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Abstract— This paper deals with state estimation in linear
time-invariant systems subject to unknown impulsive input
signals. A solution based on a linear impulsive observer and a
finite-memory convolution operator is suggested. The problem
arises e.g. in the context of systems with intrinsic pulse-
modulated feedback that have recently been applied to mathe-
matical modeling of endocrine systems with pulsatile hormone
secretion. Simulation results illustrating the performance of the
proposed method are provided.

I. INTRODUCTION

Mathematical models of dynamical systems with impul-

sive input signals appear often in mechanics, power electron-

ics and biology, see e.g. [1], mostly in the applications where

impulses represent external momentaneous interaction. In

engineered systems, impulsive control signals are typically

known and therefore can be taken into account in a similar

manner as non-impulsive ones. For instance, observer design

for this kind of systems is not much different from that in a

system with any other kind of input signal.

However, in biological applications, the impulsive control

signal is often unknown. A characteristic example of this

class of systems is presented by the pulsatile endocrine

feedback [2]. In [3], a mathematical model for the non-basal

testosterone regulation in the male, based on the concept of

pulse-modulated feedback, is proposed and investigated.

A challenge in devising observers for a system with

unknown impulsive input signal is that the state variables

are reset after a finite time. Thus, most classical asymptotic

observers, such as the Luenberger observer [4], lose track

of the state vector after an impulse. A similar phenomenon

occurs with respect to state estimation in switching system,

when the switching time is unknown, as discussed in e.g.

[5]. Impulsive observers can be utilized to deal with the state

reset problem in impulsive systems.

An impulsive observer that finds the true state in finite time

when the input is known is presented in [6], and a similar

approach is used to implement observer-based control for

systems with persistently acting impulsive input in [7]. In [8],

observers for impulsive systems with linear continuous-time

dynamics and a linear resetting law are considered. Further,

in [9] and [10], a static gain observer for linear continuous

systems under intrinsic impulsive feedback is studied, and

conditions for local stability of the observer under periodic

solutions in the plant are proved.
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Unfortunately, most of the existing approaches for design-

ing an impulsive observer fail when there is no information

about the input impulses. To fill this gap, an approach to

the estimation of impulse times and weights by means of

continuous least-squares observers is suggested in [11].

The present paper considers impulsive systems with linear

continuous dynamics and unknown input impulses. As a

solution to the state estimation problem, a method based

on a linear observer coupled with an impulse estimation

algorithm, similar to the one in [11], is considered.

The paper is composed as follows. First the equations

governing the class of systems in hand are summarized.

Then a general outline of the observer equations and impulse

estimation algorithm is provided, followed by a more de-

tailed explanation of each step. Finally, a numerical example

illustrating the behaviour of the observer is given.

II. SYSTEM EQUATIONS AND ASSUMPTIONS

Consider the (hybrid) dynamical system with state resets

dx

dt
= Ax , t /∈ T (1)

∆x(t) = gkB , t = tk ∈ T (2)

y(t) = Cx(t), (3)

where

∆x(t) = x(t+)− x(t),

x(t+) = lim
ǫ→0+

x(t+ ǫ) = x(t) + gkB,

and T is a countable subset of [0,∞), where tk are assumed

to be ordered so that t1 < t2 < t3 < . . ..
The instants tk are called impulse times, and to each im-

pulse time, there is a corresponding impulse weight gk ∈ R.

Notice that negative weights are allowed in this formulation.

Equations (1)-(2) can be equivalently rewritten as

ẋ(t) = Ax+Bξ(t),

where

ξ(t) =
∑

tk∈T

gkδ(t− tk),

and δ(·) is the Dirac delta function. This reformulation

clarifies why tk, gk are called impulse time and weight,

respectively.

It is assumed that the system has a minimum dwell time

Φ, i.e.

0 < Φ ≤ tk+1 − tk
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for all k. This is a standard assumption in pulse-modulated

systems. In biological systems, it is typically motivated by

the time required for an organ or cell to recuperate.

