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Abstract

In this paper it is shown that discretisation of a class of well-
known continuous-time repetitive control algorithms willde-
stroy stability. In order to overcome this problem, a new op-
timality based Repetitive Control algorithm is proposed for
discrete-time systems. Under mild technical conditions onthe
plant the algorithm will result in asymptotic convergence for an
arbitraryT -periodic reference signal and an arbitrary discrete-
time linear time-invariant plant. Simulations highlight the dif-
ferent theoretical findings in this paper.Copyright © 2003
IFAC

1 Introduction

Many signals in engineering are periodic, or at least they can be
accurately approximated by a periodic signal over a large time
interval. This is true, for example, of most signals associated
with engines, electrical motors and generators, converters, or
machines performing a task over and over again. Hence it is an
important control problem to try to track a periodic signal with
the output of the plant or try to reject a periodic disturbance
acting on a control system.

In order to solve this problem, a relatively new research area
called Repetitive Control has emerged in the control commu-
nity. The idea is to use information from previous periods
to modify the control signal so that the overall system would
’learn’ to track perfectly a givenT -periodic reference signal.
The first paper that uses this ideology seems to be (Inouyeet
al., 1981), where the authors use repetitive control to obtain a
desired proton acceleration pattern in a proton synchotronmag-
netic power supply.

Since then repetitive control has found its way to several prac-
tical applications, including robotics (Kaneko and Horowitz,
1997), motors (Kobayashiet al., 1999), rolling processes
(Garimella and Srinivasan, 1996) and rotating mechanisms
(Funget al., 2000). However, most of the existing Repetitive
Control algorithms are designed in continuous time, and they
either don’t give perfect tracking or they require that original
process is positive real. In order to overcome these limitations,
in this paper a new optimality based Repetitive Control algo-
rithm is introduced for linear time-invariant discrete-time sys-
tems, which will result in perfect tracking under mild technical

assumptions.

2 Problem definition and earlier work

As a starting point in continuous-time Repetitive Control (RC)
it is assumed that a mathematical model

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1)

of the plant in question exists withx(0) = x0, t ∈ [0,∞).
Furthermore,A, B, C andD are finite-dimensional matrices
of appropriate dimensions. From now on it is assumed that
D = 0, because in practise it very rare to find a system where
the input functionu(t) has an immediate effect on the output
variabley(t). Furthermore, a reference signalr(t) is given, and
it is known thatr(t) = r(t + T ) for a givenT (in other words
the actual shape ofr(t) is not necessarily known). The control
design objective is to find a feedback controller that makes the
system (1) to track the reference signal as accurately as pos-
sible (i.e. limt→∞ e(t) = 0, e(t) := r(t) − y(t)), under the
assumption that the reference signalr(t) is T -periodic. As was
shown by (Francis and Wonhan, 1975), a necessary condition
for asymptotic convergence is that a controller

[Mu]t = [Ne](t) (2)

whereM and N are suitable operators, has to have an in-
ternal model or the reference signal inside the operatorM .
Becauser(t) is T -periodic, its internal model is1 − σT ,
where [σT v](t) = v(t − T ) for v : R → R. Hence in
(Yamamoto, 1993) it was suggested, that one possible (and
obviously computationally simple) RC algorithm for the SISO
case could be

u(t) = u(t − T ) + e(t) (3)

This algorithm has been analysed by several authors, see for
example (Yamamoto, 1993), (Arimoto and Naniwa, 2000) and
(Owenset al., 2001). It turns out that if the system (1) is pos-
itive real (PR) then fore(·) ∈ L2[0,∞) (this does not imply
that limt→∞ e(t) = 0)). The definition of a positive real sys-
tem from (Anderson and Vongpanithred, 1973) is given in the
following

Definition 1 (A PR system - continuous-time case)
Consider the transfer function matrixG(s) of the system (1)
whereG(s) = C(sI −A)−1B + D. System (1) is positive real

1) Each element of the transfer functionG(s) are analytic
for Re[s] > 0



2) G(s) is real for real positives

3) G(s) + G(s)∗ ≥ 0 for Re[s] ≥ 0

where the superscript∗ denotes complex conjugation.

