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plus—linear systems has been considered in several publications
e.g. by estimating the parameters of an ARMA model [10] or
Abstract impulse response [12], by determining state space models us-

Th buti 4d h bl ¢ desiani ing either the system’s Markov parameters in [5] or minimiz-
€ present contribution addresses the problem of designin a prediction error based on input output data [9]. As shown

adequate pgrsistent excitation for s_tate space i(.jenFificati.oqrp 0, 12], the given methods will in general overestimate the
mgx—plus—hnear syste_ms. The persistent excitation is desig system parameters. This issue of identifiability [11], that
;Jsmg t(;‘el Sargfa t'echnlqueffthat havel reclgntly been deve_:_olg?%e convergence of the estimated parameters to their corre-
or model predictive control for max—plus-linear systems. .@%onding true values is addressed and solved in [15] by apply-

application of this method for input signal design allows to Nhg certain input signals to the system. However, the choice
corporate additional objectives which are desirable for the inp(H:tg ppropriate input signals used in [15] may be difficult to

signals and the resulting process behaviour such that an opti dle in engineering applications. Therefore, we propose an

persistent excitation is obtained. alternative way to compute such input signals using a model—
predictive—control-like approach as has been developed in [8].

1 Introduction The application of this method for input signal design allows to
incorporate additional objectives which are desirable for the in-

When considering processes from manufacturing or chemiggh signals and the resulting process behaviour, thus obtaining
engineering, their behaviour can often be adequately rePEer optimal persistent excitation.

sented by a discrete event model [2] accounting for the typi-

cally discrete sensor and actuator equipment of such proces$éés paper is organized as follows. The following section
In addition, the behaviour of these processes is often adéiefly reviews the basic notions of max—plus—linear systems.
quately described by a sequence of transitions between discrdté parameter estimation algorithm and the issue of identifia-
process states. The focus of this contribution is on a particuldiity of parameters is then discussed followed by a presenta-
class of such discrete event systems where synchronizationtfit of a procedure for designing a persistently exciting input
no concurrency occurs. This system class has gained sigrffiguence. Finally, the overall identification procedure is illus-
cant attention in recent years due to the fact that the sequerfé@i&d in an example.

of event times for such processes can be described by equations

which are linear in a particular algebra, the so called map- Max—plus—linear systems

plus algebra [1]. The resulting equations exhibit a structural

equivalence to system descriptions from conventional contife consider in the sequel discrete event systems where the evo-
engineering such as transfer functions or state space modelkéon of the events is governed by synchronization effects and
Thus, a system theory for these max—plus—linear systems Waere no structural alternatives occur. The behaviour of these
been developed [1, 3], and various concepts well known frasiistems is completely specified if the occurrence times of each
control engineering have been adapted to this system clas€vant are known. Thus, the time instant when evertccurs
control design [8, 12] and diagnosis [14]. The application &or the k—th time is denoted by the “dater’; (k). Similarly,

any of these methods requires a process model which cartfiginput event times are given hy (k). The evolution of the



event timesz(k) € R depending on the input event timesRemark 3.1 The e—structure of the system is determined by

u(k) € R, where R,, = RU {—o0o} is then given by the the layout and the internal connection between different sub-

max !

following model, which is structurally equivalent to a convenparts of the system (see, e.g., [1]). For most discrete event

tional discrete—time linear state space model [1] systems the internal structure is known so that this assumption
is not restrictive. Hence, we may without loss of generality
wk+1) = Aozk)eBoulk+1), (1) assume that all entries d are different frome (we can re-

whereA € R"*" B ¢ R"*™  The operators and® are the move thes entries from® or put 4; i = eand By = ¢ for

addition and multiplication operators of the max—plus algeb?’lo\I index pairs(i, j) and (i', j) that define the—structure of
and are defined by respectivelyd and B and onIy consider the finite entnes@)

r@y=max(z,y), r@y=r+y, V,yC Ru. Remark 3.2 We assume that all event times are measurable