Furthermore, it is assumed that A is a real n× n matrix,

C is a real row vector, B is a real column vector and the

matrix pair (A,C) is observable. It can be noted that the

observer presented in this paper can easily be extended to

also handle known inputs and more than one output.

III. THE OBSERVER

In order to estimate the state vector of (1), the impulsive

observer

dx̂

dt
= Ax̂+K(y − ŷ) , t /∈ T̂ (4)

∆x̂(t) = ĝlB , t = t̂l ∈ T̂ (5)

ŷ(t) = Cx̂(t) (6)

will be used, where t̂l, ĝl are refereed to as the observer

impulse times and weights respectively. Let

D = A−KC.

It is assumed that the observer gain K is chosen so that D is

Hurwitz stable with distinct eigenvalues. Notice that, since

(A,C) is observable, it follows that (D,C) is observable

too.

The state estimation error ε(t) = x(t)− x̂(t) is governed

by the equations

dε

dt
= Dε , t /∈ T ∪ T̂ , (7)

∆ε(t) = gkB , t = tk ∈ T , (8)

∆ε(t) = −ĝlB , t = t̂l ∈ T̂ . (9)

If the impulses in the plant are known, then the observer

impulses could be chosen so that t̂k = tk and ĝk = gk. In

this case the state estimation error for t ≥ 0 is given by

ε(t) = eDtε(0).

However, in the case investigated in the present paper,

the plant impulses are unknown. To solve the problem with

unknown impulses, it is assumed that, at any time t, the

future output values y(·) within a sliding window y(θ), θ ∈
[t, t+ τ) are made available to the observer. This is possible

e.g. if the observer is run off-line or the state estimates are

allowed to be delayed τ time units. A periodic mode in the

plant (as in [9]) also opens up for an application of the

present technique. Furthermore, it is assumed that τ < Φ, so

that there is at most one plant impulse in the sliding window

at any time t.

At time t, the observer will utilize a finite-memory con-

volution operator on the output y(θ), θ ∈ [t, t+τ), to decide

whether or not an observer impulse should be added in the

current interval. If so, the same operator is used to evaluate

the observer impulse time and weight.

A. IMPULSIVE OBSERVER ALGORITHM

A general outline of the algorithm is given next with the

details provided in the subsequent sections.

1) Propagate the observer according to (4), until the

condition for adding an observer impulse is met (see

Section III-C). Let to be the time when the condition

was met.

2) Determine the observer impulse time t̂l ∈ [to, to + τ)
and weight ĝl. (See Section III-D.)

3) Propagate the observer according to (4)-(5), until t =
to + τ .

4) Go to Step 1.

B. THE FINITE-MEMORY CONVOLUTION OPERATOR

In this contribution, the finite-memory convolution opera-

tor

(Pf)(λ, τ ; t) =

∫ t

t−τ

eλ(t−θ)f(θ)dθ (10)

will be utilized. In virtue of being a pseudodifferential

operator, (Pf)(λ, τ ; t) is characterized by the symbol

p(λ, τ, s) =
1− e(λ−s)τ

s− λ
, (11)

so that

L{(Pf)(λ, τ ; t)} = p(λ, τ, s)F (s),

where L{·} denotes the Laplace transform and F (s) =
L{f(t)}. This operator has previously been used for e.g.

exact (deadbeat) state estimation, see e.g. [12], finite spec-

trum assignment control of time-delay systems [13], and also

impulse detection [11].

Notice that the symbol in (11) can also be employed for

defining a matrix function, i.e. for a square matrix M

p(λ, τ,M) =
(

I − e(λI−M)τ
)

(M − λI)
−1

.

Let Λ = {λ1, . . . , λm} be a set of real and distinct

elements, and introduce the following notation

W (t) ,







Cp(λ1, t,D)
...

Cp(λm, t,D)






.

Also let V = WT (τ)W (τ) and

V (t) = W (t)eDt.

In what follows, Λ is assumed to contain at least n distinct

elements and be disjoint from the spectrum of the matrix D,

i.e.