To see why positivity is required in the SISO case, consider
now the following ’relaxed’ algorithm

u(t) = αu(t − T ) + Ke(t) (4)

whereα ∈ (0, 1) is a relaxation parameter andK ∈ R, K > 0.
An equivalent representation of the algorithm is given by

[1 + KGu](t) = αu(t − T ) + Kr(t) (5)

where it is assumed thatr(·) ∈ Lloc
2 [0,∞). The Laplace-

transform of (5) becomes (assuming thatG(s) is stable with
zero initial conditions)

u(s) =
αe−sT

1 + KG(s)
u(s) +

Kr(s)

1 + KG(s)
(6)

An easy application of the small-gain theorem (see (Zhouet al.,
1996)) gives that a sufficient condition for stability (i.e.u(·) ∈
L2[0,∞)) is that

sup
ω≥0

|
α

1 + KG(jω)
| < 1 (7)

where it is assumed that α
1+KG(s) is a stable system. Note that

if α = 1, this inequality is never met ifG(s) is strictly proper,
because for a strictly properG(s), limω→∞ G(jω) = 0 and
thereforelimω→∞ | 1

1+KG(jω) | = 1. Stability can achieved,
however, ifα is selected to be sufficiently small, resulting in a
non-zero tracking error.

It can be shown that the sufficient condition (7) implies thatthe
control law converges to aT -periodic solution. In the limit the
control law (4) becomes

u(t) =
K

1 − α
e(t) (8)

andy(t) to converges to aT -periodic solution

y(t) =
K

1−α
G

1 + K
1−α

G
r(t) (9)

If α now tends to one (giving the original law in previous sec-
tion), it is clear that this simple control law (5) generatesan
infinite feedback gain in the limit based on (8) andy(t) con-
verges tor(t) based on (9). However, a positive real system
can tolerate with infinite feedback gain, as was shown for ex-
ample in (Owenset al., 2001) with a Lyapunov-based approach
for the MIMO multi-periodic case. Thefore (9) is stable for an
arbitraryα ∈ [0, 1], andα = 1 results iny(t) = r(t).

In the single-periodic SISO case there is a more visual way to
prove that positive realness is a sufficient condition for con-
vergence with the algorithm (3): as a starting point Definition

1 can be understood as a statement that the Nyquist diagram
of the positive real systemG lies in the right-half plane (see
Fig. 1). Furthermore, it is a standard result in classical con-
trol theory that a control lawu(t) = −Ke(t) results in a stable
closed-loop system if the Nyquist diagram ofKG does not en-
circle the critical point(−1, 0). However, ifG lies in the right-
half plane, andG is multiplied with a positiveK, the resulting
Nyquist diagram will be still in the right-half plane as shown in
Fig. 1, and consequently a positive real system can toleratean
arbitrary large feedback gainK.

Nyquist Diagram of a PR system
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Figure 1: The Nyquist diagram of a positive real system

3 A fundamental problem caused by implemen-
tation

As was shown in the previous section, the simple repetitive
control law (3) will result in convergent learning when the orig-
inal continuous-time system is positive real. However, this re-
sult is not as useful as it sounds, because in practise it is impos-
sible to implement a delay block using analogue components.
Hence it is natural to ask, that if the original plant is discretized
with zero-order hold (which models exactly the behaviour of
the continuous-time system at the sampled time points), does
the sampled system remain positive real if the original contin-
uous time plant is strictly proper and positive real? First the
definition of a positive real system in the discrete-time case is
needed (see (Desoer and Vidyasagar, 1975) for details):

Definition 2 (A positive real system - discrete-time case)
Consider the following LTI discrete-time system

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(10)

and the corresponding transfer function matrixG(z) =
C(zI−A)−1B+D. The system (10) is said to be positive-real,
if



1) G(z) is analytic for|z| > 1

2) G(z) is real for real positivez

3) Re[G(ejθ)] ≥ 0 for all θ ∈ [0, 2π] (i.e. the Nyquist dia-
gram ofG(z) lies in the right-half plane)

The next proposition shows a rather disappointing result that
for a discrete-time system (10) a necessary condition for posi-
tive realness is thatD 6= 0, and hence strictly proper discrete-
time systems cannot cope with infinite feedback gain:

Proposition 1 Suppose that the system (10) is positive real and
CB 6= 0 (the assumption thatCB 6= 0 is almost always true
for a continuous-time system sampled with zero-order hold).
This implies thatD 6= 0.

