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To the best of our knowledge, the Razumikhin’s approach was
Abstract the only one that was able to cope with the second case, which

allows fast time-varying delays. This method was appliedin [8
In this note we combine a descriptor approach to stability aﬂA ying Y op 8]

| of li ith ti ina del hich i sliding mode design. The method introduced in [5] based
control of linear systems with time-varying delays, which ig, Lyapunov-Krasovskii functional via the descriptor model

based on the_ Lyapunov - Krasovskii techniques, with a reCqPlnsformation seems to be the first of this type for the second
result on sliding mode control of such systems. The syste

under consideration have norm-bounded uncertainties and un-

certain bounded delays. The solution is given in terms of line&liding mode control is an efficient solution to many practi-
matrix inequalities (LMIs) and improves the previous result§al issues, such as robotics or control of induction motors, be-
based on other Lyapunov techniques. A numerical exampledguse it is insensitive to a wide class of disturbances and uncer-
lustrates the advantages of the new method. tainties. Design of a sliding mode controller for systems with
delay was introduced in [8], where the case of time-varying
delay was treated by Razumikhin approach, while Lyapunov-
Krasovskii method via neutral model transformation was ap-

The problem of reducing the conservatism entailed in applyif§jed to the case of constant delay. It is the purpose of the
finite dimensional techniques to assess the stability of lingdlesent note to combine the sliding mode control of [8] with
systems with time delay has attracted much attention in the piit descriptor model transformation and Lyapunov-Krasovskii
few years [1]-[15]. All these techniques, delay-independeffichnique of [2], [5] in order to design a more efficient sliding
and less conservative delay-dependent, provide sufficient cBde controller for uncertain systems with time-varying delays
ditions only for the asymptotic stability of these systems arffld norm-bounded uncertainties.

they entail a considerable conservatism. Delay-dependent §{gzation: Throughout the paper the superscript stands for

bility conditions in terms of LMIs have been obtained for reg,atrix transpositionR™ denotes the: dimensional Euclidean
tarded and neutral type systems. These conditions are basedd¥e R7*™ is the set of alln x m real matrices. and the

three main model transformations of the original system (sggtationP > 0, for P € R"*" means thaP is symmetric and
[10]). positive definite I,, represents the x n identity matrix.

Recently a newdescriptor model transformation was intro-
duced for delay-dependent stability of neutral systems [2] apd  Stabilization of linear systems with norm-

of a more general class of differential and algebraic (descriptor) hqnded uncertainties by delayed feedback
system with delay ( [3]). Unlike previous transformations, the

descriptor model leads to a system which is equivalent to threthis section we consider the following uncertain linear sys-
original one (from the point of view of stability) and requiresem with a time-varying delay:
bounding of fewer cross-terms.

1 Introduction

hes for deal h del i(t) = (Ao+ HA(t)Ey)x(t)
Two main approaches for dealing with time-varying delays e A et (s

have been suggested in the past. The first is based on +(A1 + () B x(t — (1))
Lyapunov-Krasovskii functionals and the second is based on +(Bo + HA(t)Ex)u(t) + Bru(t — 7(t)), (1)
Razumikhin theory. Two main cases of time-varying de|a)0§herea:(t) € R is the system stateyt) € R™ is the control

have been considered: input, k is an upper-bound on the time-delay functigh €
1) differentiable uniformly bounded delays with derivatives upz(¢) < p, vt > 0). The matrixA(t) € RP*9 is a matrix of



time-varying, uncertain parameters satisfying where

ATHA() <1, V. ) _ 61 Ef Ep 0o
o ) ¥="To+ 0 W(R+0,ETEy)
For simplicity, we took only one delay, but the results may be
easily generalized to the case of multiple delays. I { 0 I } { 0 I, r .
= —+ - g
We seek a control law 0 Ar —I, Ap —1I,

and x denotes symmetrical entries.

u(t) = Kx(t) 3)
that will asymptotically stabilize the system. Proof. Note that
T (t)EPZ(t) = «T (t)Prx(t)

and, hence, differentiating the first term of (6) with respect to
gives:

2.1 The stability issue
In this subsection, we consider the following equation:

() = (Ao+ HAt)Ey)x(t) i i)
+(A; + HA()Ey)z(t — 7(t)). (4) f{fT(ﬂEPi"(t)} =227 (t)Pa(t) = 22" (t)PT { 0 ] .

