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Abstract

In this note we combine a descriptor approach to stability and
control of linear systems with time-varying delays, which is
based on the Lyapunov - Krasovskii techniques, with a recent
result on sliding mode control of such systems. The systems
under consideration have norm-bounded uncertainties and un-
certain bounded delays. The solution is given in terms of linear
matrix inequalities (LMIs) and improves the previous results,
based on other Lyapunov techniques. A numerical example il-
lustrates the advantages of the new method.

1 Introduction

The problem of reducing the conservatism entailed in applying
finite dimensional techniques to assess the stability of linear
systems with time delay has attracted much attention in the past
few years [1]-[15]. All these techniques, delay-independent
and less conservative delay-dependent, provide sufficient con-
ditions only for the asymptotic stability of these systems and
they entail a considerable conservatism. Delay-dependent sta-
bility conditions in terms of LMIs have been obtained for re-
tarded and neutral type systems. These conditions are based on
three main model transformations of the original system (see
[10]).

Recently a newdescriptor model transformation was intro-
duced for delay-dependent stability of neutral systems [2] and
of a more general class of differential and algebraic (descriptor)
system with delay ( [3]). Unlike previous transformations, the
descriptor model leads to a system which is equivalent to the
original one (from the point of view of stability) and requires
bounding of fewer cross-terms.

Two main approaches for dealing with time-varying delays
have been suggested in the past. The first is based on
Lyapunov-Krasovskii functionals and the second is based on
Razumikhin theory. Two main cases of time-varying delays
have been considered:
1) differentiable uniformly bounded delays with derivatives up-

per bounded by one, and
2) continuous uniformly bounded delays.

To the best of our knowledge, the Razumikhin’s approach was
the only one that was able to cope with the second case, which
allows fast time-varying delays. This method was applied in [8]
for sliding mode design. The method introduced in [5] based
on Lyapunov-Krasovskii functional via the descriptor model
transformation seems to be the first of this type for the second
case.

Sliding mode control is an efficient solution to many practi-
cal issues, such as robotics or control of induction motors, be-
cause it is insensitive to a wide class of disturbances and uncer-
tainties. Design of a sliding mode controller for systems with
delay was introduced in [8], where the case of time-varying
delay was treated by Razumikhin approach, while Lyapunov-
Krasovskii method via neutral model transformation was ap-
plied to the case of constant delay. It is the purpose of the
present note to combine the sliding mode control of [8] with
the descriptor model transformation and Lyapunov-Krasovskii
technique of [2], [5] in order to design a more efficient sliding
mode controller for uncertain systems with time-varying delays
and norm-bounded uncertainties.

Notation: Throughout the paper the superscript ‘T ’ stands for
matrix transposition,Rn denotes then dimensional Euclidean
space,Rn×m is the set of alln × m real matrices, and the
notationP >0, for P ∈ Rn×n means thatP is symmetric and
positive definite.In represents then× n identity matrix.

2 Stabilization of linear systems with norm-
bounded uncertainties by delayed feedback

In this section we consider the following uncertain linear sys-
tem with a time-varying delay:

ẋ(t) = (A0 +H∆(t)E0)x(t)
+(A1 +H∆(t)E1)x(t− τ(t))
+(B0 +H∆(t)E2)u(t) +B1u(t− τ(t)), (1)

wherex(t) ∈ Rn is the system state,u(t) ∈ Rm is the control
input, h is an upper-bound on the time-delay function (0 ≤
τ(t) ≤ h, ∀t ≥ 0). The matrix∆(t) ∈ Rp×q is a matrix of



time-varying, uncertain parameters satisfying

∆T (t)∆(t) ≤ Iq ∀ t. (2)

For simplicity, we took only one delay, but the results may be
easily generalized to the case of multiple delays.

We seek a control law

u(t) = Kx(t) (3)

that will asymptotically stabilize the system.