Proof. Assume thatD = 0 but (10) is positive real. Consider
now the transfer function of (10) given by

G(z) = C(zI − A)−1B (11)

It is a well-known result from classical control theory thatthe
stability of the system can be analysed with the root-locus
method, where the roots of the equation1+KG(z) are plotted
on the complex plane for different values ofK > 0 (see
(Ogata, 1973)). Furthermore, according to (Ogata, 1973), the
poles of the closed-loop system approach the open-loop zeros
(zeros ofG(z)) whenK → ∞. Because the relative degree
of G(z) is one, it has a zero at ’infinity’. Hence one of the
closed-loop poles converges towards infinity asK → ∞, and
therefore it cannot stay inside the unit circle for arbitrary large
values ofK. Consequently the Nyquist-diagram ofG(z) does
not lie entirely in the right-half plane, and hence system (10) is
not positive-real whenD = 0. 2

However, a similar reasoning as in the previous section
shows that if the algorithmu(t) = u(t − T ) + Ke(t) (now as
a discrete-time law) gives convergent learning, the algorithm
results in infinite feedback gain. Therefore it is impossible
to implement the control law (4) without instability but one
has to resort to the ’relaxed’ version (5) (whereα is typically
replaced with a more advanced causal filter), which does not
give perfect tracking. To overcome this problem, in the next
section a computationally more complex algorithm is proposed
for the discrete-time case, which results in perfect tracking.

Remark 1 It is easy to show in the continuous-time case with
D = 0, that an infinitely small time delay will destroy stability.
This is due to the fact that an equivalent condition for positive-
realness is that the phase-lag of the plantG(jω) for ω > 0 does
not exceed−90◦. A time delay, however, causes phase-lag

∠e−jωT = −ωT rad (12)

Furthermore, becauseD = 0, ∠G(jω) → −π/2 rad as
ω → ∞, and if a time delay is connected in series withG(s),
there existsω0 so that forω ≥ ω0 ∠G(jω) < −π/2 rad. Con-
sequently if the digital implementation of the control law (4)

is modelled in continuous-time as the original controller con-
nected in series with a time delay, the resulting system willbe
unstable.

Example 1 (Digital implementation destroys stability)
Consider a continuous-time system

(p2 + 5p + 1)y(t) = (p + 1)u(t) (13)

wherep := d
dt

andt ∈ [0,∞). The system is supposed to track
a reference signalr(t) = sin(t). The control is chosen to be

u(t) = u(t − T ) + e(t) (14)

The corresponding error signale(t) is shown in top part of Fig.
2, which suggests asymptotic convergence. To make the simu-
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Figure 2: Tracking errore(t) for Example 1

lation more realistic, the simulation model is modified intoa
hybrid simulation model in order to take into account the effect
of sampling. This achieved by adding zero-order sampling for
bothu(t) andy(t), which models the effect of A/D and to D/A
conversion. The sampling interval is chosen to be0.1 seconds.
Furthermore, the delay-line is implemented with a digital filter
but the plant is simulated as if it was a continuous-time system.
The resulting tracking error is shown for the hybrid simulation
model in the bottom part of Fig. 2, which shows instability, just
as the theory suggests.

