed’ version (5) (wherds typically lation more realistic, the simulation model is modified iato

replaced with a more advanced causal filter), which does ratorid simulation model in order to take into account theeff

give perfect tracking. To overcome this problem, in the negf sampling. This achieved by adding zero-order sampling fo

section a computationally more complex algorithm is prembsbothu(t) andy(t), which models the effect of A/D and to D/A

for the discrete-time case, which results in perfect tiagki ~ conversion. The sampling interval is chosen tdbeseconds.
Furthermore, the delay-line is implemented with a digitiadfi

Remark 1 It is easy to show in the continuous-time case witput the plantis simulated as if it was a continuous-timeesyst

D = 0, that an infinitely small time delay will destroy stability.The resulting tracking error is shown for the hybrid simidat

This is due to the fact that an equivalent condition for gesit model in the bottom part of Fig. 2, which shows instabilitt]

realness is that the phase-lag of the pléftjiw) forw > 0 does as the theory suggests.

not exceed-90°. A time delay, however, causes phase-lag

/=T — _ T rad (12) 4 A new optimality based algorithm for

discrete-time repetitive control
Furthermore, becaus® = 0, ZG(jw) — —n/2 rad as

w — oo, and if a time delay is connected in series witlls), In this section a new algorithm is introduced for discréteet
there existsyy so that forw > wy LG(jw) < —7/2 rad. Con- Repetitive Control. The algorithm design is done by conmigni
sequently if the digital implementation of the control la#) ( the polynomial systems approach presented in (Blomberg and



Ylinen, 1983) and optimal control. As a starting point calesi and@ and R are symmetric positive-definite weighting matri-

a process model defined foE Z ces. Itis a well-known result from optimal control theorgath
the solution of the optimisation problem (21) is given by the
A(z"Ny(t) = B(z"Hu(t) (15) control lawii(t) = —Kx,,(t) or
where A(z~1), B(z~') € C[z7'] and 2z~ is the backward u(t) =ut = T) — Kan(t) (23)

shift-operator, i.e. (z7'v)(k) = v(k — 1) for v(k) € R”.  \yhere is given by the equation

From now on it is assumed that process model (15) is both con- - i

trollable and observable. Furthermorel'geriodic reference K = (B, SBm + R)” " B,,5An (24)
signalr(t) is given, i.e.r(t + T') = r(¢) and the control de- andg is obtained from the algebraic Riccati equation
sign objective is to make the outpuy(t) to track this reference T T LT

signal as accurately as possible by using a suitable fekdbac® = 4m[S — SBm(B,,SBm + R)™ " B,,,S|Am + Q  (25)

controller. As a starting point note that 1because theTr_eteﬂre Unfortunately, in practise it is impossible to measure taes
signal isT-periodic, the polynomiaD(>"") = 1 —z""isa ,_(.)directly. However, it is still possible to construct an ob-
annihilator (or an internal model) fox(t), i.e. server for the state,,(-), i.e. the states are estimated with the
following equation

i"rn (t+ 1) - A'rni"rn (f') +Brna(f') +L(€(t) - Cmm'rn (t)) (26)

wherelL is the observer gain and the control law becomes

D(z"Hr(t) =r(t) — Z*Tr(t) =rt)—r(t—T)=0. (16)

By multiplying both sides of (15) witiD(z 1) gives

D(=) A y(t) = D(=")B(ult) u(t) = u(t = T) = Kip(t) 27)
;(fgf)a()g(z Ju(®) a7 Note that it is easy to take noise into account in the proposed

algorithm: suppose that (20) would also have noise tenift$
whereii(t) := u(t) — u(t — T). Furthermore the left-hand side@ndv(t) in the following way,

of (17) can be written as Tt + 1) = A () + Brii(t) + Gu(t) (28)
D(="1)AGy(t) = A(=")D(=" () e8) = Cnm{f) +v(n)
=AY (y(t) —y(t —1T)) wherew(t) and v(t) are zero mean Gaussian noise. Con-
=AY () —r@t)+r(t—-T) -yt —T)) (18) ceptuallyw(t) describes uncertainty in the state-space model,
=A(z7Y) (—e(t) +e(t—1T)) whereasuv(t) describes uncertainty in the measurement pro-
= —D(z YAz Ve(t) = A(zVe(t). cess. If the covariance matr@},, of v(¢) and the covariance
matrix R,, of w(t) are known, it is possible to find an optimal
Where[l(zfl) := —D(27')A(z~'). Combining (17) and (18) observer gairl that minimises the variance of the estimation
gives error. It is also a standard result in optimal control (seais
A(z"Ye(t) = B(z"Ha(t) (19) and Syrmos, 1995)) that by combining the optimal feedback

controller and optimal observer the resulting closed loggp s

which is a controllable and observable dynamical system,t¥m is stable, and hence the expected valug(®©fwill go to

