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Abstract

The present contribution addresses the problem of designing an
adequate persistent excitation for state space identification of
max–plus–linear systems. The persistent excitation is designed
using the same techniques that have recently been developed
for model predictive control for max–plus–linear systems. The
application of this method for input signal design allows to in-
corporate additional objectives which are desirable for the input
signals and the resulting process behaviour such that an optimal
persistent excitation is obtained.

1 Introduction

When considering processes from manufacturing or chemical
engineering, their behaviour can often be adequately repre-
sented by a discrete event model [2] accounting for the typi-
cally discrete sensor and actuator equipment of such processes.
In addition, the behaviour of these processes is often ade-
quately described by a sequence of transitions between discrete
process states. The focus of this contribution is on a particular
class of such discrete event systems where synchronization but
no concurrency occurs. This system class has gained signifi-
cant attention in recent years due to the fact that the sequences
of event times for such processes can be described by equations
which are linear in a particular algebra, the so called max–
plus algebra [1]. The resulting equations exhibit a structural
equivalence to system descriptions from conventional control
engineering such as transfer functions or state space models.
Thus, a system theory for these max–plus–linear systems has
been developed [1, 3], and various concepts well known from
control engineering have been adapted to this system class in
control design [8, 12] and diagnosis [14]. The application of
any of these methods requires a process model which can be

obtained by theoretical modeling or identification algorithms.

The identification problem by parameter estimation for max–
plus–linear systems has been considered in several publications
e.g. by estimating the parameters of an ARMA model [10] or
impulse response [12], by determining state space models us-
ing either the system’s Markov parameters in [5] or minimiz-
ing a prediction error based on input output data [9]. As shown
in [10, 12], the given methods will in general overestimate the
true system parameters. This issue of identifiability [11], that
is, the convergence of the estimated parameters to their corre-
sponding true values is addressed and solved in [15] by apply-
ing certain input signals to the system. However, the choice
of appropriate input signals used in [15] may be difficult to
handle in engineering applications. Therefore, we propose an
alternative way to compute such input signals using a model–
predictive–control–like approach as has been developed in [8].
The application of this method for input signal design allows to
incorporate additional objectives which are desirable for the in-
put signals and the resulting process behaviour, thus obtaining
an optimal persistent excitation.

This paper is organized as follows. The following section
briefly reviews the basic notions of max–plus–linear systems.
The parameter estimation algorithm and the issue of identifia-
bility of parameters is then discussed followed by a presenta-
tion of a procedure for designing a persistently exciting input
sequence. Finally, the overall identification procedure is illus-
trated in an example.

2 Max–plus–linear systems

We consider in the sequel discrete event systems where the evo-
lution of the events is governed by synchronization effects and
where no structural alternatives occur. The behaviour of these
systems is completely specified if the occurrence times of each
event are known. Thus, the time instant when eventei occurs
for the k–th time is denoted by the “dater”xi(k). Similarly,
the input event times are given byuj(k). The evolution of the



event timesx(k) ∈ IRn
max depending on the input event times

u(k) ∈ IRnu
max, where IRmax = IR ∪ {−∞} is then given by the

following model, which is structurally equivalent to a conven-
tional discrete–time linear state space model [1]

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1) , (1)

whereA ∈ IRn×n
max , B ∈ IRn×nu

max . The operators⊕ and⊗ are the
addition and multiplication operators of the max–plus algebra
and are defined by

x⊕ y = max(x, y) , x⊗ y = x + y , ∀ x, y ∈ IRmax .

The neutral elements of max–plus addition and max–plus mul-
tiplication are−∞ = ε and 0, respectively. Note thatε is
absorbing with respect to⊗. The matrix addition and multipli-
cation are defined similarly to the conventional algebra:

∀P , Q ∈ IRn×p
max : (P ⊕Q)ij = Pij ⊕Qij ,

∀P ∈ IRn×p
max

∀Q ∈ IRp×q
max

: (P ⊗Q)ij =
p⊕

k=1

(Pik ⊗Qkj) .

The structural equivalence of the model (1) with the discrete
time state space equation makes it possible to adapt well known
concepts from system theory to this particular system class,
provided the model and its parameter can be determined. The
following section describes an identification procedure that,
given the model structure, allows the determination of the
model parameters from event time measurements.