2.1 The stability issue

In this subsection, we consider the following equation:

ẋ(t) = (Ā0 +H∆(t)Ē0)x(t)
+(Ā1 +H∆(t)Ē1)x(t− τ(t)). (4)

Representing (4) in an equivalent (from the point of view of
stability) descriptor form [2]:

ẋ(t) = y(t),
0 = −y(t) + (ĀT +H∆ĒT )x(t)

−(Ā1 +H∆Ē1)
∫ t

t−τ(t)

y(s)ds,

where
ĀT = Ā0 + Ā1, ĒT = Ē0 + Ē1,

or

E ˙̄x(t) =
[

0 In
ĀT +H∆ĒT −In

]
x̄(t)

−
[

0
Ā1 +H∆Ē1

] ∫ t

t−τ(t)

y(s)ds, (5)

with x̄(t) = col{x(t), y(t)}, E = diag{In, 0}, the following
Lyapunov-Krasovskii functional is applied:

V (t) = x̄T (t)EPx̄(t) + V2(t), (6)

where

P =
[
P1 0
P2 P3

]
, P1 > 0, EP = PTE ≥ 0, (7a-d)

V2(t) =
∫ 0

−h

∫ t

t+θ

yT (s)[R+ δ2Ē
T
1 Ē1]y(s)dsdθ.

The following result is obtained:

Lemma 1 The system (4) is asymptotically stable if there exist
n×n matrices0<P1, P2, P3, R > 0 and positive numbers
δ1, δ2 that satisfy the following LMI:

Γ =


Ψ hPT

[
0
Ā1

]
PT

[
0
H

]
hPT

[
0
H

]
∗ −hR 0 0
∗ ∗ −δ1Ip 0
∗ ∗ ∗ −δ2hIp

 < 0

(8)

where

Ψ = Ψ0 +
[
δ1Ē

T
T ĒT 0
0 h(R+ δ2Ē

T
1 Ē1)

]
,

Ψ0 = PT

[
0 In
ĀT −In

]
+

[
0 In
ĀT −In

]T

P,

and∗ denotes symmetrical entries.

Proof. Note that

x̄T (t)EPx̄(t) = xT (t)P1x(t)

and, hence, differentiating the first term of (6) with respect tot
gives:

d

dt
{x̄T (t)EPx̄(t)} = 2xT (t)P1ẋ(t) = 2x̄T (t)PT

[
ẋ(t)
0

]
.

Replacing
[
ẋT (t) 0

]T
by the right side of (5) we obtain:

dV (t)
dt

= x̄T (t)Ψ0x̄(t) + η0 + η1 + η2

+hyT (t)[R+ δ2Ē
T
1 Ē1]y(t)

−
∫ t

t−h

yT (s)[R+ δ2Ē
T
1 Ē1]y(s)ds, (9)

where

η0(t)
∆= −2

∫ t

t−τ(t)

x̄T (t)PT

[
0

Ā1

]
y(s)ds,

η1(t)
∆= 2x̄T (t)PT

[
0
H

]
∆(Ē0 + Ē1)x(t),

η2(t)
∆= −2

∫ t

t−τ(t)

x̄T (t)PT

[
0
H

]
∆Ē1y(s)ds.

Applying the standard bounding

aT b ≤ aTRa+ bTR−1b, ∀a, b ∈ Rn,∀R ∈ Rn×n : R > 0,

and using the fact thatτ(t) ≤ h, we have

η0(t) ≤ hx̄T (t)PT

[
0

Ā1

]
R−1[0 ĀT

1 ]Px̄(t)

+
∫ t

t−h

yT (s)Ry(s)ds.

Similarly

η1 ≤ δ−1
1 x̄T (t)PT

[
0
H

]
[0 HT ]Px̄(t)

+δ1xT (t)ĒT
T ĒTx(t),

η2 ≤ hδ−1
2 x̄T (t)PT

[
0
H

]
[0 HT ]Px̄(t)

+δ2
∫ t

t−h

yT (s)ĒT
1 Ē1y(s)ds.



Substituting the right sides of the latter inequalities into (9), we
obtain

dV (t)
dt

≤ x̄T (t)Γ̄x̄(t) (10)

where

Γ̄ = Ψ + hPT

[
0

Ā1

]
R−1[0 ĀT

1 ]P

+(δ−1
1 + hδ−1

2 )PT

[
0
H

]
[0 HT ]P.