The neutral elements of max—plus addition and max—plus m@g it iS the case for most discrete event systems such as, e.g.,
tiplication are—oo — ¢ and0, respectively. Note that is manufacturing systems, where one can usually measure all the

absorbing with respect to. The matrix addition and multipli- starting times of the various production units. Note however
cation are defined similarly to the conventional algebra: that the results derived below can be extended to also include

an output equation since this equation can be dealt with in the

VP,QeRP . (P®Q); = Pj®Qi, same way as the state update equation (1).
VP e RXP T
VQ e RPXT T PeQ) = @(Pik ® Qj) - Remark 3.3 We assume that the real system belongs to the
max k:l

model class, i.e., that its input—state behaviour can indeed
The structural equivalence of the model (1) with the discreli® described by a model of the form (1). Note that for dis-
time state space equation makes it possible to adapt well knovete event systems the assumption that no noise (or mea-
concepts from system theory to this particular system clasgyement errors) are present is not as restrictive as for con-
provided the model and its parameter can be determined. Mesitional continuous-time or discrete—time (non)linear systems
following section describes an identification procedure tha&ince measurements of occurrence times of events are in gen-
given the model structure, allows the determination of tie¥al not as susceptible to noise and measurement errors as
model parameters from event time measurements. measurements of continuous—time signals.

3 Parameter estimation by minimization of a To solve the parameter estimation problem defined above, first
prediction error an estimate for the system parameters is determined. Consid-
ering the given measurementsagf: + 1) andm(k + 1), the
In this paper, the following parameter estimation problem sediction error matrix results in

considered:
Given the system model [e) e ] = R
= [ z(N) z(1) | -0 ®[ m(N) m(1) |
k+1) = A k)® B E+1 ~
z(k+1) @z(k)®Boulk+1), C X-Beum.
the input event times(k), £ = 1,..., N and the measure-

mentsz(k), k = 0,..., N, determine estimated and 3 for The data matriceX” and M contain the event times, whereas

the system matriced and B such that the prediction error © =[A B] denotes the matrix of estimated parameters deter-
mined from the given measurementswdindm.

§k+1) = a(k+1) - (A ® (k) ® B®u(k + 1)) (2) A solution that minimizes the prediction error is obtained [1, 3,

P z(k) 12] by computing the greatest solution of the inequality
=z(k+1)-[ A B]® ulk + 1)
~ —— X > oM
=0 =m(k+1)

= 2(k+1)— 0 m(k +1) which is given by

A N o / T

is minimized and the estimated parametdss and 3;; are as ® = X&' (-M"),
close as possible to the true system parameters gives; by
andBij . ©;; =

)
|
P =

(i (k) — mj(k)) (3)

x>
Il

1
It is assumed that no noise is present and the internal structure

(also called the—structure) of the system is known so that werhere the operatorsy’” and “®’” of the min—plus algebra [3]
know which entries of the systems matrices are equaland correspond to conventional minimization and addition, respec-
which are not. tively. As shown in [12], the solution determined by (3) has



two particular propertiés separately in an iterative way. So every, say,event steps

X - BeoM 4 one parameter will be identified using the persistent excitation
T ®M, ) approach. In this section we will illustrate how input signals
e > ©O. (5) satisfying condition (7) can be designed. We will first give

From (4) it immediately follows that the prediction erro short introduction to the Extendeq Linear Complementarity
(k) = 0fork = 1,...,N. However, the property (5) ShOWSPr_Oblem' Next, we will show how _thIS mathematical program-
that an estimated parameter value will in general differ from t/&in9 Problem can be used to obtain accurate parameter estima-
true parameter value. This issue is addressed in [15]. Therd!qP'S based on the persistent excitation condition.

is shown that the estimated values are equal to the true val-

ues only for those trajectories ofandm that are informative 4.1 The Extended Linear Complementarity Problem

enough to obtain estimates that are equal to the true system_pa- . _
rameters. Sufficient conditions ferandm are now discussed ‘Phe Extended Linear Complementarity Problem (ELCP) arose

using a result from [15] given in the following theorem: from our rgsearph on discrete event systems and hybrid sys-
tems, and is defined as follows [4]:

Theorem 3.1 [15] The parameter©;; is correctly identified GivenP € R™*": ( € R"*": p € R"™, q €
by (3) based onAthe given data(k + 1),z(k + 1), k = R" and¢1,...,ém C {1,...,n,}, findz € R™
0,...,N —1,i.e.0;; = 6;; ifand only if such that
Jef{0,....,N—1}s.t.x;(k+1) =0, @m;(k+1). Pz>p (8)
Qz=q )
Let us now assume that we want to obtain an estimate of the m
(finite) paramete®,; for a giveni, j. Recalling that in S JI®z-pi=0. (10)
i j=licg;
zi(k+1) = @ O @my(k+1) Condition (10) represents the complementarity condition of the
r=1 ELCP and can be interpreted as follows. Sirite > p, all

@ represents conventional maximizatiomecessary and suf- the terms in (10) are nonnegative. Hence, (10) is equivalent

ficientcondition for the condition of theorem 3.1 is given by © [licy,(Pz = p)i = 0 forj = 1,...,m. So each sep;
corresponds to a group of inequalitiesiz > p, and in each

group at least one inequality should hold with equality (i.e., the
(6) corresponding surplus variable is equal to 0).

n+n.,
0;; @m;(k+1) > €D ©ir @m,(k+1) for somek.
r=1
v In [4] we have developed an algorithm to find a parametric rep-
Although the true system parameters are unknown, (6) canregentation of thentire solution set of an ELCP. The compu-
still evaluated replacing;; by its lower bound 0 and®;, by tation time and the memory storage requirements of this algo-

its upper boun(@ir which is obtained from an estimation withrithm increase exponentially as the size of the ELCP increases,

arbitrary input signals (cf. (5)). Thus, if the condition which makes this approach intractable even for small-scale
. ELCPs. However, in [7] we have recently developed an ap-
m;(k+1) > @ 0, ® my(k + 1) @) proach to efficiently solv_e ELCPs Wlth_a bqunded f_ea5|ble set
~ {z|Pz > p,Qz = ¢} that is based on mixed integer linear pro-
e gramming, and that allows us to solve much larger instances of

is satisfied for at least one data point in the measuremetits ELCP.

then (6) is also satisfied and the correct estimatiof, gty (3)

is ensured. This behaviour can be obtained by designing parica  persistent excitation signal design

ular input signals that persistently excite the system. The focus

of the following section is on the computation of such signafsuppose that we are at event sigpand that we want to iden-

by formulating the determination of the feasible solutions sty ©;; within the nextV; event steps. Assume, that a first

as an Extended Linear Complementarity Problem (ELCP). estimate©(*o) = [A(ko) B(k)] from a previous identification
step, possibly based on arbitrary input signals, has been deter-

4 Designing persistent excitation signals usingmined from the measurements upk@ Then, the parameters
prediction models of the system are known to stay within certain bounds given by

. . ) . 0<0; < (:)Z('I?O) .
We will now discuss an approach to identify the (nenpa- J
rameters of the model (1). We will identify each paramégr Now an input/state trajectorfm(ko + 1),...,m(ko + N;)}*

should be determined which satisfies (7) and for which the fol-

1Recall that we assume that no noise is present (cf. Remark 3.3).

2Since we only consider finite entries@(cf. Remark 3.1) and since these  3Note thatz (ko) is included inm (ko + 1) (cf. (2)) so that the correspond-
finite entries correspond to processing times, transportation times, and sangncomponents ofn (ko + 1) are assumed to be fixed @aéko) is assumed to
they are always nonnegative. be known at event step = ko.



lowing prediction model equation holds: So, the condition that (7) should hold for at least one index
R . k € {ko,...,ko + N; — 1} is equivalent to the ELCP (14),
ek +1) = A" @ak)oB™ @uk+1) (1) (5 El‘;)_ ’ bis e 1
fork = ko, ..., ko + N; — 2, Now we consider the prediction equation (11). By repeated

where A% and B(*) correspond to the parameter estimat ssubstltutlon this results in a max—plus—linear equation of the

