
DECENTRALIZED ROBUST FLOW CONTROLLER DESIGN
FOR NETWORKS WITH MULTIPLE BOTTLENECKS

İnci Munyas Özen Yelbaşı Altuğ İftar

Department of Electrical and Electronics Engineering, Anadolu University, Eskişehir 26470, Turkey�
imunyas , oyelbasi , aiftar � @anadolu.edu.tr

Fax: 90 222 323 9501

Keywords: Communication networks, flow control, decentral-
ized control, ��� control, time-delay systems.

Abstract

Decentralized rate-based flow controller design in multi-
bottleneck networks is considered. An ��� problem is formu-
lated to find decentralized controllers which are robust to time-
varying uncertain multiple time-delays in different channels. A
suboptimal solution to this problem is found and the implemen-
tation of the decentralized controllers at different bottleneck
nodes is presented. Besides robustness, the controllers also sat-
isfy tracking and weighted fairness requirements. A number of
simulations are also included to illustrate the time-domain per-
formance of the proposed controllers.

1 Introduction

A communication network should be able to deliver data pack-
ets with minimum loss and as soon as possible to the destina-
tion. To achieve this aim the resources of the network should be
used efficiently. Flow control is one of the basic resource man-
agement tools in high-speed communication networks. Flow
control always involves a direct feedback from the receiver
(bottleneck nodes) to the sender (sources and the other nodes
sending data to that node). The type of the flow control is deter-
mined by the type of the feedback scheme used; i.e., it can be
either rate-based or window-based. However, for both cases,
the existence of the time-delays in the data-flow makes the de-
sign of the controller a difficult task. Since the controller is to
be implemented at the bottleneck node, the time a command
signal for a rate is issued and the time this rate is set are differ-
ent, which corresponds to the backward delay from the bottle-
neck node to the source node. Besides, another time-delay oc-
curs which is the time needed for the data packets sent with the
new rate to reach the bottleneck node; i.e. the forward delay,
from the source node to the bottleneck node. The round-trip de-
lay from the control input to the regulated output is the sum of
these two delays. It should also be considered that these time-
delays are usually uncertain and time-varying. Since there usu-
ally are more than one source and node connected to a bottle-
neck, these delays are multiple. Many approaches to the flow
controller design problem have been presented in the literature
(see � �	��

� and references therein). Among these, the time-
varying uncertainties in the time-delays have been explicitly
considered in �

� and a rate-based flow controller have been de-
signed, using ��� methods, which is robust to uncertain time-

varying multiple time-delays in different channels. In �

� , how-
ever, only the single-bottleneck case has been considered. The
multi-bottleneck case has been considered in � ��� , where it has
been shown that decentralized flow controllers can be designed
to solve the same problem in this case. The controller deriva-
tion, however, has not been considered in � ��� . In the present pa-
per, we re-present the problem of designing decentralized rate-
based flow controllers, which are robust against time-varying
uncertainties in time-delays in different channels, in the case of
multi-bottleneck networks. We show the derivation of the cont-
rollers and present their implementation. We also implement
the proposed controllers and present a number of simulation
results to show the time-domain performance of the proposed
controllers in certain realistic cases.

2 Problem Statement

In this work, we consider a network which consists of � bot-
tleneck nodes and ��� sources feeding the ����� bottleneck node.
Note that, if any physical source sends data to more than one
bottleneck node, this source may be considered as a different
source for each bottleneck node for the purpose of controller
design. We also assume that, besides the sources, each bottle-
neck can also send data through other bottlenecks; i.e., each
bottleneck can also be a source for the other bottlenecks. The
problem is to design a decentralized controller to be imple-
mented at each bottleneck node, to regulate the data sending
rates of the sources and the other bottleneck nodes to that node.