Λ ∩ σ(D) = ∅, (12)

where σ(D) is the spectrum of D. This assumption is not

restrictive since the elements of Λ can always be selected to

satisfy the condition above.

Assumption (12) also implies that V is positive definite,

so that a weighted vector norm

‖x‖2
V
= ‖W (τ)x‖2 = xTVx
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can be introduced together with the usual Euclidean one:

‖x‖2 = xTx. It is straightforward to show (see e.g. [11])

that given the set Λ, it is possible to find a nonsingular state

transformation matrix T , such that V for the transformed

system and observer is equal to the identity matrix and

resulting in ‖x‖ = ‖x‖
V

.

In order to choose the observer impulses, operator (10)

will be applied to the output error ȳ(t) that would be present

if there were no observer impulse after some time to. That

is

ȳ(t) = Cε̄(t),

where ε̄(t) is the solution to (7)-(8) with the initial value

ε̄(to) = ε(to). Define

R(to) ,







(P ȳ)(λ1, τ ; to + τ)
...

(P ȳ)(λm, τ ; to + τ)






. (13)

Notice that ȳ(t), and thus R(to), can be computed if x̂(to)
is known together with the output y(t) for t ∈ [to, to + τ).

Proposition 3.1: If T ∩ [to, to + τ) = {tk}, then

R(to) = V (τ)ε(to) + gkV (to + τ − tk)B,

and if T ∩ [to, to + τ) = ∅, then

R(to) = V (τ)ε(to).

Proof: Cf. Appendix I in [11].

Proposition 3.1 shows in what way R(t) is affected when a

plant impulse enters the sliding window [t, t+ τ). It is also

of interest to see how R(t) is related to the state estimation

error ε(t).

Proposition 3.2: Assume that T ∩ [to, to+ τ) = {tk} and

T̂ ∩ [to, to + τ) = {t̂l}. Then

W (τ)ε(to + τ) = V (τ)ε(to)

+ gk (V (to + τ − tk)B + E(tk − to)) (14)

− ĝl
(

V (to + τ − t̂l)B + E(t̂l − to)
)

,

where

E(t) = (W (τ)−W (τ − t))eD(τ−t)B.

Furthermore, for any ǫ, r > 0, it is possible to choose the

set Λ such that each row of V (to + τ − t̂)B and E(t̂− to)
satisfy

|Ei(t̂− to)| ≤ r|Vi(to + τ − t̂)B|

when t̂− to ≤ τ − ǫ.

Proof: See Appendix I.

Proposition 3.2 justifies the following important approxima-

tion. If Λ is chosen such that the proposition holds for a small

enough r, and there are no impulses in [to + τ − ǫ, to + τ),
then the terms gkE(tk − to) and ĝlE(t̂l − to) in (14) are

negligible. Thus it follows from Proposition 3.1 that

W (τ)ε(to + τ) ≈ R(to)− ĝlV (to + τ − t̂l). (15)

C. STEP 1: DECIDING ON OBSERVER IMPULSE

This section deals with the first step in the impulsive

observer algorithm of Section III-A. In this step, the observer

propagates the state estimation x̂(t) according to (4) and

computes R(t), defined in (13), for each t. This continues

until some time to, when it is decided that there should be

an observer impulse in the interval [to, to + τ).
In order to see whether or not an observer impulse should

be added, ‖R(t)‖ will be considered. Notice that if ε(t) = 0
and T ∩ [t, t+ τ) = ∅, then it follows from Proposition 3.1

that R(t) = 0. However, as soon as an impulse at tk enters

the sliding window [t, t+ τ), the norm of R(t) will start to

increase according to the relationship

‖R(t)‖ = |gk| ‖V (t+ τ − tk)B‖ , 0 < tk − t < τ. (16)

Thus, if ‖R(t)‖ > 0, then ε(t) 6= 0 and/or T ∩ [t, t+τ) 6= ∅.