3 Parameter estimation by minimization of a
prediction error

In this paper, the following parameter estimation problem is
considered:

Given the system model

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1) ,

the input event timesu(k), k = 1, . . . , N and the measure-
mentsx(k), k = 0, . . . , N , determine estimateŝA andB̂ for
the system matricesA andB such that the prediction error

ξ(k + 1) = x(k + 1)−
(
Â⊗ x(k)⊕ B̂ ⊗ u(k + 1)

)
(2)

= x(k + 1)−
[

Â B̂
]︸ ︷︷ ︸

=: Θ̂

⊗
[

x(k)
u(k + 1)

]
︸ ︷︷ ︸
=: m(k + 1)

= x(k + 1)− Θ̂⊗m(k + 1)

is minimized and the estimated parametersÂij andB̂ij are as
close as possible to the true system parameters given byAij

andBij .

It is assumed that no noise is present and the internal structure
(also called theε–structure) of the system is known so that we
know which entries of the systems matrices are equal toε and
which are not.

Remark 3.1 The ε–structure of the system is determined by
the layout and the internal connection between different sub-
parts of the system (see, e.g., [1]). For most discrete event
systems the internal structure is known so that this assumption
is not restrictive. Hence, we may without loss of generality
assume that all entries of̂Θ are different fromε (we can re-
move theε entries fromΘ̂ or put Âij = ε and B̂i′j′ = ε for
all index pairs(i, j) and (i′, j′) that define theε–structure of
respectivelyA andB and only consider the finite entries ofΘ̂).

Remark 3.2 We assume that all event times are measurable
as it is the case for most discrete event systems such as, e.g.,
manufacturing systems, where one can usually measure all the
starting times of the various production units. Note however
that the results derived below can be extended to also include
an output equation since this equation can be dealt with in the
same way as the state update equation (1).

Remark 3.3 We assume that the real system belongs to the
model class, i.e., that its input–state behaviour can indeed
be described by a model of the form (1). Note that for dis-
crete event systems the assumption that no noise (or mea-
surement errors) are present is not as restrictive as for con-
ventional continuous-time or discrete–time (non)linear systems
since measurements of occurrence times of events are in gen-
eral not as susceptible to noise and measurement errors as
measurements of continuous–time signals.

To solve the parameter estimation problem defined above, first
an estimate for the system parameters is determined. Consid-
ering the given measurements ofx(k + 1) andm(k + 1), the
prediction error matrix results in[

ξ(N) . . . ξ(1)
]

=

=
[

x(N) . . . x(1)
]
− Θ̂⊗

[
m(N) . . . m(1)

]
= X − Θ̂⊗M .

The data matricesX andM contain the event times, whereas
Θ̂ = [Â B̂] denotes the matrix of estimated parameters deter-
mined from the given measurements ofx andm.

A solution that minimizes the prediction error is obtained [1, 3,
12] by computing the greatest solution of the inequality

X ≥ Θ⊗M

which is given by

Θ̂ = X ⊗′
(
−MT

)
,

Θ̂ij =
N⊕

k=1

′(xi(k)−mj(k)
)

(3)

where the operators “⊕′” and “⊗′” of the min–plus algebra [3]
correspond to conventional minimization and addition, respec-
tively. As shown in [12], the solution determined by (3) has



two particular properties1:

X = Θ̂⊗M , (4)

Θ̂ ≥ Θ . (5)

From (4) it immediately follows that the prediction error
ξ(k) = 0 for k = 1, . . . , N . However, the property (5) shows
that an estimated parameter value will in general differ from the
true parameter value. This issue is addressed in [15]. There, it
is shown that the estimated values are equal to the true val-
ues only for those trajectories ofx andm that are informative
enough to obtain estimates that are equal to the true system pa-
rameters. Sufficient conditions forx andm are now discussed
using a result from [15] given in the following theorem:

Theorem 3.1 [15] The parameterΘij is correctly identified
by (3) based on the given datam(k + 1), x(k + 1), k =
0, . . . , N − 1, i.e.Θ̂ij = Θij if and only if

∃k ∈ {0, . . . , N − 1} s. t. xi(k + 1) = Θij ⊗mj(k + 1) .