Therefore, LMI (8) yields by Schur complements thatΓ̄ < 0
and hencėV < 0, while V ≥ 0, and thus (4) is asymptotically
stable [12], [3]. ♣

2.2 State-feedback stabilization

The results of Lemma 1 can also be used to verify the stability
of the closed-loop system (3)-(4) if we set in (8)

Āi = Ai +BiK, i = 0, 1, Ē0 = E0 + E2K (11)

and verify that the resulting LMI is feasible. The problem
with (8) is that it is linear in its variables only when the state-
feedback gainK is given. In order to findK we apply again
Schur formula tōΓ, theΨ term being expanded. We thus obtain
the following matrix inequality:

Ψ0 hPT

[
0

Ā1R
−1

] [
0
hIn

] [
ĒT

T

0

]
∗ −hR−1 0 0
∗ ∗ −hR−1 0
∗ ∗ ∗ −δ−1

1 Iq
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

h

[
0
ĒT

1

]
δ−1
1 PT

[
0
H

]
δ−1
2 hPT

[
0
H

]
0 0 0
0 0 0
0 0 0

−δ−1
2 hIq 0 0
∗ −δ−1

1 Ip 0
∗ ∗ −δ−1

2 hI


< 0

(12)
Consider the inverse ofP . It is obvious, from the requirement
P1 > 0 and the fact that in (8)−(P3 + PT

3 ) must be negative
definite, thatP is nonsingular. Defining

P−1 = Q =
[
Q1 0
Q2 Q3

]
and M = diag{Q, I2(n+p+q)}

(13a-b)
we multiply (12) byMT andM , on the left and on the right,
respectively. Choosing

R−1 = Q1ε,

whereε is a positive number, and introducinḡδ1 = δ−1
1 and

δ̄2 = δ−1
2 , we obtain the LMI

Φ h

[
0

Ā1Q1ε

]
QT

[
0
hIn

]
QT

[
ĒT

T

0

]
∗ −hQ1ε 0 0
∗ ∗ −hQ1ε 0
∗ ∗ ∗ −δ̄1Iq
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

hQT

[
0
ĒT

1

]
δ̄1

[
0
H

]
hδ̄2

[
0
H

]
0 0 0
0 0 0
0 0 0

−hδ̄2Iq 0 0
∗ −δ̄1Ip 0
∗ ∗ −δ̄2hIp


< 0 (14)

where

Φ =
[

0 In
ĀT −In

]
Q+QT

[
0 In
ĀT −In

]T

.

Substituting (11) into (14) and denotingY = KQ1, we obtain

Theorem 1 The control law of (3) asymptotically stabilizes (1)
if, for some positive numberε, there exist positive numbers
δ̄1,δ̄2 and matrices0 < Q1, Q2, Q3 ∈ Rn×n, Y ∈ Rm×n

that satisfy the following LMI:

Q2+QT
2 Z12 0 hQT

2

∗ −Q3−QT
3 Z31 hQT

3

∗ ∗ −hεQ1 0
∗ ∗ ∗ −hεQ1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Z51 hQT
2 E

T
1 0 0

0 hQT
3 E

T
1 δ̄1H hδ̄2H

0 0 0 0
0 0 0 0

−δ̄1Iq 0 0 0
∗ −hδ̄2Iq 0 0
∗ ∗ −δ̄1Ip 0
∗ ∗ ∗ −δ̄2hIp


< 0, (15)

where

BT = B0 +B1,

Z12 = Q1A
T
T +Y TBT

T−Q
T
2 +Q3,

Z31 = hε(A1Q1+B1Y ),

Z51 = Q1E
T
T +Y TET

2 .