In both cases, there is a reason to add an observer impulse. If

ε(to) 6= 0, then the observer impulse could be used to reduce

the state estimation error, and if there is a plant impulse

within [t, t+ τ), then the observer should counter it with an

observer impulse.

Thus, a condition for choosing to is that ‖R(to)‖ > 0. For

robustness sake, zero in the right-hand side of the inequality

can be replaced by

‖R(to)‖ > η,

for some threshold η > 0.

It is also desirable, as motivated in Section III-D, that (15)

holds at time to. Due to Proposition 3.2, it is thus preferable

to choose to so that there is no plant impulse in [to + τ −
ǫ, to+τ), and the designer should take this into account when

picking η.

Since the way in which ‖R(t)‖ is affected by an impulse

is known beforehand, this is usually not a problem, at least

when some bounds on |gk| are known. For instance, the

interval of admissible impulse weights is always known in

pulse-modulated control. Notice that if |gk| ≤ gM for all k,

then η could be chosen so that

η > gM
∥

∥V (τ − t̂)B
∥

∥ , for τ − ǫ < t̂ < τ,

cf. (16). However, if η is chosen too large, small impulses

might be missed.

It is often possible to devise a more advanced condition

for choosing to, by studying the graph of

‖V (τ − tk)B‖ , 0 < tk < τ.

In this way it might be possible to choose to in a way that

does not depend on the impulse weights. An example of this

is provided in Section IV.

D. STEP 2: EVALUATING THE OBSERVER IMPULSE

This section deals with the second step in the impulsive

observer algorithm of Section III-A.

Suppose that it has been decided at time to that there

should be an observer impulse in [to, to + τ), see Section

III-C. Let εo = ε(to). Assume also that there is a plant
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impulse with weight gk at time tk ∈ [to, to + τ). If this is

not the case, then gk = 0 throughout this section.

When εo = 0, it follows from Proposition 3.1 that tk and

gk can be found by solving

R(to) = ĝlV (to + τ − t̂l)B. (17)

However, for εo 6= 0, the above equation may not have a

solution. Therefore, the following optimization problem is

solved instead

min
t̂l,ĝl

∥

∥R(to)− ĝlV (to + τ − t̂l)B
∥

∥

2
,

s.t to < t̂l < to + τ.
(18)

A suitable technique for solving this problem is discussed in

Section III-E.

For εo = 0, (17) is always satisfied by choosing t̂l =
tk and ĝl = gk. Numerical experiments indicate that this

solution is also unique, but this result is not formally proved

here.

To analyze what happens when εo 6= 0, assume that an

observer impulse is fired at t̂l. If Λ has been chosen so that

Proposition 3.2 holds for a small enough r, and there is no

impulse in [to+ τ − ǫ, to+ τ) (see Section III-C), then it can

be concluded from (15) that

‖ε(to + τ)‖2
V
≈

∥

∥R(to)− ĝlV (to + τ − t̂l)B
∥

∥

2
. (19)

The right-hand side of (19) is exactly the quantity that is

minimized in (18). Also note that thanks to the minimization,
∥

∥R(to)− ĝlV (to + τ − t̂l)B
∥

∥ ≤
∥

∥eDτεo
∥

∥

V
.

Hence, if εo 6= 0, the observer might add an impulse that

does not correspond to an impulse in the plant. However, in

this case the “false” impulse is chosen so that

‖ε(to + τ)‖
V
.

∥

∥eDτεo
∥

∥

V

where the right-hand side is the state estimation error that is

acquired when the observer impulse coincides with the plant

impulse.

In practice, the observer usually adds “false” impulses

when the state estimation error is large, resulting in a faster

convergence (see also Section IV). As the state estimation

error decays over time, the observer impulses will get closer

to the true plant impulses, as seen in Section IV.