Let us now assume that we want to obtain an estimate of the
(finite) parameterΘij for a giveni, j. Recalling that in

xi(k + 1) =
n+nu⊕
r=1

Θir ⊗mr(k + 1)

⊕ represents conventional maximization, anecessary and suf-
ficientcondition for the condition of theorem 3.1 is given by

Θij ⊗mj(k + 1) ≥
n+nu⊕

r=1
r 6=j

Θir ⊗mr(k + 1) for somek. (6)

Although the true system parameters are unknown, (6) can be
still evaluated replacingΘij by its lower bound2 0 andΘir by
its upper bound̂Θir which is obtained from an estimation with
arbitrary input signals (cf. (5)). Thus, if the condition

mj(k + 1) ≥
n+nu⊕

r=1
r 6=j

Θ̂ir ⊗mr(k + 1) (7)

is satisfied for at least one data point in the measurements
then (6) is also satisfied and the correct estimation ofΘij by (3)
is ensured. This behaviour can be obtained by designing partic-
ular input signals that persistently excite the system. The focus
of the following section is on the computation of such signals
by formulating the determination of the feasible solutions set
as an Extended Linear Complementarity Problem (ELCP).

4 Designing persistent excitation signals using
prediction models

We will now discuss an approach to identify the (non–ε) pa-
rameters of the model (1). We will identify each parameterΘij

1Recall that we assume that no noise is present (cf. Remark 3.3).
2Since we only consider finite entries inΘ (cf. Remark 3.1) and since these

finite entries correspond to processing times, transportation times, and so on
they are always nonnegative.

separately in an iterative way. So every, say,Ni event steps
one parameter will be identified using the persistent excitation
approach. In this section we will illustrate how input signals
satisfying condition (7) can be designed. We will first give
a short introduction to the Extended Linear Complementarity
Problem. Next, we will show how this mathematical program-
ming problem can be used to obtain accurate parameter estima-
tions based on the persistent excitation condition.

4.1 The Extended Linear Complementarity Problem

The Extended Linear Complementarity Problem (ELCP) arose
from our research on discrete event systems and hybrid sys-
tems, and is defined as follows [4]:

Given P ∈ IRnp×nz , Q ∈ IRnq×nz , p ∈ IRnp , q ∈
IRnq andφ1, . . . , φm ⊆ {1, . . . , np}, find z ∈ IRnz

such that

Pz ≥ p (8)

Qz = q (9)
m∑

j=1

∏
i∈φj

(Pz − p)i = 0 . (10)

Condition (10) represents the complementarity condition of the
ELCP and can be interpreted as follows. SincePz ≥ p, all
the terms in (10) are nonnegative. Hence, (10) is equivalent
to

∏
i∈φj

(Pz − p)i = 0 for j = 1, . . . ,m. So each setφj

corresponds to a group of inequalities inPz ≥ p, and in each
group at least one inequality should hold with equality (i.e., the
corresponding surplus variable is equal to 0).

In [4] we have developed an algorithm to find a parametric rep-
resentation of theentiresolution set of an ELCP. The compu-
tation time and the memory storage requirements of this algo-
rithm increase exponentially as the size of the ELCP increases,
which makes this approach intractable even for small–scale
ELCPs. However, in [7] we have recently developed an ap-
proach to efficiently solve ELCPs with a bounded feasible set
{z|Pz ≥ p, Qz = q} that is based on mixed integer linear pro-
gramming, and that allows us to solve much larger instances of
the ELCP.

4.2 Persistent excitation signal design

Suppose that we are at event stepk0 and that we want to iden-
tify Θij within the nextNi event steps. Assume, that a first
estimateΘ̂(k0) = [Â(k0) B̂(k0)] from a previous identification
step, possibly based on arbitrary input signals, has been deter-
mined from the measurements up tok0. Then, the parameters
of the system are known to stay within certain bounds given by

0 ≤ Θij ≤ Θ̂(k0)
ij .

Now an input/state trajectory{m(k0 + 1), . . . ,m(k0 + Ni)}3

should be determined which satisfies (7) and for which the fol-
3Note thatx(k0) is included inm(k0 + 1) (cf. (2)) so that the correspond-

ing components ofm(k0 + 1) are assumed to be fixed asx(k0) is assumed to
be known at event stepk = k0.



lowing prediction model equation holds:

x(k + 1) = Â(k0) ⊗ x(k)⊕ B̂(k0) ⊗ u(k + 1) (11)

for k = k0, . . . , k0 + Ni − 2,

whereÂ(k0) andB̂(k0) correspond to the parameter estimates
Θ̂(k0) obtained using the previous identification run or based
on arbitrary input signals4. Note that (11) predicts the relation
between theu part and thex part of two subsequentm vectors.

