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Abstract— In this paper we develop a random coordinate
descent method suitable for solving large-scale sparse noncon-
vex optimization problems with composite objective function.
Under the typical assumptions of nonconvexity of the smooth
part of the objective function and separability and convexity
of the nonsmooth part (e.g. l1 regularization, box indicator
functions or others), we derive an algorithm with a very simple
and cheap iteration. We prove sublinear convergence rate for
our method to a stationary point. Numerical results show that
our algorithm performs favourably in comparison to other
algorithms on large-scale sparse nonconvex problems, e.g. the
eigenvalue complementarity problem arising in different areas
such as stability of dynamical systems, distributed control and
resonance frequency of mechanical structures with friction.

I. INTRODUCTION

In this paper we are concerned with large-scale linearly

constrained optimization problems with composite objective

functions described by the sum of a smooth nonconvex

function and a nonsmooth convex function. For problems

of moderate size there exist efficient algorithms such as

interior-point methods, Quasi-Newton methods, and pro-

jected gradient methods with good complexity relative to the

dimension. However, in the case of large-scale problems, the

computation of the gradient or Hessian may be prohibitive

as the iteration complexity of projected gradient or interior-

point methods are of order O(n2) or O(n3), respectively,

where n is the variable dimension. To obtain a lower iteration

complexity as O(n) or even O(1), an appropriate way to

approach these problems is through coordinate descent meth-

ods. Recent complexity results on random coordinate descent

methods for solving smooth convex problems with separable

constraints were obtained by Nesterov in [8]. In [13] an

extension to convex optimization problems with composite

objective functions is presented. For linearly constrained

optimization problems with (composite) convex objective

function, extensive complexity analysis of random coordinate

descent methods can be found in [6], [7]. Further, in a

series of papers [18], [19] Tseng developed a greedy (Gauss-

Southwell) variant of coordinate descent method for solving

linearly constrained optimization problems with composite

objective function obtaining complexity estimates for the

convex case and asymptotic linear convergence for the non-

convex case under error bound assumption.

The goal of this paper is to develop an efficient random

coordinate descent method suitable for large-scale sparse
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nonconvex problems with composite objective function and

linear coupled constraints. Our main result is the sublinear

convergence rate in expectation of random coordinate de-

scent method to some stationary point under the standard

assumptions for composite optimization: convexity and sep-

arability of the nonsmooth part of the objective function and

Lipschitz continuity of the gradient of the nonconvex part.

Up to our knowledge, there is no complexity analysis of

random coordinate descent algorithms for solving nonconvex

optimization problems with linear coupled constraints.

It is well known that most analysis and design problems

arising in robust and nonlinear control can be formulated as

nonconvex optimization problems with polynomial objective

functions and constraints [2], [11] (e.g robust stability analy-

sis for characteristic polynomials, simultaneous stabilization

of linear systems, pole assignment by static output feedback).

Very often however, the main computational effort involved

in solving most of the aforementioned control problems is the

spectrum computation of symmetric/nonsymmetric matrices.

Thus, an important application of our optimization model

is the Eigenvalue Complementarity Problem (EiCP). The

(EiCP) problem is often formulated as the maximization of

the generalized Rayleigh quotient onto the standard simplex

or as difference convex programming [10]. For reasons

described later we analyze the properties of the logarith-

mic formulation of (EiCP) problem and use it to perform

numerical experiments. We compare the practical behavior

of our method with the method developed in [17] for the

difference convex formulation of the (EiCP) problem. Our

general optimization model can also be applied in other

areas such as distributed computer systems [4], and traffic

equilibrium [1].

The structure of the paper is as follows. We introduce the

optimization model and the assumptions in Section II. Pre-

sentation of the coordinate descent algorithm and our main

convergence result are given in Section III. In Section IV we

provide numerical experiments for the practical behavior of

our method on solving random (EiCP) problems.

II. PRELIMINARIES

We consider the space R
n composed by column vectors.

For x, y ∈ R
n denote the scalar product by 〈x, y〉 = xT y.