E. SOLVING THE OPTIMIZATION PROBLEM

Solving optimization problem (18) is an important part of

the observer described above. Notice that the cost function

depends linearly on ĝl. It follows that, if the pair t̂l, ĝl
minimizes the cost function in (18) then

ĝl = (BTV TV B)−1BTV TR(to),

where V = V (to+ τ − t̂l). Inserting this into (18) gives rise

to a nonlinear optimization problem in one variable. Thanks

to the constraint t̂l ∈ [to, to+ τ), this problem can be solved

with an arbitrary accuracy by gridding the interval, evaluating

the cost function at each point, and selecting the solution that

corresponds to the least cost function value.

F. THE OBSERVER PARAMETERS

Besides the condition discussed in Section III-C (e.g.

choosing the threshold η), the designer has to choose the

observer gain matrix K, the length of the sliding window τ ,

and the set Λ.

The proof of Proposition 3.2 shows that letting the el-

ements of Λ tend to negative infinity ensures that the

approximation in (15) is valid. However, other aspects have

also to be taken into account. In [13] and [11], the low-pass

characteristics and disturbance attenuation of the operator

(10) are studied. It is demonstrated that the operator in

general is less sensitive to measurement noise when |λ|
is small. Thus there is a trade-off between making r in

Proposition 3.2 small, and decreasing the sensitivity to noise.

Fortunately, this trade-off can usually be handled in practice,

as shown in Section IV. It is also seen that the sensitivity

to high frequency noise is reduced when τ is increased.

However, increasing τ leads to a longer lag in the state

estimate. Furthermore, τ must be chosen less than Φ, which

limitation is set by the plant characteristics.

Following [14], it is also of interest to study the sensitivity

of (10) to structured uncertainty in the system matrix of the

plant, and how it is influenced by the choice of Λ and τ .

Finally, the observer gain K has to be selected. This

will mainly affect the state estimates behaviour in between

impulses, and could be chosen e.g. as in a (steady-state)

Kalman filter.

IV. NUMERICAL EXAMPLE

In this section, the proposed technique for state estimation

is validated on a numerical example, both with and without

measurement noise. The observer is applied to sampled data,

with fast sampling (0.01 time units between each sample),

to imitate continuous execution.

Assume the following values in (1)-(3)

A =





−0.08 0 0
2 −0.15 0
0 0.5 −0.2



 , B =





1
0
0





C =
[

0 0 1
]

, xo =





4
20
60





with four impacting impulses

t1 = 10 t2 = 40, t3 = 80 t4 = 140

g1 = 4 g2 = 5 g3 = 7 g4 = 6.

To see the effect of measurement noise, white noise of zero

mean and variance 10 was added to the output. The output

y(t) of the system is shown in Fig. 1. For the observer, the

gain was chosen as

K =





0.0002
0.0048
0.0200



 ,

so that the eigenvalues of D are placed at −0.1,−0.15 and

−0.2. The length of the sliding window was set to τ = 20.
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Time, t

y
(t
)

Fig. 1. The output signal of the plant, with noise (blue line) and without
(red line).

Finally, Λ was chosen as

Λ = {−2.65,−2.70,−2.75,−2.80,−2.85,−2.90}.

For this set of parameters, it holds that

|Ei(t̂− to)| < 10−7|Vi(to + τ − t̂)B|,

when t̂− to ≤ 15, cf. Proposition 3.2.

Thus, if the optimization problem in (18) is only solved

when T ∩ [to + 15, to + 20) = ∅, then (19) is a good

approximation.

Next a condition for adding an observer impulse should

be chosen. In light of the discussion in Section III-C, first

consider ‖V (to + τ − tk)B‖, which quantity is plotted in

Fig. 2. The maximum in Fig. 2 occurs when tk − to ≈ 5.8,

i.e. well below 15. This suggests choosing the optimization

0 5 10 15 20
0

2

4

6

8

10

12

t̂− to

‖V
(t
o
+
τ
−
t̂)
B
‖

Fig. 2. ‖V (to + τ − tk)B‖ for 0 < tk − to < τ .

instants to in the observer such that the quantity ‖R(t)‖ is

at, or near, a maximum. Also, with this condition, the chosen

optimization instants will not depend on the impulse weights.