Now we have the following proposition.

Proposition 4.1 For a given index pair(i, j) the condition that
there exists an indexk ∈ {k0, . . . , k0 + Ni − 1} such that (7)
and (11) holds can be rewritten as an ELCP.

Proof: First we consider (7) for a fixedk = k0 + ` with ` ∈
{0, . . . , Ni−1}. Recalling that⊕ and⊗ represent conventional
maximization and addition, respectively, it is easy to verify that
(7) can be rewritten as

mj(k + 1)−mr(k + 1) ≥ Θ̂ir

for r = 1, . . . , n + nu, r 6= j,

or equivalently
P (`)m̃ ≥ q(`)

for an appropriately defined matrixP (`) and vectorq(`), where

m̃ =
[
mT (k0 + 1) . . . mT (k0 + Ni)

]T
.

In order to express that (7) should hold fork = k0 or k = k0+1
or . . .or k = k0+Ni−1, we introduce binary variablesδ0, . . . ,
δNi−1 ∈ {0, 1} such that ifδ` = 1 then (7) holds fork = k0+`.
So we should have

δ` = 1 ⇒ P (`)m̃ ≥ q(`) (12)

δ` = 0 ⇒ m̃ is arbitrary. (13)

The conditionδ` ∈ {0, 1} is equivalent to the ELCP

0 ≤ δ` ≤ 1 and δ`(1− δ`) = 0 . (14)

To express that at least oneδ` should be equal to 1, we add the
condition

δ0 + . . . + δNi−1 ≥ 1 . (15)

As the components of̃m correspond to inputs and states and
as we only look a finite number (Ni) of event steps ahead, we
may assume with loss of generality that the components ofm̃
are bounded, i.e.,̃m ∈ M with M a bounded set. As a conse-
quence, the number

MP = min
`=0,...,Ni−1

min
m̃∈M

min
j=1,...,n

P (`)

(P (`)m̃)j (16)

wherenP (`) is the number of rows ofP (`), is finite, and we
haveP (`)m̃ ≥ MP for all m̃ ∈ M. Hence, condition (12)–
(13) is equivalent to

P (`)m̃ ≥ δ`q
(`) + MP (1− δ`)1 . (17)

4Note that by repeatedly performing the sweeping identification process we
will get better estimates, and thus also better predictions, as the process goes
on.

So, the condition that (7) should hold for at least one index
k ∈ {k0, . . . , k0 + Ni − 1} is equivalent to the ELCP (14),
(15), (17).
Now we consider the prediction equation (11). By repeated
substitution this results in a max–plus–linear equation of the
form

m̃(x) = C̃ ⊗ x(k0)⊕ D̃ ⊗ m̃(u) (18)

wherem̃(x) =
[

xT (k0 + 1) . . . xT (k0 + Ni − 1)
]T

and

m̃(u) =
[
uT (k0 + 1) . . . uT (k0 + Ni − 1)

]T
. Now we can

make use of the fact that a system of max–plus–linear equations
can be rewritten as an ELCP5 [6].
Since the merge of two ELCPs is again an ELCP, we can now
merge the ELCP (14), (15), (17) and the ELCP corresponding
to (18) into one ELCP. 2

Remark 4.1 Note that using the ELCP approach we can also
easily include a constraint of the form

dmin ≤ u(k+1)−u(k) ≤ dmax for k = k0, . . . , k0+Ni−1,

which bounds the input rate betweendmin anddmax (this may
sometimes be necessary to ensure safe operation of the system
or to prevent buffer overflows). In general, we can accommo-
date any linear constraint of the form

D1m(k0 + 1) + . . . + DNim(k0 + Ni) ≥ d . (19)

The main advantage of the ELCP approach is that — us-
ing the ELCP algorithm of [4] — we can findall sequences
{m(k0 + 1), . . . ,m(k0 + Ni)} that guarantee correct estima-
tion of the parameterΘij . This enables us to perform an extra
optimization within this set of persistent excitation signals, e.g.,
for control purposes.