©o) obtained using the previous identification run or base

on arbitrary input signafs Note that (11) predicts the relation M(z) = C @ (ko) & D @ 1) (18)
between the: part and ther part of two subsequent vectors. whereri ) = [27 (ko +1) ... 2T (ko +Ni—1) ]T and
Now we have the following proposition. My = [ul (ko +1) ... u"(ko+ Ni—1) ]T. Now we can

make use of the fact that a system of max—plus—linear equations
Proposition 4.1 For a given index paifi, j) the condition that can be rewritten as an ELCI].
there exists an indek € {ko, ...,ko + N; — 1} such that (7) Since the merge of two ELCPs is again an ELCP, we can now
and (11) holds can be rewritten as an ELCP. merge the ELCP (14), (15), (17) and the ELCP corresponding
to (18) into one ELCP. O

Proof: First we consider (7) for a fixell = ko + ¢ with ¢ €
{0,..., N;—1}. Recalling thatb and® represent conventional Remark 4.1 Note that using the ELCP approach we can also
maximization and addition, respectively, it is easy to verify thaasily include a constraint of the form

(7) can be rewritten as
R dmmgu(kJrl)fu(k) < dmax fork:k07...,k0+Nif].7
mij(k+1)—m(k+1) > O,
forr=1,....n+ng, r#7j, which bounds the input rate betweég;,, andd,, .. (this may

sometimes be necessary to ensure safe operation of the system

or equivalently or to prevent buffer overflows). In general, we can accommo-
PO > ¢ date any linear constraint of the form
i i (0) O]
f?r an appropriately defined matriR a?d vector'*), where Dim(koy + 1)+ ...+ Dymlko + N;) > d . (19)
m=[mT(ko+1) ... mT(ko+DN;)]".

In order to express that (7) should hold foe= kg or k = ko+1
or...or k = ko+ N;—1, we introduce binary variables, . . .,
dn,—1 € {0, 1} suchthatih, = 1 then (7) holds fok = kq+¢.

The main advantage of the ELCP approach is that — us-
ing the ELCP algorithm of [4] — we can findll sequences

{m(ko + 1),...,m(ko + N;)} that guarantee correct estima-
So we should have tion of the paramete®;;. This enables us to perform an extra
=1 = PO > q(f) (12) optimization within this set of persistent excitation signals, e.g.,

5p=0 = misarbitrary. (13) for control purposes.

The conditiony, € {0,1} is equivalent to the ELCP 5 Example

08 <1 and &(1—0)=0. (14) " Consider now a manufacturing cell shown in figure 1, where

To express that at least ongshould be equal to 1, we add theParts are delivered to the machine by a conveyor, machined
condition and released to an additional conveyor. The capacity of each
So+...+0n_1>1. (15) conveyor is limited to one part. The machine can process one

. art at the same time.
As the components af. correspond to inputs and states anB

as we only look a finite number\;) of event steps ahead, welet z; (k) be the time instant when ttie-th part is loaded onto
may assume with loss of generality that the components ofthe conveyor 1. After,; time units, this part is ready to enter
are bounded, i.ep € M with M a bounded set. As a consethe machine. The dates; (k) denotes the time when ttie-th
guence, the number part enters the machine. After the machining operation which
Mo — ) ) ) © takesrso time units, the part is released to an additional con-
P = Ezof?{?viflmr%%j:f?{ﬂpw(P m);  (16) veyor 2 at timexs(k) reaching a final position aftet;; time
units. From this final position, the part is picked up at time
wherenp) is the number of rows oP®, is finite, and we x4(k). Conveyor 1 and 3 can receive a new part afigrand
have Pr > Mp for all in € M. Hence, condition (12)— 734, respectively, whereas the machine must be prepared for a
(13) is equivalent to new operation for3 time units. The input event times (k)

POm > 5,49 + Mp(1—8,)1 . (17) SBasically, the proof of this statement boils down to the fact that an equation

I ) of the forma = max(3, ) for some scalar variables or expressiens3, v
“Note that by repeatedly performing the sweeping identification process wan be rewritten as the ELCR > 6, a > v, (a — 3) - (& — ) = 0,

will get better estimates, and thus also better predictions, as the process gsethe latter of these equations in combination with the first two implies that

on. a=0F>~vora=~vy2> .