The state-feedback gain is then given by

K = Y Q−1
1 . (16)



3 Sliding mode controller

In this section, we focus on time-delay systems that can be rep-
resented, possibly, after a change of state coordinates and input,
in the following regular form ([8],[16]):

dz1(t)
dt

= (A11 +H∆(t)E0)z1(t)

+(Ad11 +H∆(t)E1)z1(t− τ(t))
+(A12 +H∆(t)E2)z2(t) +Ad12z2(t− τ(t))

dz2(t)
dt

=
2∑

i=1

(A2izi(t) +Ad2izi(t− τ))

+Du(t) + f(t, zt), (17)

wherez(t) = (z1, z2)T , z1 ∈ Rn−m, z2 ∈ Rm,Aij , Adij , i =
1, 2, j = 1, 2, Ek, k = 0, 1, 2,H are constant matrices of
appropriate dimensions,D is a regularm×m matrix,∆(t) ∈
Rp×q is a time-varying matrix of uncertain parameters,u ∈
Rm is the input vector,τ is a time-varying delay satisfying
0 ≤ τ(t) ≤ h, ∀t ≥ 0, zt(θ) is the function associated withz
and defined on[−h, 0] by zt(θ) = z(t+ θ).

We will assume that:
A1) (A11 +Ad11, A12 +Ad12) is controllable.
A2) f is Lipschitz continuous and satisfies the inequality

‖f(t, zt)‖ < ψ(t, zt), ∀t ≥ 0,

whereψ(t, zt) is a continuous functional assumed to be known
a priori,
A3) ∆(t) is a time-varying matrix of uncertain parameters sat-
isfying ∆T (t)∆(t) ≤ Iq ∀ t.

Consider the following switching function:

s(z) = z2 −Kz1 (18)

with K ∈ Rm×(n−m). Let Ω andΘ be the linear functions
defined by

Ω(z(t)) =
2∑

i=1

(A2i −KA1i)zi(t),

Θ(z(t)) = E0z1(t) + E2z2(t)
(19)

and letDM be the following functional:

DM (zt) = ( ‖Ad21 −KAd11‖+ ‖KH‖ ‖E1‖)z̄1(t)
+ ‖Ad22 −KAd12‖ z̄2(t)
+(ψ(t, zt) + ‖KH‖ ‖Θ(z(t))‖+M, (20)

whereM > 0, z̄i(t) = sup
−h≤θ≤0

‖zi(t+ θ)‖.

Following [8] and using the results of previous section, we are
able to design a sliding mode controller that will stabilize sys-
tem (17) under less conservative assumptions on the delay law.

Theorem 2 Assume A1-A3. If, for some positive numberε,
there exist positive numbers̄δ1, δ̄2 and matrices0 < Q1, Q2,

Q3 ∈ R(n−m)×(n−m), Y ∈ Rm×(n−m) that satisfy the fol-
lowing LMI:

Q2+QT
2 X12 0 hQT

2

∗ −Q3−QT
3 X23 hQT

3

∗ ∗ −hεQ1 0
∗ ∗ ∗ −hεQ1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

X51 hQT
2 E

T
1 0 0

0 hQT
3 E

T
1 δ̄1H hδ̄2H

0 0 0 0
0 0 0 0

−δ̄1Iq 0 0 0
∗ −hδ̄2Iq 0 0
∗ ∗ −δ̄1Ip 0
∗ ∗ ∗ −δ̄2hIp


< 0, (21)

where

X12 = Q1(AT
11 +AT

d11) + Y T (AT
12 +AT

d12)−QT
2 +Q3,

X23 = hε(Ad11Q1+Ad12Y )

X51 = Q1E
T
T +Y TET

2

then the sliding mode control law

u(t) = −D−1

[
Ω(z(t)) +DM (zt)

s(z(t))
‖s(z(t))‖

]
, (22)

whereK = Y Q−1
1 , and s,Ω, DM are defined in (18)-(20),

asymptotically stabilizes zero solution of system (17) for any
delay functionτ(t) ≤ h.

Proof : The proof is divided into two parts. The first one is
dedicated to the proof of the existence of an ideal sliding mo-
tion on the surfaces(z) = 0, the second part to the proof of the
stability of the reduced system.