D(z~') and B(2~') do not have common factors. Consezero ag: — . The flow-diagram of the proposed algorithm
quently by using the internal modgl(> 1) the original track- is shown in Fig 3.

ing problem is converted into a regulation problem, i.e thie-c

trol objective is to find a feedback controller that drivee thRemark 2 It is important to understand that this approach

outpute(t) of the modified system (19) to zero. There in facilso works for more complex reference signals, the only re-

exist several different methods for achieving this. Onehef t quirement is that the reference signal has an annihilatdypo

more straightforward approaches is to use optimal conftel. nomial, and that this polynomial does not have common fac-

a starting point note that (19) has a state-space repréisenta tors with B(z~')-polynomial in the process model (15). A
typical example would be a multi-periodic reference signal

T (t +1) = Apwm(t) + Bra(t) r(t) = 11(t) 4+ ro + - + ra(t) Wherery(t) = ri(t + T)).

(20) _ - o) .
e(t) = Cman() In this case it is easy to show that the annihilator polyndrisia

where the dimension af,,(-) is n + T, andn is the order of D(z7") = Di(z"")Da(z71) ... Dp(z71) (29)
the original process model (15). Consider now the optiridsat whereD;(=~1) = 1 — >~ 7+, Itis also straightforward to show
problem o that if there is al-periodic load disturbance acting on the in-
e (@, 2,,(0)) (21) put signal, the same controller structure is able to leare th
where correct control action to cancel out the effect of this distu

bance on the output signalt). All the results in this section
T (il 2 (0)) = S22, ()T Qe (i) + a7 (i) Rii(i) - can be extended with some effort to include MIMO-systems,
= % 2 (1)L CL QC (i) + @7 (i) Rii(i) (22)  which will be reported separately.
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Figure 3: The flow diagram of the Repetitive Controller
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5 Simulation examples

As a first simulation example consider the following follogi

noise-fr namical m: . . , : .
oise-free dynamical syste Figure 5: The norm of the tracking error for the first simudati

0.20112! — 0.062412 1 example as a function of the periéd
Gz = — — (30)
1—0.1851z~1 4+ 0.006783z—2
The objective is to make this system to follow the repetiti/@@mical system (30). This time the system is supposed to

reference signal in Fig. 4. The free parameters of the afyuri track a multi-periodic reference signalt) = sin(2rt/T1) +
sin(27t/T») whereT; = 11 andT> = 20 (i.e. the lengths of

) Periodic reference signal the periods are not comeasurable). The internal model besom
09F il D(Zil) 3(1 B f;Tl ) (1,?7124:77:2)) (31)
=1—z7"t —z "2 47 1T02

08
The algorithm was run with the same settings as in the previ-
ous example. Fig. 6 shows the the tracking erf@y, which

ot 8 converges to zero.

0.7

r(t)

Remark 3 Note that in each simulation the controller was ini-
04 tialised with a poor ’initial guessu(t) = 0 for ¢t € [0,7].

In practise, however, classical feedback control can beltise
find quickly a reasonably accurate estimate of the inputfunc
02f 1 tion u(t) that gives perfect tracking, and when this estimate is
available, the RC algorithm is switched on.
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In this paper it was shown that the discretisation of a class
of repetitive controllers results in instability. This isnaajor
Figure 4: The periodic reference signal for the first simiafat grawback, because according to the internal model priec#pl
example repetitive controller has to contain a delay line, and ircfisg
the delay line cannot be implemented with analogue compo-

were selected in the following way: the weighting matrices anents

@ = 10, R = 1, and the observer gaib was selected by us-

ing a Kalman-filtering approach. In the Kalam filter approadm order to overcome this problem, a new optimality based
it was assumed that the covariance matri@gsand R,, are Repetitive Control algorithm was suggested in this paper.
equality to identity matrices. Fig. 5 shows thenorm of the Furthermore, it was shown that under mild controllabil-
tracking error for each period (’iteration’), and the traxker- ity/observability conditions the algorithm will result asymp-

ror goes to zero as the theory suggests. totic convergence.

As a second simulation example consider again the same Ag-a future research it would worthwhile to take into account
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