Representing (4) in an equivalent (from the point of view of T : : -
stability) descriptor form [2]: Replacing[#7(t) 0] by the right side of (5) we obtain:

©(t) =y, ) %it) = 2T ()WoZ(t) + 1o + 1y + 12
0 = ~w+(Ar+ HABD)a() Fhy (0)[R + 5 BT Brlu(t)

t
~h A H AEl)/t VO - / TSR+ 6ET B y(s)ds, (@)
t—h

where
AT = /_10 + Al, ET = EO + E17 where

t

or w2 =2 [ o 2 v

s t—7(t) A
Ei(t) = [ T 7 } z(t) o
Ar -|-HAET ~I, m@) 2 2z7@)PT [ 13 ] A(Eo + E)x(t),
t
y(s)ds,  (5) ¢ -

t—7(t)

with Z(t) = col{z(t), y(t)}, E = diag{I,,0}, the following
Lyapunov-Krasovskii functional is applied:

V() = 27 (1) EP(t) + Val(t), ©)

Applying the standard bounding

a’b<a"Ra+b"R™', VYa,be R",YRecR™":R>0,

where and using the fact that(t) < h, we have

P:[Pl 0}, P, >0, EP=P'E>0, (7a-d)

. 0 1 AT e
P, P no(t) < hzT(t)PT { A, }R Lo AT1Pz(t)
t
S)[R + 0o ET E]y(s)dsds. T
o= [ e o[ reons
The following result is obtained: o
Similarly
Lemma 1 The system (4) is asymptotically stable if there exist 0
nxn matrices) < P;, P», P;, R > 0 and positive numbers m < optET ()Pt [ P ] [0 HT|Pz(t)
01, 02 that satisfy the following LMI: T
+511‘ (t)ETETl‘(t),
0 0 0
T Y T T
v [ 2] e[ 9] wr[ 5] O
=| —hR 0 0 <0 ny, < héy'z"(t)PT [ " ] [0 HT|Pz(t)
* * —611, 0
* * * —52hIp

t — —
© sn [T OET Ee)ds



Substituting the right sides of the latter inequalities into (9), weheree is a positive number, and introducing = ¢, and

obtain 8y = 8, ', we obtain the LMI
d‘;(t) < 7 ()Tx(1) (10) o nl 0 1 or[ 0] o[ BF
! A1Q1€ hI’n 0
where * —hQe 0 0
* * —hQ e 0
_ T 0 1 T * * * —(51[
' = U+haP - | RT7[0A7]P a
Al * * *
—1 —1 T 0 T * * *
+(07" + oy VPT | | [0 HTIP. . ) )
_ wor| O 1 sl O w0
Therefore, LMI (8) yields by Schur complements tiat 0 ET YW H 2 H
and hencd/ < 0, while V' > 0, and thus (4) is asymptotically 0 0 0
stable [12], [3]. & 0 0 0
0 0 0 <0 (14)
2.2 State-feedback stabilization —hdzI, 0 0
* 751]13 0
The results of Lemma 1 can also be used to verify the stability * * —52hIp
f the closed-I t 3)-(4) if tin (8
of the closed-loop system (3)-(4) if we set in (8) where
A=A, +BK,i=0,1, Ey=Eo+ E:K 11 T
FRICISOL BosEbBK QD [0 B Yo or[ 0 0 ]
AT _In AT _In

and verify that the resulting LMI is feasible. The problem

with (8) is that it is linear in its variables only when the stateSUbStitUting (11) into (14) and denotiig= K @1, we obtain