The dynamics of the queue length at the ����� bottleneck node
can be described as��������� "!$#&%'()+*-, .�0/

(���� "1 #'()+* / (-2) ��3 .
(/ � ���� 54768������ 54 #'()+* / (-2) �93	:�0/

(���� <;
(1)

where =>��?A@�B is the queue length at the ����� bottleneck node at
time @ (�DCE�	�8FG�>H>H>H����); I
J�AK L ?A@�B is the rate of data received at
the �M��� bottleneck node from the NPO�Q source of the �MO�Q bottle-
neck node at time @ (�RCS�	�8FG�>H>H>H���� , NTCS�	�8FG�>H>H>H������); UGJL&K � ?A@�B
is the rate of data received at the ����� bottleneck node at time @
from the N ��� bottleneck node (�VCW�	�8FG�>H>H>H���� , NXCW�	�8FG�>H>H>H���� ,�ZYC[N); \��9?A@�B is the outgoing flow rate, except for the flow going
to the other bottleneck nodes, of the ����� bottleneck node at time@ (�TC]�	�8FG�>H>H>H����); and UG^�AK L ?A@�B is the rate of data sent from
the �M��� to the NP��� bottleneck node at time @ (�_C`�	�8FG�>H>H>H���� ,NXCW�	�8FG�>H>H>H���� , �aYC<N). Since there is a time-varying backward
delay, b+J�AK L ?A@�B , between the NG��� and the �M��� bottleneck nodes,

we have UG^�AK L ?A@�B CSUP�AK LG?A@ � b+J�AK L ?A@�B�B , where UP�AK L ?A@�B is the flow
rate command at time @ for the flow from the � ��� to the N ��� bot-
tleneck node (�ZC �	�8FG�>H>H>H���� , N7C �	�8FG�>H>H>H���� , � YC N), which
is to be computed (by the controller to be designed) at the N ���
bottleneck node. Data receiving rates, I�J�AK L ?�@�B and UGJL&K � ?A@�B , on
the other hand, can be found as (see �
 �>���)
I J�AK L ?A@�B C

� ?�� ���������AK L ?A@�B�B�I&�AK L ?A@ �
	 ��AK L ?A@�B�B�� @ �
	 ��AK L ?A@�B���

 � @ �
	 ��AK L ?A@�B���

(2)

U J�AK L ?A@�BRC
� ?�� ���������AK L ?A@�B�B�UP�AK LG?A@ � b ��AK L ?A@�B�B�� @ � b ��AK L ?A@�B���

 � @ � b ��AK L ?A@�B���

(3)
where I&�AK La?A@�B is the flow rate command at time @ for the flow
from the N�O�Q source of the �MO�Q bottleneck node to the �MO�Q bot-
tleneck node (� C$�	�8FG�>H>H>H���� , N C$�	�8FG�>H>H>H������), which is to
be computed (by the controller to be designed) at the ����� bot-
tleneck node; 	 ��AK L ?�@�B is the forward time-delay from the NPO�Q
source of the �MO�Q bottleneck node to the �MO�Q bottleneck node at
time @ (�VCW�	�8FG�>H>H>H���� , NXCW�	�8FG�>H>H>H����"�) and

� ����AK L ?A@�B is its time-

varying uncertain part (i.e., 	 ��AK L ?A@�B C�� ����AK L�� ������AK L ?A@�B , where � ����AK L
is the time-invariant nominal part); and b ��AK L ?A@�B is the forward
time-delay from the ����� to the NP��� bottleneck node at time @
(�VCW�	�8FG�>H>H>H���� , NXCW�	�8FG�>H>H>H���� , �ZYC[N) and

������AK L ?A@�B is its time-

varying uncertain part (i.e., b ��AK L ?A@�B C�� ����AK L�� ������AK L ?�@�B , where� ����AK L is the time-invariant nominal part).

The round-trip delay at time @ for the flow from the NGO�Q source
of the � O�Q bottleneck node to the �MO�Q bottleneck node is given
as 	 �AK L ?A@�B_C 	 J�AK L ?A@�B � 	 ��AK L ?A@�B_C�� ��AK L � � ��AK L ?A@�B , where � ��AK L is
the time-invariant nominal part and

� ��AK L ?A@�B is the time-varying
uncertain part. Similarly, the round-trip delay at time @ for
the flow from the � ��� to the N ��� bottleneck node is given asb �AK LG?A@�B7C]b+J�AK L ?A@�B � b ��AK L ?A@�B7C�� ��AK L�� ����AK L ?A@�B , where � ��AK L is
the time-invariant nominal part and