We use the same notation 〈·, ·〉 for scalar products in spaces

of different dimensions. For some norm ‖·‖ in R
n, its dual

norm is defined by ‖y‖∗ = max
‖x‖=1

〈y, x〉. We consider the

following decomposition of the variable dimension and of the

identity matrix In: n =
N
∑

i=1

ni and In = [U1 · · ·UN ], where
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Ui ∈ R
n×ni . For brevity we use the following notation: for

all x ∈ R
n and i, j = 1, · · · , N , we denote:

xi = UT
i x ∈ R

ni , ∇if(x) = UT
i ∇f(x) ∈ R

ni

xij =
[

xTi xTj
]T
, ∇ijf(x) =

[

∇if(x)
T ∇jf(x)

T
]T
.

In other words, xi and ∇if(x) is the ith block component

of the vector x and of the gradient ∇f(x), respectively.

For simplicity of the exposition we use a context dependent

notation as follows: let x ∈ R
n, then xij denotes [xTi x

T
j ]

T ∈
R

ni+nj in appropriate context, but in the case of operations

with vectors from extended space R
n, i.e. y + xij , we

understand y + Uixi + Ujxj . For any vector x ∈ R
n,

supp(x) denotes the set of indices corresponding to nonzero

components. Given a vector a ∈ R
n, the subspace Null(aT )

denotes the orthogonal subspace of a from R
n.

We consider in this paper linearly constrained optimization

problems with composite objective functions as follows:

F ∗ = min
x∈Rn

F (x) (:= f(x) + h(x)) (1)

s.t. aTx = b,

where a ∈ R
n is a nonzero vector, f is a smooth nonconvex

function and h is a nonsmooth convex separable function.

Note that the (EiCP) problem is a particular case of this

model (see Section IV). For brevity we use the notation S =
{x ∈ R

n : aTx = b}. The following assumptions are typical

for coordinate descent optimization with composite objective

function, as considered in (1) (see e.g. [6], [7], [18]):

Assumption 1: .

(i) The function f has block-coordinate Lipschitz contin-

uous gradient, i.e. there is Lij > 0 such that

‖∇ijf(x+ sij)−∇ijf(x)‖ ≤ Lij‖sij‖,

for all sij ∈ R
ni+nj , x ∈ R

n and i 6= j = 1, · · · , N .

(ii) The function h is proper, convex, lower semicontinous

and coordinatewise separable:

h(x) =

n
∑

i=1

hi(xi) ∀x ∈ R
n.

A well-known consequence of Assumption 1 (i) is [9]:

|f(x+ sij)− f(x)− 〈∇ijf(x), sij〉| ≤
Lij

2
‖sij‖

2,

for all sij ∈ R
ni+nj and x ∈ R

n. Based on this quadratic

approximation of function f , for any x ∈ R
n, if we denote

y = x+ Uisi + Ujsj , then we get the following inequality:

F (y) ≤ f(x) + 〈∇ijf(x), sij〉+
Lij

2
‖sij‖

2 + h(y), (2)

for all sij ∈ R
ni+nj and x ∈ R

n. The first-order necessary

optimality conditions of the optimization problem (1) are

described as follows: a vector x∗ is a stationary point of

problem (1) if there exists a λ∗ ∈ R such that

0 ∈ ∇f(x∗) + ∂h(x∗) + λ∗a and aTx∗ = b, (3)

where ∂h(x) denotes the subdifferential of h at x.

III. RANDOM COORDINATE DESCENT METHOD

In this section we present our random coordinate descent

algorithm for solving the large-scale nonconvex optimization

problem (1) that has many similarities with the algorithm

from [7] developed for the convex case. Let the pair (i, j)
be a random variable with a given probability distribution

pikjk = Pr
(

(i, j) = (ik, jk)
)

, where we assume that pii = 0
for all i, and let x0 ∈ S be an initial feasible point.

Considering the decomposition of the space R
n defined in

subsection II, we define the following random coordinate

descent algorithm for problem (1):

Algorithm (CRCD) (Coupled RCD)

1) Choose randomly a pair of (blocks) coordinates

(ik, jk) with probability pikjk

2) Update: xk+1 = xk + Uikdik + Ujkdjk ,

where the direction dij = [dTi dTj ]
T is chosen as follows:

dij = argmin
sij

[

f(xk) + 〈∇ijf(x
k), sij〉+

Lij

2
‖sij‖

2

+ h(xk + sij)
]

(4)

s.t. aTi si + aTj sj = 0.