Hence, in this example, Step 1 of the algorithm in Section

III-A will continue until ‖R(t)‖ reaches a maximum.

First the noise-free output was tested. In Fig. 3, the state

estimates produced by the observer initialized with

x̂(0) =





7
30
70





are shown together with true values of the plant states.

The state estimation error x(t) − x̂(t), together with the

quantity eDt(x(0)− x̂(0)) are provided in Fig. 4. The latter

characterizes the state estimation error that the observer

would have with all observer impulses being identical to the

plant impulses. It can be seen that the proposed observer

0 50 100 150 200
0

5

10

x
1

0 50 100 150 200
0

50

x
2

0 50 100 150 200
0

50

100

150

x
3

Time, t

Fig. 3. True states x(t) (blue line), and estimated states x̂(t) (red line).
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|ε
1
|

0 50 100 150 200
0

10

20

30

|ε
2
|

0 50 100 150 200
0

50

|ε
3
|

Time, t

Fig. 4. State estimation error |x(t) − x̂(t)| (blue line), and the state
estimation error for an observer with exact knowledge of the plant impulses
(red line).

is completely off on the first impulse, but yet converges to

the true state vector faster than it would if the first impulse

were identical to the true plant impulse.

The observer was also tested with white measurement

noise of variance 10 added to the output, see Fig. 1. The

resulting state estimation error is presented in Fig. 5. Ob-

viously, the estimated impulses are quite far from the true

ones because of the measurement noise. In Section III-F it

is seen that one way to reduce the sensitivity to noise is to

move the elements of Λ closer to the origin. Therefore, the

observer was also tested with

Λ = {−0.65,−0.70,−0.75,−0.80,−0.85,−0.90}
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Fig. 5. State estimation error |x(t) − x̂(t)|, with original Λ, when
measurement noise is added to the output.
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Fig. 6. State estimation error |x(t) − x̂(t)|, with modified Λ, when
measurement noise is added to the output.

and the rest of the parameters left unchanged. The result for

these parameters, with the noisy measurements of the output,

is shown in Fig. 6. Clearly, the estimated impulses are much

closer to the actual impulses in this case.

V. CONCLUSION

An observer for state estimation in linear time-invariant

systems with unknown input impulses is suggested. The core

of the method is to use a standard linear observer coupled

with a state estimation algorithm employing finite-memory

convolution operators. A numerical example demonstrates

the feasibility of the proposed observer.
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APPENDIX I

PROOF OF PROPOSITION 3.2

The relation in (14) follows from the fact that

ε(to + τ) = eDτε(to) + gke
D(to+τ−tk)B − ĝle

D(to+τ−t̂l)B.

To prove the last part of the proposition assume, without

loss of generality, that to = 0.

Let Ci = C(λiI −D)−1. The rows of E(t̂) are given by

Ei(t̂) =

Ci

(

e(λiI−D)τ − e(λiI−D)(τ−t̂)
)

eD(τ−t̂)B =

eλi(τ−t̂)Ci

(

e(λiI−D)t̂ − I
)

B.

Notice that, for fixed t̂ > 0,
∣

∣

∣
Ci(e

(λiI−D)t̂ − I)B
∣

∣

∣
→ 0, as λi → −∞.

Similarily, the rows of V (τ − t̂)B are found to be

Vi(t̂)B =

Ci

(

e(λiI−D)(τ−t̂) − I
)

eD(τ−t̂)B =

− eλi(τ−t̂)Ci

(

e(D−λiI)(τ−t̂) − I
)

B,

Note that, for fixed 0 < t̂ < τ ,
∣

∣

∣
Ci(e

(D−λiI)(τ−t̂) − I)B
∣

∣

∣
→ ∞, as λi → −∞.

Hence, it can be concluded that, for 0 < t̂ < τ ,

|Ei(t̂)|

|Vi(t̂)B|
=

|Ci(e
(λiI−D)t̂ − I)B|

|Ci(e(D−λiI)(τ−t̂) − I)B|
→ 0, as λi → −∞

and thus the result of the proposition follows.
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