feedback gairK is given. In order to find< we apply again ) -~
Schur formula td, the term being expanded. We thus obtaiﬂ'heorem 1 The control law of (3) asymptotically stabilizes (1)

the following matrix inequality: if, for some positive number, there exist positive numbers
01,02 and matricesd < @1, Q2, Q3 € R™*™, Y € R™*"
r T that satisfy the following LMI:
vt | ] Lan ][ sl ;
thE 0” 8 Q2+Q; Z12 0 thT
¥ B hR-1 0 * —Q3—Q§ Z31 hQs3
* * - Y * * —he@, 0
* * * —51 Iq * * * _h€Q1
* * * * * % * %
* * * * * * * *
* * * * ) * * % *
n| Yol sppr| O stpr| Y L * . *
Ef H H T oo -
0 0 0 Z51 th El B 0 _0
0 0 0 0 hQYET 6,H  hiH
0 0 0 <0 0 0 0 0
05"l 0 0 N 0 0 0 | <o, @5
* —617'I, 0 =011, 0 0 0
“ N 762_1hl * —héal, _O 0
- (12) * * — 1Ip _0
Consider the inverse dP. It is obvious, from the requirement * * * —02hIy |
Py > 0 and the fact that in (8)-(P; + P{) must be negative where
definite, thatP is nonsingular. Defining
Br = By+ B,
_ 0 . Zig = AT+YTBY QT +Q,,
Proo=| @l o] and M= diag(Q Lunspen) 2= QuirtY B0y +Q,
2 W3 (13a-b) Z31 = he(A,Q1+B1Y),
] _ T T T
we multiply (12) by M ™ and M, on the left and on the right, Zsy = QhEr+Y Ej.
respectively. Choosing The state-feedback gain is then given by

R =Qe, K=YQ". (16)



3 Sliding mode controller Q3 € R—m)x(n—m) 'y ¢ pmx(n=m) that satisfy the fol-

i . . lowing LMI:
In this section, we focus on time-delay systems that can be rep- -~ - -
resented, possibly, after a change of state coordinates and input, Q24Q5 Xio . 0 hQ%
in the following regular form ([8],[16]): * —Q3—Q3  Xo3 hQs
* * —he@, 0
dz(t) * * * —he@,
7 = (A + HA(t)Ep)21(2) " * * *
—|—(Ad11 —+ HA(t)El)Zl (t — T(t)) * * * *
+(A12 + HA(t)Eg)Zg(t) + Adlgzg(t - T(t)) * * * *
d (t) 2 L * * * *
z -
;t = Z(Amzz(t) =+ Ad2iz,~(t — ’7')) X51 thElT 0 0
i=1 0 hQYET 5,H  hi.H
+Du(t) + f(t, 20), (17) 0 0 0 0
- , ) 0 0 0 0 21
wherez(t) = (21,2’2) , 21 ER™MM 29 € R™, Aij, Adijal = 731] 0 0 0 <0, ( )
1,2, j = 1,2, Ex, k = 0,1,2, H are constant matrices of * a —hdol 0 0
appropriate dimensiong) is a regulam x m matrix, A(t) € « « I 5,1 0
RP*1 is a time-varying matrix of uncertain parametetsc % " b —3ohI
R™ is the input vector; is a time-varying delay satisfying Pl
0 < 7(t) < h, Vt > 0, z(6) is the function associated with Where
and defined offi—h, 0] by z:(0) = z(t + 0). X1o = QAT + AT )+ YT (AT, + AT,) — QT + Qs,
We will assume that: Xoz = he(Ay,Q1+Aq2Y)

Al) (A11 -+ Adlla Ao + Adlg) is controllable. o T T T
A2) f is Lipschitz continuous and satisfies the inequality o X1 = QiEp+Y" Fy
then the sliding mode control law
||f(t,Zt)H < ¢(t,2t), vt Z Oa
u(t) = =D |Q(2(t)) + DM(zt)HSEZEg;” . (22)
wherey(t, z;) is a continuous functional assumed to be known s\#
a priori, where K = YQ;', and s,Q, Dy, are defined in (18)-(20),
A3) A(t) is a time-varying matrix of uncertain parameters sa&symptotically stabilizes zero solution of system (17) for any
isfying AT (t)A(t) < I, Vt. delay functionr(t) < h.
Consider the following switching function: Proof : The proof is divided into two parts. The first one is
dedicated to the proof of the existence of an ideal sliding mo-

tion on the surface(z) = 0, the second part to the proof of the
with K € R™*(»=m)_ Let Q and© be the linear functions Stability of the reduced system.