Note that the search direction dij in our algorithm is

obtained by minimizing the right hand side of the Lipschitz

relation (2). The reader should note that for problems with

sufficiently sparse data and simple separable functions h (e.g.

indicator function for box sets, l1 regularization, etc) the

computation of the ith component of the gradient and the

direction dij requires O(ni + nj) operations (see [6], [19]).

Moreover, in the scalar case, i.e. when N = n, the search

direction dij can be computed in closed form, provided

that h is simple, e.g. indicator function for box sets or l1
regularization.

We assume that for every instance (i, j) we have pij = pji,
resulting in N(N − 1)/2 different pairs (i, j). In the sequel,

we use notation ξk for the entire history of random pair

choices and φk for the expectation of the objective function

w.r.t. ξk:

ξk = {(i0, j0), · · · , (ik−1, jk−1)} and φk = Eξk [F (x
k)].

Let us define the local subspace w.r.t pair (i, j) as: Sij =
{x ∈ S : xl = 0 ∀l 6= i, j}. In order to provide the

convergence rate of our algorithm, we have to introduce some

definitions and auxiliary results.

Definition 1: Let d, d′ ∈ R
n, then the vector d′ is con-

formal to d if: supp(d′) ⊆ supp(d) and d′jdj ≥ 0 for all

j = 1, · · · , n.

We also introduce the notion of elementary vectors for a

given linear subspace S.

Definition 2: An elementary vector d of Null(aT ) is a

vector d ∈ Null(aT ) for which there is no nonzero d′ ∈
Null(aT ) conformal to d with supp(d′) 6= supp(d).

We now present some results for elementary vectors and

conformal realization, whose proofs can be found in [14],
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[15], [19]. A particular case of Exercise 10.6 in [15] and an

interesting result in [14] provide us the following lemma:

Lemma 1: [14], [15] Given d ∈ Null(aT ), if d is an

elementary vector, then |supp(d)| ≤ 2. Otherwise, d has a

conformal realization:

d = d1 + · · ·+ ds,

where s ≥ 2 and di ∈ Null(aT ) are elementary vectors

conformal to d for all i = 1, · · · , s.
An important property of convex and separable functions is

given by the following lemma [19]:

Lemma 2: [19] Let h be component-wise separable and

convex. For any x, x + d ∈ domh, let d be expressed as

d = d1+· · ·+ds, for some s ≥ 1 and some nonzero dt ∈ R
n

conformal to d for all t = 1, · · · , s. Then,

h(x+ d)− h(x) ≥
s
∑

t=1

(

h(x+ dt)− h(x)
)

.

Let us consider L ≥ max
i,j

Lij . For any x ∈ R
n fixed, we

introduce the following function:

ψL(s;x) = f(x) + 〈∇f(x), s〉+
L

2
‖s‖2 + h(x+ s)

and the following mapping associated to it:

dL(x) = argmin
s∈S

f(x)+〈∇f(x), s〉+
L

2
‖s‖2+h(x+s). (5)

Note that ψL(s;x) is a L-strongly convex function in the

variable s and thus the following inequality holds:

ψL(d;x) ≥ ψL(dL(x);x)+
L

2
‖dL(x)− d‖2 ∀d ∈ R

n. (6)

The main properties of mapping dL(x) are given in the

following lemma:

Lemma 3: If Assumption 1 holds and the sequence xk is

generated by Algorithm (CRCD) using a uniform distribu-

tion, then the following statements are valid:

(a) If xk is convergent, then dL(x
k) → 0 as k → ∞.

(b) A feasible point x∗ is a stationary point for problem

(1) if and only if dL(x
∗) = 0.

(c) The limit point of the sequence xk is a stationary point

for problem (1).