����AK L ?A@�B is the time-varying
uncertain part. It is assumed that the uncertainties satisfy the
following;�� � ��0/ ! ���� ��#"$� �&%�0/ ! ; ��� �� ��0/ ! ���� ��� "$'(��0/ ! ; ��� �� �&)�0/ ! ���� ��� "*'(�&)�0/ ! ; (4)�� � +�0/ (���� �� "$� + %�0/ (; ��� � + .�0/ (���� ��� "$� + . %�0/ (;��� �� +�0/ (���� ��� "$' +�0/ (; ��� �� +)�0/ (���� ��� "*' +)�0/ (; (5)

for all @ , for some
� �-,�AK .0/
 ,
1�32 ����AK . ��2 ��AK . �W� ,
1� ��� J ,�AK L �����,�AK L ,
$�42 ����AK L �52 ��AK L � � (�DC �	�8FG�>H>H>H���� , 6�CE�	�8FG�>H>H>H����"� ,NXC �	�8FG�>H>H>H���� , N�YC �).

It should be noted that, in a real application, there also exist
some hard constraints, such as non-negativity constraints and
upper bounds on the queue lengths and on the data rates. How-
ever, in this work, we will assume that these hard constraints
are always satisfied.

It can be shown that (see � �	�8F-�) our system is cap-
tured by the fictitious system shown in Figure 1, where

= 7 8-9� :�
; 9 ; 9 �:<

^:
\

� � :=$> <: ?A@BDCFE ;
; G @ ; =$>->H I ;J

=

Figure 1: Fictitious system.

= K C L = <NMOMOM
=OP3Q C , where superscript R de-

notes the transpose, =S7 K C L = 7>K <TMOMOM
= 7>K P�Q C ,

where = 7>K � is the desired queue length at the �MO�Q bot-

tleneck node (� C �	�>H>H>H��), \UK C L \ <UMOMOM
\VP3Q C ,J K C L I C U C Q C , where IWK C L I C< MOMOM
I CP Q C ,

where , ��X !ZY , �0/ *\[�[�[, �0/ #&%^]�_ , 3 X !`Y 3 _ * [�[�[3 _#] _ ,

where UP�`K C L U < K � MOMOM
UP�ba < K � UP� , < K � MOMOM

UcPPK ��Q C ,G @ ?ed-B C
<
^gfGih a(j ^�kG is the nominal plant, wherekG K C lmonVp

 <q > n Pcr Pca

<ts

 � <q > n Pcr Pca

<tsAuv
, where n L denotes the

Nxw N identity matrix and yzK C|{ P� } < �"� , ~�K C`�������+? f� B ,where f�oK C�L�� � � � � � J Q , where � � X !�Y � � * [�[�[� �#] ,where � �� X !�Y � ��0/ * [�[�[� ��0/ #&%] , � + X !�Y � + * [�[�[� +#] ,where � +� X ! Y � + * / � [�[�[� +��� * / � � +� % * / � [�[�[� +# / �] , � + .
and � + .� has the same structure as � � and � �� , respectively.�� X ! Y �� ��� � �� + � � �� + .] , where�� � X ! ��� ���&�#�#� �O� ��� #�� ;������8;�� # � , where � (denotes the ¢¡�£

dimensional row vector of

’s,

�� + X !¥¤ #¢¦ � # � * ,�� + . X ! §¨¨¨¨¨©
ª « * « * « * [�[�[« * « *« * ª «�¬ «�¬ [�[�[«�¬ «�¬«�¬ «�¬ ª «�­ [�[�[«�­ «�­
...

...
...

...
...

...« # � * « # � * « # � * « # � *®[�[�[« # � * ª
¯ °°°°°± ,

where
« � X ! Y ª *-²�³ ��� *e´ µª *-²�³ # �G��� *e´] ,¶ ¬·¬ X ! §© ¤�¸ ªª *¹ ¬ ¤ # ³ # � *e´ª *¹ ¬ ¤ # ³ # � *e´

¯± ,
=$> <

is a weighting matrix

which depends on the bounds in (4)–(5), I is the controller
to be designed, and

?^@BDCFE represents an arbitrary linear
time-varying system with º >

-induced norm less than � (see � F-�
for details).