5(z) = 22— Kz (18)

defined by Attractivity of the manifold:
Q=(1)) 22: A KAy zi(t) Consider the Lyapunov-Krasovskii functional
z = 2i — 1i)%i\l)s
=1 (19) V(t) = s"()s=(0) = [sCO)F. (23)

O(z(t)) = Epz1(t) + Eg22(t)

. . Diff tiating (23 the trajectori f the closed-| -
and letD,; be the following functional: ifferentiating (23) on the trajectories of the closed-loop sys

tem gives
Du(z) = (lAd2r — KAgu |+ [KHI| || E: )z (2) : . 2

+ ||Ad22 - KAdlZ H 22 (t) V(t) = % (t) (Q(Z(t)) + ;[Ain B KAdli] “ (t a T)

(Wt z) + [KH|| [O(=(8)] + M, (20) D) + £t 2) — KHAM®[O(=(1))
whereM > 0, z(t) = sup ||zi(t +6)]. +E1z1(t — 7(1)))),

—hs6<0 Using the expression of the control law (22), we get

Following [8] and using the results of previous section, we are 5
able to design a sliding mode controller that will stabilize sysp:(;)  _ 257 () (D (Adzi — KAaqui)zi(t —7)

tem (17) under less conservative assumptions on the delay law.

=1
. +f(t,z) — KHA)[O(2(t) + Erz1(t — 7(1))]
Theorem 2 Assume A1-A3. If, for some positive number s
there exist positive numbefs, 5o and matrice® < Q1, Qo, _DM(Zt)H)



then we derive that: delay upper bound type of delay
7 < oM _ oM 1 Theorem 2 3.999 time-varying
Vs- ls(2(0)ll = —2MV ()2 Gouaisbaut et al [8] | 1.65 constant

This last inequality is known to prove the finite-time convert Ivanescu et al [9] 1.46 constant

gence of the system (17) into the surface 0 ([16]). Fuetal [7] 0.984 constant

Stability of the reduced system: Liand De Souza[13] 0.51 constant

On the sliding manifolds(z) = 0, the system is driven by the Table 1: Results for example (23)-(24)

following reduced system:

H(1t) = (An+ ApK+ HA®)(Ey + B2K))z (1) 5 Conclusions

(A + Aaa K + HA) Ey) 2 (t = 7(1)) The problem of finding a sliding mode controller that asymp-
According to Theorem 1, this system is asymptotically stiotically stabilizes a system with time-varying delay and norm-
ble for any delay lawr(t) < h if, for some positive num- bounded uncertainty has been solved. A delay-dependent so-
ber ¢, there exist positive numbers , 5, and matrice9) < lution has been derived using a special Lyapunov-Krasovskii
Q1. Q2. Q3, Y € R™*(n=m) that satisfy the LMI (21). & functional. The result is based on a sufficient condition and it
thus entails an overdesign. This overdesign is considerably re-
Remark 1 Note that the explicit knowledge of the timeduced due to the fact that the method is based on the descriptor
dependance of the delay is not required in the expressionf@presentation. As a byproduct for the first time on the basis
the control lawu(t), all is needed is the knowledge of an uppe?f the descriptor model transformation the solution to the sta-

bound?. bilization problem by the feedback, which depends on both,
non-delayed and delayed state is solved. Finally, some numer-
4 Example ical examples show the effectiveness of the combined method:

sliding mode and descriptor representation.
We demonstrate the applicability of the above theory by solv-
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