Attractivity of the manifold:

Consider the Lyapunov-Krasovskii functional

V (t) = sT (z(t))s(z(t)) = ‖s(z(t))‖2 . (23)

Differentiating (23) on the trajectories of the closed-loop sys-
tem gives

V̇ (t) = 2sT (t)(Ω(z(t)) +
2∑

i=1

[Ad2i −KAd1i] zi(t− τ)

+Du(t) + f(t, zt)−KH∆(t)[Θ(z(t))
+E1z1(t− τ(t))]),

Using the expression of the control law (22), we get

V̇ (t) = 2sT (t)(
2∑

i=1

(Ad2i −KAd1i)zi(t− τ)

+f(t, zt)−KH∆(t)[Θ(z(t)) + E1z1(t− τ(t))]

−DM (zt)
s

‖s‖
)



then we derive that:

V̇ ≤ −2M ‖s(z(t)‖ = −2MV (t)
1
2 .

This last inequality is known to prove the finite-time conver-
gence of the system (17) into the surfaces = 0 ([16]).

Stability of the reduced system:

On the sliding manifolds(z) = 0, the system is driven by the
following reduced system:

ż1(t) = (A11 +A12K +H∆(t)(E0 + E2K))z1(t)
+(Ad11 +Ad12K +H∆(t)E1)z1(t− τ(t))

According to Theorem 1, this system is asymptotically sta-
ble for any delay lawτ(t) ≤ h if, for some positive num-
ber ε, there exist positive numbers̄δ1, δ̄2 and matrices0 <
Q1, Q2, Q3, Y ∈ Rm×(n−m) that satisfy the LMI (21). ♣

Remark 1 Note that the explicit knowledge of the time-
dependance of the delay is not required in the expression of
the control lawu(t), all is needed is the knowledge of an upper
boundh.

4 Example

We demonstrate the applicability of the above theory by solv-
ing the example from [8] for a system without uncertainty.
Consider system

ẋ(t) = Ax(t) +Adx(t− τ) +B[u(t) + f(x, t)], (24)

with a time-varying delay, where

A =
[

2 0
1.75 0.25

]
, Ad =

[
−1 0
−0.1 −0.25

]
, B =

[
1
1

]
.

(25)
By an appropriate change of variables, this system is equivalent
to:

ż(t) = Ãz(t) + Ãdz(t− τ) + B̃[u(t) + f(x, t)],

where

Ã =
[

0.25 0
1.75 2

]
, Ãd =

[
−0.9 −0.65
−0.1 −0.35

]
, B̃ =

[
0
1

]
.

As the pair(Ã11, Ã12) is not controllable, the system cannot be
stabilized independently of the delay.

For this system, previous published works give the following
results:

— In the case of a constant delay andf = 0, the system is
proved to be stabilized using a linear memoryless controller
u(t) = Kx(t) for the following maximum values ofh: h =
0.51 by [13],h = 0.984 by [7] andh = 1.46 by [9]. By sliding
mode control for the case of constant delay andf 6= 0 by [8]
the maximum value ofh = 1.65.

— Applying Theorem 2 in the case of a time-varying delay and
f 6= 0, the corresponding value ofh = 3.999 is achieved.

This is summarized in Table 1.

delay upper bound type of delay
Theorem 2 3.999 time-varying
Gouaisbaut et al [8] 1.65 constant
Ivanescu et al [9] 1.46 constant
Fu et al [7] 0.984 constant
Li and De Souza[13] 0.51 constant

Table 1: Results for example (23)-(24)

5 Conclusions

The problem of finding a sliding mode controller that asymp-
totically stabilizes a system with time-varying delay and norm-
bounded uncertainty has been solved. A delay-dependent so-
lution has been derived using a special Lyapunov-Krasovskii
functional. The result is based on a sufficient condition and it
thus entails an overdesign. This overdesign is considerably re-
duced due to the fact that the method is based on the descriptor
representation. As a byproduct for the first time on the basis
of the descriptor model transformation the solution to the sta-
bilization problem by the feedback, which depends on both,
non-delayed and delayed state is solved. Finally, some numer-
ical examples show the effectiveness of the combined method:
sliding mode and descriptor representation.
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