Proof: (a) Given a feasible point x̄, if the sequence

xk is convergent to x̄, then ‖xk+1 − xk‖ → 0 and thus

‖dikjk‖ → 0. Since the pair (ik, jk) is a random variable,

from Portmanteau lemma it follows that if ‖dikjk‖ → 0, then

Eikjk [‖dikjk‖] → 0. For brevity we use (i, j) and E[sij ]
instead of (ik, jk) and Eij [sij ], respectively, for any random

pair (i, j) and sij ∈ R
ni+nj . Also denote dij the search

direction given by (4) at iteration k. From the definition of

the function ψ we derive:

E[ψLij
(dij ;x

k)] ≤f(xk)+
2

N(N−1)

[

∑

i,j

〈∇ijf(x
k), sij〉+

∑

i,j

Lij

2
‖sij‖

2 +
∑

i,j

h(xk + sij)
]

for all sij ∈ Sij . Using Lemma 1, we choose sij such that

the corresponding extended vectors sij (with all zero entries

excepting si and sj on positions i and j) satisfies dL(x
k) =

∑

ij

sij and from Lemma 2 it follows that

E[ψLij
(dij ;x

k)] ≤f(xk)+
2

N(N − 1)

[

〈∇f(xk),
∑

i,j

sij〉+

L

2
‖
∑

i,j

sij‖2 + h(x+
∑

i,j

sij)+

(

N(N − 1)

2
−1

)

h(xk)
]

=

(

1−
2

N(N − 1)

)

F (xk) +
2

N(N − 1)

[

f(xk)+

〈∇f(xk), dL(x
k)〉+

L

2
‖dL(x

k)‖2+h(xk+dL(x
k))
]

=
(

1−
2

N(N − 1)

)

F (xk) +
2

N(N − 1)
ψL(dL(x

k);xk).

We obtain a sequence which bounds from below

ψL(dL(x
k);xk) as follows:

N(N − 1)

2
E[ψLij

(dij ;x
k)] +

(

1−
N(N − 1)

2

)

F (xk) ≤

ψL(dL(x
k);xk).

On the other hand, using Jensen inequality we derive

another sequence which bounds ψL(dL(x
k);xk) from above:

ψL(dL(x
k);xk)) =

min
s∈S

f(xk) + 〈∇f(xk), s〉+
L

2
‖s‖2 + h(xk + s) =

min
sij∈Sij

[

f(xk) + 〈∇f(xk), E[sij ]〉+
L

2
‖E[sij ]‖

2+

h(xk + E[sij ])
]

≤

min
sij∈Sij

f(xk) + 〈∇f(xk), E[sij ]〉+
L

2
E[‖sij‖

2]+

E[h(xk + sij)] ≤ E[ψL(dij ;x
k)].

Assumption 1 (ii) and Portmanteau lemma allow us to claim

that if ‖dij‖ → 0 as k → ∞, then the approximation

E[ψL(dij ;x
k)] converges to F (x̄) as k → ∞. We conclude

that both lower and upper bound sequences converges to

F (x̄), hence ψL(dL(x
k);xk) converges to F (x̄) as k → ∞.

A trivial case of strong convexity relation (6) leads to:

ψL(0;x
k) ≥ ψL(dL(x

k);xk) +
L

2
‖dL(x

k)‖2.

Note that ψL(0;x
k) = F (xk) and since both sequences

ψL(0;x
k) and ψL(dL(x

k);xk) converge to F (x̄) as k → ∞,

from strong convexity it follows that the sequence dL(x
k)

converges to 0 as xk tends to x̄.

(b) Considering the optimality conditions for (5), it can

be easily shown that if dL(x
∗) = 0 implies that x∗ is a

stationary point for (1). We prove the converse implication

by contradiction. First, assume that x∗ is a stationary point

for (1) and there is a nonzero solution dL(x
∗) of (5). Then,

there exist λ, µ ∈ R and g(x∗) ∈ ∂h(x∗), g(x∗+ dL(x
∗)) ∈

∂h(x∗ + dL(x
∗)), respectively, such that the optimality
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conditions for optimization problems (1) and (5) can be

written as:
{

∇f(x∗) + g(x∗) + λa = 0

∇f(x∗) + LdL(x
∗ + g(x∗ + dL(x

∗)) + µa = 0.

Taking the difference of the two relations above we get:

g(x∗ + dL(x
∗))− g(x∗) + LdL(x

∗) + (µ− λ)a = 0.

Considering the inner product with dL(x
∗) we get:

L‖dL(x
∗)‖2 + 〈g(x∗ + dL(x

∗))− g(x∗), dL(x
∗)〉 = 0.

From convexity of h we see that both terms of the sum are

nonnegative, thus the equality contradicts our hypothesis.