For the system shown in Figure 1 to be robustly stable for all» ?A@BDCFE » �<� , I should stabilize G @ and¼¼ ¶ ¬·¬�½ ��¤ 1 ��¾ ½ � * ¶ ¬ * ¼¼V¿ÁÀ
(6)

should be satisfied. It can be shown that (see � F-� for details)

(6) is satisfied if ����� kG I ? n � G @ I B a
< ��� � � � (7)

where � ?ed-B K C <
^ � < � � > , where � < and � > are constants which

depend on the bounds in (4)–(5) (see � F-�).
Next, as in �

� , to guarantee tracking (� � � ��� � =>��?A@�B C = 7>K �) and
good transient response, we formulate the problem�A� �D� �A� 	�
 ��� = <

? n � G @ I B a
< ��� � (8)

over all controllers I stabilizing G @ , where
= <

?ed-B<C
<
^
� .Then, by combining the robust stability (7) and nominal perfor-

mance (8) conditions we define the following two-block ���
optimization problem:� ���� stabilizing ��� ���� � = <

? n � G @ I B a
<

� kG I ? n � G @ I B a
<�� ���� � C�K������ O H (9)

3 Solution

To find a solution to the optimization problem (9), let kI K CkG I and note that G @ I C��G kI , where �G ?ed-B^K C <
^ fGih a(j ^TCL G � ?ed-B G � ?ed-B G � J&?ed-B Q , where G � ?ed-B K C <
^ fG � h a(j � ^ ,G � ?ed-B K C q >^ fG � h a(j ! ^ , G � J&?ed-B K C q >^ fG � J h a(j !#" ^ , where~ � K C ������� ?e� � B , ~ � K C ������� ?e� � B , and ~ � J K C �������+?e� � J9B .

Also let $ K C kI&% n � �G kI(' a
<
C�K�lm

$ �$ �$ � J uv
(10)

where the partitioning of

$
corresponds to the partitioning offG C

.

Note that, G �
and G �

are block diagonal. Although G � J is not
block diagonal, by permuting the columns of n Pcr Pca

<ts
, we can

find a non-singular matrix R , satisfying R C R C R R C C n ,
such that kG � JoK C G � J&R C

is block diagonal. Then, by defin-
ing k$ � J�K C R $ � J (thus G � J $ � J C�kG � J�k$ � J), the optimization
problem (9) can be rewritten as:�)+*,.-0/21 ¼¼¼¼¼43 ¶ *65 ¤Z487�:9:;< 9 = ¼¼¼¼¼ ¿
! �)+*,.-0/ 1 ¼¼¼¼.> ¶ * ��¤Z4 � � 9 � 4 � + 9 + 4@?� + . ?9 + . < 9 A ¼¼¼¼ ¿ !CBED
F�G

(11)

In order to obtain a decentralized structure for I , we impose
block diagonal structures

$ � CIHE� J�KML�������� ? $ � < �>H>H>H>� $ �P B ,9 + !4��� ���&�#�#� �O�G� 9 + * ;������8; 9 +# , ?9 + . !4��� ���&�#�#� �O�G�N?9 + .* ;������8;O?9 + .# ,where the structures correspond to the structures of
� � _ ,

� + _ ,?� + . _ , respectively. On noting that P ?9 + . P ¿ ! P#Q 9 + . P ¿ , prob-
lem (11) now decomposes into the following problems:

�)+*R, % -0/ 1
¼¼¼¼¼¼¼¼ §¨¨©

¶ * � 4 � �� 9 �� 4 � +� 9 +� 4@?� + .� ?9 + .� < §© 9 ��ªª ¯± 1 < §© ª9 +�ª ¯± 1 < §© ªª?9 + .� ¯± ¯ °°± ¼¼¼¼¼¼¼¼ ¿ !gX�BED
F�G�
(12)

for S ! ;������8;
T , where ?9 ��X !VU 9 �� _ 9 +� _ ?9 + .� _XW _ . Note

that � ��� ORCY�^��ZG�9?[� ��� O� B , which means that an optimal (respec-
tively, suboptimal) solution to (11) (equivalently to (9)) is ob-
tained by combining the optimal (respectively, suboptimal) so-
lutions to the problems in (12).