4 A new optimality based algorithm for
discrete-time repetitive control

In this section a new algorithm is introduced for discrete-time
Repetitive Control. The algorithm design is done by combining
the polynomial systems approach presented in (Blomberg and



Ylinen, 1983) and optimal control. As a starting point consider
a process model defined fort ∈ Z

A(z−1)y(t) = B(z−1)u(t) (15)

whereA(z−1), B(z−1) ∈ C[z−1] and z−1 is the backward
shift-operator, i.e. (z−1v)(k) = v(k − 1) for v(k) ∈ RZ.
From now on it is assumed that process model (15) is both con-
trollable and observable. Furthermore, aT -periodic reference
signalr(t) is given, i.e. r(t + T ) = r(t) and the control de-
sign objective is to make the outputy(t) to track this reference
signal as accurately as possible by using a suitable feedback
controller. As a starting point note that because the reference
signal isT -periodic, the polynomialD(z−1) = 1 − z−T is a
annihilator (or an internal model) forr(t), i.e.

D(z−1)r(t) = r(t) − z−T r(t) = r(t) − r(t − T ) = 0. (16)

By multiplying both sides of (15) withD(z−1) gives

D(z−1)A(z−1)y(t) = D(z−1)B(z−1)u(t)
= B(z−1)D(z−1)u(t)
B(z−1)ũ(t)

(17)

whereũ(t) := u(t)−u(t−T ). Furthermore the left-hand side
of (17) can be written as

D(z−1)A(z−1)y(t) = A(z−1)D(z−1)y(t)
= A(z−1) (y(t) − y(t − T ))
= A(z−1) (y(t) − r(t) + r(t − T )− y(t − T ))
= A(z−1) (−e(t) + e(t − T ))

= −D(z−1)A(z−1)e(t) = Ã(z−1)e(t).

(18)

whereÃ(z−1) := −D(z−1)A(z−1). Combining (17) and (18)
gives

Ã(z−1)e(t) = B(z−1)ũ(t) (19)

which is a controllable and observable dynamical system, if
D(z−1) and B(z−1) do not have common factors. Conse-
quently by using the internal modelD(z−1) the original track-
ing problem is converted into a regulation problem, i.e the con-
trol objective is to find a feedback controller that drives the
outpute(t) of the modified system (19) to zero. There in fact
exist several different methods for achieving this. One of the
more straightforward approaches is to use optimal control.As
a starting point note that (19) has a state-space representation

xm(t + 1) = Amxm(t) + Bmũ(t)
e(t) = Cmxm(t)

(20)

where the dimension ofxm(·) is n + T , andn is the order of
the original process model (15). Consider now the optimisation
problem

min
ũ∈l2

J(ũ, xm(0)) (21)

where

J(ũ, xm(0)) =
∑∞

i=1 e(i)T Qe(i) + ũT (i)Rũ(i)
=

∑∞

i=1 xm(i)T CT
mQCmxm(i) + ũT (i)Rũ(i)

(22)

andQ andR are symmetric positive-definite weighting matri-
ces. It is a well-known result from optimal control theory that
the solution of the optimisation problem (21) is given by the
control lawũ(t) = −Kxm(t) or

u(t) = u(t − T ) − Kxm(t) (23)

whereK is given by the equation

K = (BT
mSBm + R)−1BT

mSAm (24)

andS is obtained from the algebraic Riccati equation

S = AT
m[S − SBm(BT

mSBm + R)−1BT
mS]Am + Q (25)

Unfortunately, in practise it is impossible to measure the state
xm(·) directly. However, it is still possible to construct an ob-
server for the statexm(·), i.e. the states are estimated with the
following equation

x̂m(t+1) = Amx̂m(t)+Bmũ(t)+L(e(t)−Cmxm(t)) (26)

whereL is the observer gain and the control law becomes

u(t) = u(t − T ) − Kx̂m(t) (27)

Note that it is easy to take noise into account in the proposed
algorithm: suppose that (20) would also have noise termsw(t)
andv(t) in the following way,

xm(t + 1) = Amxm(t) + Bmũ(t) + Gw(t)
e(t) = Cmxm(t) + v(n)

(28)

where w(t) and v(t) are zero mean Gaussian noise. Con-
ceptuallyw(t) describes uncertainty in the state-space model,
whereasv(t) describes uncertainty in the measurement pro-
cess. If the covariance matrixQn of v(t) and the covariance
matrix Rn of w(t) are known, it is possible to find an optimal
observer gainL that minimises the variance of the estimation
error. It is also a standard result in optimal control (see (Lewis
and Syrmos, 1995)) that by combining the optimal feedback
controller and optimal observer the resulting closed loop sys-
tem is stable, and hence the expected value ofe(t) will go to
zero ast → ∞. The flow-diagram of the proposed algorithm
is shown in Fig 3.