3 4 5 6|7 8|9 10 11
11 15 19 2329 34|43 46 50
9 13 17 21125 32|36 44 48
12 16 20 2431 35|39 47 51
10 14 18 2230 33|37 41 49

3 4 5 6|29 30|43 44 45
3 4 5 7|30 31|36 37 38

machine x(k)
|
- u(h)

conveyor 1 | conveyor 2 | conveyor 3

O OIN P~ PEFP WEk
N RO 00 01NN

Table 1: The input signals and the corresponding states values

Figure 1: Manufacturing cell. used in the worked example fér=1,...,11.

andus (k) correspond to the time instants when a new part is bes - 7> (A® 6))a — 28
available to be delivered for conveyor 1 or removed from con- 320 ua(7) = 1(6) @ 2(6))s ’
veyor 3, respectively. As shown in figure 1, in the initial state bag : uz(7) = (A ®@x(6))s =26

the manufacturing cell already contains one part on conveyor 1b h fe sid | T
and 3 which are assumed to have entered at ti{®) and '° re]ont € sale side we se'lew;thrl) = u(7) = [29 30]h.
25(0), respectively (see [13] for more details). Using the abol@'rthermore, we — arbitrarily — take(s) = 1 @ u(7). The

reasoning and the initial state of the system, the following eqL%)_rrespondlng states(7) andz(8) are I'StEd. in table 1. From
tions hold forz(k): the resulting measurements one now obtains the true parameter

values for the entries a8 while A remains unchanged.

zik+1) = m2@u2(k+1)Sui(k+1) (20) | et us now consider the estimation of the parametey.
z2(k+1) = 721 @z1(k) D 723 ® 23(k) (21) We use the ELCP approach to determine a persistent excita-
3k +1) = T ®aa(k+1) ® 7 ®za(k+1) (22) tion input sequene{u(ko + 1), u(ko + 2),ulko + 3)} =
za(k+1) = 743 @ 23(k) B us(k+1) (23) {u(9),u(10),u(11)}. Foras; condition (7) is satisfied if :
Inserting equation (21) into (20) and (21) and (23) into (22) zi(k) = 4@ws(k) (25)
yields the max—plus—linear system z1(k) > 1Qua(k+1) (26)
zk+1)=Axz(k)® Beu(k+1) holds for some: > ko, i.e., fork =8 ork =9 ork = 10 as
a1 £ a3 € by ¢ we haveN; = 3. As (25) does not hold fok = 8 anyway, in
A | e axm e p_le ¢ (24) order to satisfy (7) we should have
az; € asz ¢ £ b3 ’
c £ ay € c b42 331(9) — $3(9) Z 4 $1(10) - IEg(lO) Z 4 (27)
21(9) —u2(10) > 1 21(10) —ua(11) > 1

with the true system parameters given by
If we assume that the componentsiofire between 0 and 100,

we getMp = —100 (cf. (16)). Following the lines of the proof
of Proposition 4.1 we obtain then the following ELCP

a1 =3, an=1, a3 =4,
a3 =3, axx=1, azsz3 =4, asy3=2,
bi1 =0, bzg2=1, byp=0.

Let us now assume that thestructure of the system matrices 21(9) = x3(9) — 1040, > 100 (28)
is known and let us determine the unknown parametgrand 21(9) — u2(10) — 10162 > —100 (29)
b;; from event time measurements. 21(10) — 23(10) — 10465 > —100 (30)
First, the estimation is carried out using a set of arbitrary input 21(10) —uz(11) — 10163 > —100 (31)
signals fork = 1,...,6. These signals and the corresponding So+63 > 1 (32)
states are listed in table 1. This yields the following estimates 59,85 > 0, 1—6y1—65 > 0 (33)
(/upper bounds) for the system parameters (where we have not
included the initial state in this estimation as we assume it to 02(1 —02) +03(1 —d3) = 0 (34)
be unknown): z1(9) > 38 (35)
a1 =4, an=2, a3 =5, r1(9) —u1(9) > 0 (36)
a13=3, ag=1, ay =4, ay3=2, z3(9) > 39 (37)

bii=6, bp=6, bp=4. 6We have selected a small valdg = 3 to keep the number of equations
Based on these System parametersy it is easy to Sat|sfy Il(\r)ed, so that all the equations of the ELCP can be listed epr|C|tIy