The problems defined in (12) are similar to the problem con-
sidered in �

� . As discussed in �

� , due to the multiple delays
involved, there is no known approach to find optimal solutions
to the problems in (12) (e.g., see � \ �). Therefore, as it was done
in �

� , we will decompose the problems (12) into subproblems
involving single delays and find a suboptimal solution to each
problem in (12). For this, we introduce positive scalars,] ��AK . ,] � L&K � , and] � J�AK L (� C �	�>H>H>H���� , 6<C �	�>H>H>H����"� , N C �	�>H>H>H���� ,�ZYC[N), satisfyingP %^.-} <] ��AK . � P^.-} < K .�_}"�] �.9K � � P^.-} < K .�_}"�] � J�AK . C � � � CW�	�>H>H>H�����H

(13)
The left-hand side of (12) can now be written as�)+*R, % -0/ 1 ¼¼¼¼¼ #&%'!)+* 3 ¶ *
` ��0/ ! � 4 *a �%[b c � ��0/ ! 9 ��0/ ! < 9 ��0/ ! = 1

#'!)+* / ! 2) � 3 ¶ *
` +!�/ � � 4 *a !cdb % � +!�/ � 9 +!�/ � < 9 +!�/ � = 1
#'!)+* / ! 2) �e3 ¶ *
` + .�0/ ! � 4 *a !#"%[b c � + .�0/ ! 9 + .�0/ ! < 9 + .�0/ ! = ¼¼¼¼¼¼�¿ (14)

where G �� C�K L G ��AK < MOMOM G ��AK P % Q ,G �� C�K L G �< K � MOMOM G ��ba < K � G �� , < K � MOMOM G �PPK � Q ,kG � J� C�Kgf G � J�AK < MOMOM G � J�AK �ba < G � J�AK � , < MOMOM G � J�AK PYh , and$ �� , $ �� and k$ � � J has the same structure as G �� , G �� and kG � � J
respectively (with P replaced by Q). Therefore, we define the
following problems, each of which involves a single delay�)+*, �%[b c -0/ 1 ¼¼¼¼¼43 ¶ *
` ��0/ ! � 4 *a �%[b c � ��0/ ! 9 ��0/ ! < 9 ��0/ ! = ¼¼¼¼¼�¿ !gX�B ��0/ ! (15)�)+*, !cdb % -0/ 1 ¼¼¼¼¼43 ¶ *#` +!�/ � � 4 *a !cdb % � +!�/ � 9 +!�/ � < 9 +!�/ � = ¼¼¼¼¼V¿ !gX0B +�0/ ! (16)�)+*, !#"%[b c -0/ 1

¼¼¼¼¼43 ¶ *
` + .�0/ ! � 4 *a !#"%[b c � + .�0/ ! 9 + .�0/ ! < 9 + .�0/ ! = ¼¼¼¼¼ ¿ !gX�B + .�0/ ! (17)

where 6 C �	�>H>H>H����"� for the problem defined in (15), 6 C�	�>H>H>H���� �*6 YC � for the problems defined in (16) and
(17). Note that, a suboptimal solution to (12) can be ob-
tained by combining optimal solutions of (15)–(17), since� ��� O� � { P %.-} < � ��AK . � { P.-} < K .�_}"� � �.9K � � { P.-} < K .�_}"� � � J�AK . .

Using the results of � i-� , the optimal solu-
tion to each of the problems in (15)–(17) can

be described as

$kj
�AK . C lnm%[b c< , �o m%[b c l m%[b c � m%[b c andp j�AK . ?ed-B C q j�AK . % ^�� m%[b c a L m%[b c^�� m%[b c '

<< ,sr m%[b c r ^�� m%[b c s � where

the superscript

M
represents I , U or U � , where � j�AK . is a fi-

nite impulse response filter and q j�AK . and N
j
�AK . are constants

to be calculated as in �

� (we can not show the details
here due to space limitations).