5 Example

Consider now a manufacturing cell shown in figure 1, where
parts are delivered to the machine by a conveyor, machined
and released to an additional conveyor. The capacity of each
conveyor is limited to one part. The machine can process one
part at the same time.

Let x1(k) be the time instant when thek–th part is loaded onto
the conveyor 1. Afterτ21 time units, this part is ready to enter
the machine. The daterx2(k) denotes the time when thek–th
part enters the machine. After the machining operation which
takesτ32 time units, the part is released to an additional con-
veyor 2 at timex3(k) reaching a final position afterτ43 time
units. From this final position, the part is picked up at time
x4(k). Conveyor 1 and 3 can receive a new part afterτ12 and
τ34, respectively, whereas the machine must be prepared for a
new operation forτ23 time units. The input event timesu1(k)

5Basically, the proof of this statement boils down to the fact that an equation
of the formα = max(β, γ) for some scalar variables or expressionsα, β, γ
can be rewritten as the ELCPα ≥ β, α ≥ γ, (α − β) · (α − γ) = 0,
as the latter of these equations in combination with the first two implies that
α = β ≥ γ or α = γ ≥ β.
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Figure 1: Manufacturing cell.

andu2(k) correspond to the time instants when a new part is
available to be delivered for conveyor 1 or removed from con-
veyor 3, respectively. As shown in figure 1, in the initial state
the manufacturing cell already contains one part on conveyor 1
and 3 which are assumed to have entered at timex1(0) and
x3(0), respectively (see [13] for more details). Using the above
reasoning and the initial state of the system, the following equa-
tions hold forx(k):

x1(k + 1) = τ12 ⊗ x2(k + 1)⊕ u1(k + 1) (20)

x2(k + 1) = τ21 ⊗ x1(k)⊕ τ23 ⊗ x3(k) (21)

x3(k + 1) = τ32 ⊗ x2(k + 1)⊕ τ34 ⊗ x4(k + 1) (22)

x4(k + 1) = τ43 ⊗ x3(k)⊕ u2(k + 1) (23)

Inserting equation (21) into (20) and (21) and (23) into (22)
yields the max–plus–linear system

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1)

A =


a11 ε a13 ε
a21 ε a23 ε
a31 ε a33 ε
ε ε a43 ε

 B =


b11 ε
ε ε
ε b32

ε b42

 , (24)

with the true system parameters given by

a11 = 3 , a21 = 1 , a31 = 4 ,
a13 = 3 , a23 = 1 , a33 = 4 , a43 = 2 ,
b11 = 0 , b32 = 1 , b42 = 0 .

Let us now assume that theε–structure of the system matrices
is known and let us determine the unknown parametersaij and
bij from event time measurements.

First, the estimation is carried out using a set of arbitrary input
signals fork = 1, . . . , 6. These signals and the corresponding
states are listed in table 1. This yields the following estimates
(/upper bounds) for the system parameters (where we have not
included the initial state in this estimation as we assume it to
be unknown):

â11 = 4 , â21 = 2 , â31 = 5 ,
â13 = 3 , â23 = 1 , â33 = 4 , â43 = 2 ,

b̂11 = 6 , b̂32 = 6 , b̂42 = 4 .

Based on these system parameters, it is easy to satisfy (7)
for the parametersb11, b32 and b42 for k = 6 by choosing
u(k + 1) = u(7) such that

b11 : u1(7) ≥ (Â(6) ⊗ x(6))1 = 27 ,

k 1 2 3 4 5 6 7 8 9 10 11
x(k) 3 7 11 15 19 23 29 34 43 46 50

1 5 9 13 17 21 25 32 36 44 48
4 8 12 16 20 24 31 35 39 47 51
2 6 10 14 18 22 30 33 37 41 49

u(k) 0 1 3 4 5 6 29 30 43 44 45
0 2 3 4 5 7 30 31 36 37 38

Table 1: The input signals and the corresponding states values
used in the worked example fork = 1, . . . , 11.

b32 : u2(7) ≥ (Â(6) ⊗ x(6))3 = 28 ,

b42 : u2(7) ≥ (Â(6) ⊗ x(6))4 = 26 .

To be on the safe side we selectu(k+1) = u(7) =
[
29 30

]T
.