Remark 2 It is important to understand that this approach
also works for more complex reference signals, the only re-
quirement is that the reference signal has an annihilator poly-
nomial, and that this polynomial does not have common fac-
tors with B(z−1)-polynomial in the process model (15). A
typical example would be a multi-periodic reference signal
r(t) = r1(t) + r2 + · · · + rn(t) whereri(t) = ri(t + Ti).
In this case it is easy to show that the annihilator polynomial is

D(z−1) = D1(z
−1)D2(z

−1) . . .Dn(z−1) (29)

whereDi(z
−1) = 1 − z−Ti. It is also straightforward to show

that if there is aT -periodic load disturbance acting on the in-
put signal, the same controller structure is able to learn the
correct control action to cancel out the effect of this distur-
bance on the output signaly(t). All the results in this section
can be extended with some effort to include MIMO-systems,
which will be reported separately.
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5 Simulation examples

As a first simulation example consider the following following
noise-free dynamical system:

G(z−1) =
0.2011z−1 − 0.06241z−1

1 − 0.1851z−1 + 0.006783z−2
(30)

The objective is to make this system to follow the repetitive
reference signal in Fig. 4. The free parameters of the algorithm
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Figure 4: The periodic reference signal for the first simulation
example

were selected in the following way: the weighting matrices are
Q = 10, R = 1, and the observer gainL was selected by us-
ing a Kalman-filtering approach. In the Kalam filter approach
it was assumed that the covariance matricesQn andRn are
equality to identity matrices. Fig. 5 shows thel2-norm of the
tracking error for each period (’iteration’), and the tracking er-
ror goes to zero as the theory suggests.

As a second simulation example consider again the same dy-
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Figure 5: The norm of the tracking error for the first simulation
example as a function of the periodk

namical system (30). This time the system is supposed to
track a multi-periodic reference signalr(t) = sin(2πt/T1) +
sin(2πt/T2) whereT1 = 11 andT2 = 20 (i.e. the lengths of
the periods are not comeasurable). The internal model becomes

D(z−1) = (1 − z−T1)(1 − z−T2)

= 1 − z−T1 − z−T2 + z−(T1+T2) (31)

The algorithm was run with the same settings as in the previ-
ous example. Fig. 6 shows the the tracking errore(t), which
converges to zero.

Remark 3 Note that in each simulation the controller was ini-
tialised with a poor ’initial guess’u(t) = 0 for t ∈ [0, T ].
In practise, however, classical feedback control can be used to
find quickly a reasonably accurate estimate of the input func-
tion u(t) that gives perfect tracking, and when this estimate is
available, the RC algorithm is switched on.

6 Conclusions

In this paper it was shown that the discretisation of a class
of repetitive controllers results in instability. This is amajor
drawback, because according to the internal model principle, a
repetitive controller has to contain a delay line, and in practise
the delay line cannot be implemented with analogue compo-
nents.

In order to overcome this problem, a new optimality based
Repetitive Control algorithm was suggested in this paper.
Furthermore, it was shown that under mild controllabil-
ity/observability conditions the algorithm will result inasymp-
totic convergence.

As a future research it would worthwhile to take into account
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Figure 6: The tracking errore(t) for the second simulation ex-
ample

modelling uncertainty. However, this should be rather straight-
forward, because the design of the repetitive controller can be
done by using standard techniques fromH2 andH∞ theory.
The sensitivity of the approach to noise in the input and output
signals is another important topic for future research.
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