$ j
�AK . ’s are now substituted

back to obtain

$
. Once Q is found, from (10), we obtain?½ ! §© ?½ �?½ +?½ + . ¯± ! 9�� ¤ 4 7� 9�� � * . Then, our controller is

obtained as I C G�� kI , where G�� is a left inverse of kG . Using�
	 ! > ¤�¸ ª ªª � � ¤ # ³ # � *e´ ª A , we obtain

I C � kI �� FAkI � � C

l�����������������������������m

I �<-<
...
I �< P � . . . I �P <
 ...I �P�P �I �> <
...
I �P <

. . . I �< P
 ...I �r Pca <ts P

u

v

(18)

where

I ��AK . C p ��AK .� � <� �%[b c p ��AK . G ��AK .
��������
� � { P %L�} < l �%[b � � �%[b �< , �o �%[b � l �%[b � � �%[b � �{ P L�} < K L+_}"� l !�Mb % � !�Mb %< , �o ! �Mb % l !�Mb % � !�Mb % �{ P L�} < K L+_}"� l !#"%[b � � !#"%[b �< , �o !#"%[b � l !#"%[b � � !#"%[b �

���������
a <

(19)

I �.9K � C � F p��.9K �� � <� !cdb % p �.9K � G �.9K �
��������
� � { P %L�} < l �%[b � � �%[b �< , �o �%[b � l �%[b � � �%[b � �{ P L�} < K L+_}"� l !�Mb % � !�Mb %< , �o ! �Mb % l !�Mb % � !�Mb % �{ P L�} < K L+_}"� l !#"%[b � � !#"%[b �< , �o !#"%[b � l !#"%[b � � !#"%[b �

���������
a <

(20)
As seen from (18), the part of the controller for the �����
bottleneck node gets feedback only from =-� to regulate the
queue length =&� by determining the flow rates I-�AK . , 6 C�	�>H>H>H����"� , and UGL&K � , N C �	�>H>H>H���� �8N]YC � . Therefore, the
controller is composed of � decentralized controllers each
of which can be implemented at the corresponding bottle-
neck node as shown in Figure 2. This controller stabi-
lizes the nominal plant and makes the � � norm of the ma-
trix in (9) less than some �� (an upper bound that can be
found from the � ’s of the suboptimal problems). Thus, as
long as the hard constraints are satisfied, the controller sta-
bilizes the actual plant for all variations of the time-delays

��� %�� � %�� �! 8 9 " 8 9 8" � # !� b % � $� 8 �o !� b %�% !� b % � $� 8 o !� b % :
:

8 9 8" � # �%[b � � $� 8 �o �%[b � % �%[b � � $�
8 � %[b � � �! 8 o �%[b �

H

:

& � 8 ! � b %�� �! 8

8 9 8" � # �%[b � % � $� 8 �o �%[b � % % �%[b � % � $�
8 � %[b � % � �! 8 o �%[b � %

H
:

8 9 8" � # !� b % � $� 8 �o ! � b %�% !� b % � $�
8 & � 8 ! � b %�� �! 8 o ! � b % H:

8 9 8" � # !#"� b % � $� 8 �o !#"� b % % !#"� b % � $� 8 o !#"� b %

:

:
8 9 8" � # !#"� b % � $� 8 �o !#"� b % % !#"� b % � $� 8 o !#"� b %

:

:

:
'

.

.

.

.

.

.

.

.

.

Figure 2: The implementation of the controller I � .
satisfying

» � ��AK . ?A@�B » �)(� "%[b c*+ ,
» �� ��AK . ?A@�B » �-, �%[b c*+ ,

» �������AK . ?A@�B » � , �/.%[b c*+ ,» ���.9K � ?A@�B » �0(! "cdb %*+ ,
» ��� J�AK . ?A@�B » �0(!#" "%[b c*+ ,

» ����.9K � ?A@�B » � , !cdb %*+ , and» ������.9K � ?A@�B » � , ! .cdb %*+ .