Furthermore, we — arbitrarily — takeu(8) = 1 ⊗ u(7). The
corresponding statesx(7) andx(8) are listed in table 1. From
the resulting measurements one now obtains the true parameter
values for the entries ofB while Â remains unchanged.

Let us now consider the estimation of the parametera31.
We use the ELCP approach to determine a persistent excita-
tion input sequence6 {u(k0 + 1), u(k0 + 2), u(k0 + 3)} =
{u(9), u(10), u(11)}. Fora31 condition (7) is satisfied if :

x1(k) ≥ 4⊗ x3(k) (25)

x1(k) ≥ 1⊗ u2(k + 1) (26)

holds for somek ≥ k0, i.e., fork = 8 or k = 9 or k = 10 as
we haveNi = 3. As (25) does not hold fork = 8 anyway, in
order to satisfy (7) we should have

x1(9)− x3(9) ≥ 4
x1(9)− u2(10) ≥ 1

or
x1(10)− x3(10) ≥ 4
x1(10)− u2(11) ≥ 1

(27)

If we assume that the components ofm̃ are between 0 and 100,
we getMP = −100 (cf. (16)). Following the lines of the proof
of Proposition 4.1 we obtain then the following ELCP7

x1(9)− x3(9)− 104δ2 ≥ −100 (28)

x1(9)− u2(10)− 101δ2 ≥ −100 (29)

x1(10)− x3(10)− 104δ3 ≥ −100 (30)

x1(10)− u2(11)− 101δ3 ≥ −100 (31)

δ2 + δ3 ≥ 1 (32)

δ2, δ3 ≥ 0, 1− δ2, 1− δ3 ≥ 0 (33)

δ2(1− δ2) + δ3(1− δ3) = 0 (34)

x1(9) ≥ 38 (35)

x1(9)− u1(9) ≥ 0 (36)

x3(9) ≥ 39 (37)

6We have selected a small valueNi = 3 to keep the number of equations
limited, so that all the equations of the ELCP can be listed explicitly.

7As x2(k) andx4(k) do not appear in (27) and as they do not directly
influence the values ofx1(k) andx3(k), we have — for the sake of brevity —
omitted the equations corresponding tox2(k) andx4(k). The same holds for
the prediction equation forx(11) asx(11) does not appear in (27). Note that
δ1 = 0 as (25) does not hold fork = k0 = 8.



x3(9)− u2(9) ≥ 1 (38)

x1(10)− x1(9) ≥ 4 (39)

x1(10)− x3(9) ≥ 3 (40)

x1(10)− u1(10) ≥ 0 (41)

x3(10)− x1(9) ≥ 5 (42)

x3(10)− x3(9) ≥ 4 (43)

x3(10)− u2(10) ≥ 1 (44)

d(35)d(36) + d(37)d(38)+
d(39)d(40)d(41) + d(42)d(43)d(44) = 0, (45)

whered(i) denotes the difference between the left–hand side
and the right–hand side of equation (i). Note that (35)–(45)
correspond to the prediction equation (11). We also add the
condition that all variables should lie in the interval[0, 100]
(cf. the determination ofMP ). In order to guarantee a minimal
separation of input times (cf. (19)), we also the condition

u(9)− u(8) ≥ 1, u(10)− u(9) ≥ 1, u(11)− u(10) ≥ 1 .

Finally, as we use the measurements of the statex(8) as a
starting point for the estimation, we have to wait at least un-
til t = maxi(xi(8)) = 35 before we can start the estimation,
which implies that, e.g.,u(9) ≥ 36. The solution set of the
resulting ELCP consists of a polytope with 188 vertices. If we
(arbitrarily) select the vertex withδ2 = 1, δ3 = 0 closest to the
origin, we obtain the input sequence and corresponding state
sequence listed in the last 3 columns of table 1. If we now
use the total input–state sequence to make new estimates of the
system matrices, we obtain the correct valueâ31 = 4 = a31.

6 Conclusions

The focus of the present contribution is on input signal design
methods that are required for an accurate parameter estimation
of max–plus–linear systems. Based on an already existing pa-
rameter estimation method and a condition for the determina-
tion of the true system parameters, a new input signal design
method is developed and illustrated in an example. The method
constitutes an improvement with respect to the already existing
approaches in the sense that the set of all possible solutions
can be characterized. Furthermore, additional requirements on
the input signals can be incorporated in the design procedure,
leading to an optimal input signal design.
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