- . As z2 (k) andz4(k) do not appear in (27) and as they do not directly
for the parametersi, bs> and by for k = 6 by choosiNg 4 erce the values of; (k) andz3(k), we have — for the sake of brevity —

u(k +1) = u(7) such that omitted the equations correspondinges(k) andz4 (k). The same holds for
. the prediction equation far(11) asz(11) does not appear in (27). Note that
bii: u(7) > (A9 @z(6), =27, 81 = 0 as (25) does not hold fdr = ko = 8.



239 —us(9) > 1 (39)
n(0)-n(9) > 4 (39)
n(10)—25(0) > 3 (40)
21(10) —ui(10) = 0 (41)
r3(10) —21(9) > 5 (42)
55(10) —25(9) > 4 (43)
25(10) —us(10) > 1 (44)
d(35)d(36) + d(37)d(38)+
d(39)d(40)d(41) + d(42)d(43)d(44) = 0,  (45)

(2]

(3]

(4]

(5]

whered(7) denotes the difference between the left—hand side

and the right-hand side of equatiof). (Note that (35)—(45)

correspond to the prediction equation (11). We also add the

condition that all variables should lie in the interjal 100]

(cf. the determination ab/p). In order to guarantee a minimal

separation of input times (cf. (19)), we also the condition
w(9) —u(8) > 1, w(10) —w(9) > 1, u(ll) —wu(10)>1.

Finally, as we use the measurements of the st&& as a

(6]

(7]

starting point for the estimation, we have to wait at least un-

til ¢ = max;(z;(8)) = 35 before we can start the estimation,

which implies that, e.g.«(9) > 36. The solution set of the

Chichester, 1992.

C. Cassandras and S. Lafortutetroduction to Discrete
Event System&luwer Academic, Boston, 1999.
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complementarity problemMathematical Programming
71(3):289-325, 1995.

B. De Schutter and B. De Moor. Minimal realization
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ity problem. Systems & Control Letter25(2):103-111,
1995.

B. De Schutter and B. De Moor. A method to find all
solutions of a system of multivariate polynomial equali-
ties and inequalities in the max algebriscrete Event
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B. De Schutter, W.P.M.H. Heemels, and A. Bemporad.
On the equivalence of linear complementarity problems.
Operations Research Letter30(4):211-222, 2002.

8] B. De Schutter and T. van den Boom. Model predictive

resulting ELCP consists of a polytope with 188 vertices. If we

(arbitrarily) select the vertex with, = 1, 5 = 0 closest to the

control for max—plus—linear discrete event systerAs-
tomaticg 37(7):1049-1056, July 2001.

origin, we obtain the input sequence and corresponding staf@] B. De Schutter, T.J.J. van den Boom, and V. Verdult. State
sequence listed in the last 3 columns of table 1. If we now
use the total input—state sequence to make new estimates of the systems from input—output data. Rroceedings of the

system matrices, we obtain the correct valye= 4 = ags;.

6 Conclusions

(10]

The focus of the present contribution is on input signal design

methods that are required for an accurate parameter estimation

of max—plus—linear systems. Based on an already existing pa-
rameter estimation method and a condition for the determina-

tion of the true system parameters, a new input signal des

space identification of max—plus—linear discrete event

41st IEEE Conference on Decision and Contrpages
4024-4029, Las Vegas, 2002.

F. Gallot, J. L. Boimond, and L. Hardouin. Identification
of simple elements in max—algebra: Application to SISO
discrete event systems modelisation. Aroceedings of
the 4th European Control Conferengeaper 488, Brus-
sels, 1997.

] L. Ljung. System ldentification : Theory for the User

method is developed and illustrated in an example. The method

constitutes an improvement with respect to the already existiji@]

approaches in the sense that the set of all possible solutions
can be characterized. Furthermore, additional requirements on
the input signals can be incorporated in the design procedure,

leading to an optimal input signal design.
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