Furthermore, assuming that the hard constraints are satisfied,
that all the delays converge to constant values, and that the out-
going flow rates converge to constant values (� � � ��� � \��9?A@�B C\��AK � , �VCW�	�>H>H>H����), the above controller also guarantees track-
ing, i.e., � � � ��� � =>�9?A@�B�C$= 7>K � , � C]�	�>H>H>H���� . It can also be
shown that (we will not show the details here due to space lim-
itations, see �

� for the development in the single-bottleneck
case) the controller satisfies a weighted fairness condition,
where weights are defined by the scalars introduced in (13).
Specifically, assuming that the hard constraints are satisfied,
that all the delays converge to constant values, and that the out-
going flow rates converge to constant values, we have

� � 1243 ¿ , �0/ ! ���� "! ` ��0/ !�` �657 � � 1243 ¿ 68������ 1 #'()+* / (-2) � � � 1243 ¿ 3 �0/ (���� �89`; (21)

for 6 CW�	�>H>H>H����"� , and

� � 1243 ¿ 3 !�/ ������ "! � � ` +!�/ ��` � 57 � � 1243 ¿ 68������ 1 #'()+* / (-2) � � � 1243 ¿ 3 �0/ (���� �89 ;
(22)

for 6 C �	�>H>H>H���� ��6 YC � , where, for � C �	�>H>H>H���� ,f]5� K C { P %.-} <] ��AK . � � F { P.-} < K .�_}"�] �.9K � .
4 Examples

We have implemented the controller as derived above for vari-
ous different networks and obtained simulations for many cases
using SIMULINK. The hard constraints are also considered
in the simulations. Here we show only a few examples due
to space limitations. We consider a network with three bot-
tleneck nodes. We have �

<
C F , � > C \ , and � � C
 .

Controller parameters and the nominal parts of the actual de-
lays are as shown in Table 1. In the simulations, the uncer-
tain parts of forward actual delays,

������AK . ?A@�B and
������AK . ?A@�B , are taken

as
 H
+\�d>�M�R? ���� @�B , while the uncertain parts of backward actual

delays,
� � J�AK . ?A@�B and

��� J�AK . ?A@�B , are taken as
 H \�d>�M�R? ���� @�B . The de-
sired queue lengths (=S7>K � ’s) for the three bottleneck nodes are
the same and equal to 50 packets. The capacities of the outgo-
ing links (\�� ’s) are the same and equal to 100 packets/s for all
the cases except for case 3. Figures 3, 4 and 5 are the simula-
tion results for the cases 1, 2 and 3, respectively. For all cases,
the plots in (a), (b) and (c) represent the queue lengths and flow
rates versus time (in d) of the sources of bottleneck nodes 1, 2
and 3, respectively, while (d) represents the flow rates versus
time (in d) between the bottleneck nodes.

Case 1: The queue size at bottleneck node � is zero between

and i�
 s, this period extends to about

� i s for bottleneck nodesF and \ . These time ranges define the period needed for the

i, j h
rf
ij hrb

ij h
ρf
ij h

ρb
ij αr

ij α
ρ
ij α

ρb
ij δr+

ij δ
ρ+

ij δ
ρb+
ij βr

ij β
ρ
ij β

ρb
ij β

rf
ij β

ρf
ij

1, 1 0.1 1 −− −− 0.1 −− −− 2 −− −− 0.1 −− −− 0.01 −−

1, 2 0.2 2 1.1 1.1 0.2 0.2 0.1 3 2 1 0.2 0.1 0.05 0.02 0.05

1, 3 −− −− 1.1 1.1 −− 0.12 0.1 −− 2 1 −− 0.1 0.05 −− 0.05

2, 1 0.1 1 1.1 1.1 0.1 0.3 0.05 2 2 1 0.1 0.1 0.05 0.01 0.05

2, 2 0.2 2 −− −− 0.2 −− −− 3 −− −− 0.2 −− −− 0.02 −−

2, 3 0.2 2 1.1 1.1 0.3 0.08 0.05 2 2 1 0.2 0.1 0.05 0.01 0.05

3, 1 0.1 1 1.1 1.1 0.1 0.2 0.05 2 2 1 0.1 0.1 0.05 0.01 0.05

3, 2 0.2 2 1.1 1.1 0.15 0.1 0.05 3 2 1 0.2 0.1 0.05 0.02 0.05

3, 3 0.2 2 −− −− 0.2 −− −− 2 −− −− 0.1 −− −− 0.01 −−

3, 4 0.2 2 −− −− 0.25 −− −− 3 −− −− 0.2 −− −− 0.02 −−

Table 1: Controller parameters

i, j 1, 1 1, 2 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 3, 4
di,j(packets/second) 30 30 50 50 45 45 40 45 40

Table 2: Rate limits for Case 2

sum of the incoming flows to exceed the capacity of the outgo-
ing link at the bottleneck node. Note that, the steady–state flow
rates satisfy fairness conditions (21)–(22).

Case 2: In this case, data supplying rates of the sources are lim-
ited as shown in Table 2. The flow rates at sources �-F , F \ and\

 are saturated. Note that the controllers successfully redis-
tribute the unused rates to the remaining sources, controllers
still regulate the queue lengths in a little bit more time and a
larger overshoot is observed in each of the queue lengths.

Case 3: In this case the outgoing flow rate at the first bottle-
neck node, \

<
, switches between 60 packets/s and 40 packets/s

as a square-wave of period 200 s, while \ > CS\ � C �
#
 pack-
ets/s. As seen from the simulation results in Figure 5, a sudden
decrease in the outgoing flow rate causes a significant increase
in the corresponding queue length, a sudden increase causes a
sharp decrease. These sudden changes in \

<
are also sensed by

the other nodes and their queue lengths and flow rates are af-
fected to some extend but not as directly and sharply as that of
node � .
5 Conclusion

We have considered decentralized rate-based flow controller
design in multi-bottleneck networks. Specifically, we have
considered the ��� problem which was set forth in [1] and
solved this problem doing some manipulations and using the
methods of [5]. We have also presented the implementation of
the derived controller. We briefly discussed the robustness and
performance (tracking and fairness) properties of the controller
and presented a number of simulations.

Acknowledgement

Programs used in the simulations are based on the programs
previously developed by Taesam Kang, Pierre-François Quet,
and Banu Ataşlar.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Queue 1

Rate 12

Rate 11

 (a)
0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

Queue 2

Rate 23

Rate 22

Rate 21

(b)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

(c)

Queue 3

Rate 34

Rate 33

Rate 32

Rate 31

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

(d)

Rho 23
Rho 32

Rho 13

Rho 31

Rho 12

Rho 21

Figure 3: Simulation results for Case 1.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

(a)

Queue1

Rate 12

Rate 11

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

(b)

Queue 2

Rate 23

Rate 22

Rate 21

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

(c)

Queue 3

Rate 31

 Rate 32

Rate 33

Rate 34

0 50 100 150 200 250 300
0

20

40

60

80

100

(d)

 Rho 21

Rho 12

Rho 13

Rho 23 Rho 32

Rho 31

Figure 4: Simulation results for Case 2.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

(a)

Queue 1

Rate 11

Rate 12

0 50 100 150 200 250 300
0

20

40

60

80

100

(b)

Queue 2

Rate 21

Rate 22

Rate 23

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

(c)

Queue 3

Rate 31

Rate 32

Rate 33

Rate 34

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

(d)

Rho 21

Rho 12

Rho 31

Rho 13
Rho 32

Rho 23

Figure 5: Simulation results for Case 3.

References

[1] E. Biberović, A. İftar, and H. Özbay, “A solution to
the robust flow control problem for networks with mul-
tiple bottlenecks,” in Proceedings of the IEEE Conference
on Decision and Control, (Orlando, FL), pp. 2303–2308,
Dec. 2001.

[2] E. Biberović, “Flow control in high-speed data commu-
nication networks,” Master’s thesis, Anadolu University,
Eskişehir, Turkey, 2001. (In Turkish).

[3] G. Meinsma and H. Zwart, “On ��� control for dead-
time systems,” IEEE Transactions on Automatic Control,
vol. 45, pp. 272–285, 2000.

[4] P. Quet, B. Ataşlar, A. İftar, H. Özbay, S. Kalyanaraman,
and T. Kang, “Rate-based flow controllers for communi-
cation networks in the presence of uncertain time-varying
multiple time-delays,” Automatica, vol. 38, pp. 917–928,
2002.

[5] O. Toker and H. Özbay, “ � � optimal and suboptimal
controllers for infinite dimensional SISO plants,” IEEE
Transactions on Automatic Control, vol. 40, pp. 751–755,
1995.

	Session Index
	Author Index