(c) As we proved in (a), if the sequence xk generated by

Algorithm (CRCD) converges to x̄, then the sequence dL(x
k)

converges to 0. Using the definition of dL(x
k) we have:

f(x)+〈∇f(xk), dL(x
k)〉+

L

2
‖dL(x

k)‖2+h(xk+dL(x
k))≤

f(x) + 〈∇f(xk), s〉+
L

2
‖s‖2 + h(xk + s) ∀s ∈ S.

Taking k → ∞ and using Assumption 1(ii) we get:

F (x̄) ≤ f(x̄) + 〈∇f(x̄), s〉+
L

2
‖s‖2 + h(x̄+ s).

This shows that s = 0 attains the minimum in (5) for x̄, thus

dL(x̄) = 0 and from (b) yields that x̄ is a stationary point.

For clear and complete convergence results of the sequence

generated by Algorithm (CRCD), see the technical report

[12]. From the previous lemma we note that the mapping

dL(x) appears to have an optimality residual role. We now

present the main convergence result of our paper.

Theorem 1: Under the assumptions of Lemma 3 the fol-

lowing estimate on the expected convergence rate holds:

min
0≤i≤k−1

‖Eξi [dL(x
i)]‖2 ≤

N2
(

F (x0)− F ∗
)

Lk
.

Proof: Given a current feasible point x, denote x+ =
x+Uidi+Ujdj as the next iterate, where direction (di, dj) is

given by Algorithm (CRCD) for some randomly chosen pair

(i, j). For simplicity of the exposition we use the notation

(φ, φ+, ξ) instead of (φk, φk+1, ξk−1). Based on Lipschitz

relation (2) we derive:

F (x+) ≤ f(x) + 〈∇ijf(x), dij〉+
Lij

2
‖dij‖

2 + h(x+) ≤

f(x)+〈∇ijf(x), sij〉+
Lij

2
‖sij‖

2+h(x+ sij) ∀sij ∈ Sij .

Taking expectation in both sides, we get:

Eij [F (x
+)] ≤

Eij [f(x)+〈∇ijf(x), sij〉+
Lij

2
‖sij‖

2 + h(x+ sij)] =

f(x) +
2

N(N − 1)

[

∑

i,j

〈∇ijf(x), sij〉+

∑

i,j

Lij

2
‖sij‖

2 +
∑

i,j

h(x+ sij)
]

∀sij ∈ Sij .

From Lemma 1 it follows that any d ∈ S has a conformal

realization defined by d =
∑

t

st, where the vectors st ∈ S

are elementary vectors conformal to d. Therefore, observing

that every vector st has nonzero components in at most two

blocks, then any vector d ∈ S can be generated by d =
∑

i,j

sij , where sij ∈ Sij and their extensions in R
n have

at most two nonzero blocks and are conformal to d. We can

apply Lemma 2 for coordinate-wise separable functions ‖·‖2

and h(·) and we obtain:

Eij [F (x
+)] ≤ f(x) +

2

N(N − 1)

(

〈∇f(x),
∑

t

st〉+

L

2
‖
∑

t

st‖2 + h(x+
∑

t

st) +

(

N(N − 1)

2
− 1

)

h(x)
)

=

(

1−
2

N(N − 1)

)

F (x) +
2

N(N − 1)

[

f(x)+

〈∇f(x), d〉+
L

2
‖d‖2 + h(x+ d)

]

, (7)

for any d ∈ S. Taking expectation w.r.t ξ in (7) for d =
dL(x), we can derive:

φ−φ+ ≥ Eξ[ψ(0;x)]−

(

1−
2

N(N − 1)

)

Eξ[ψ(0;x)]

−
2

N(N − 1)
Eξ[ψ(dL(x);x)] =

2

N(N − 1)
(Eξ[ψ(0;x)]− Eξ[ψ(dL(x);x)]) ≥

L

N(N − 1)
Eξ[‖dL(x)‖

2] ≥
L

N(N − 1)
‖Eξ[dL(x)]‖

2,

where we used the strong convexity property (6) of function

ψ. Now, considering the iteration index k and summing up

with respect to the entire history we get:

L

N(N − 1)

(

k
∑

i=0

‖Eξi [dL(x
i)]‖2

)

≤ F (x0)− F ∗.

This inequality leads us to the above result.

IV. NUMERICAL EXPERIMENTS

In this section we analyze the practical efficiency of the

Algorithm (CRCD) derived above. As we have seen from

the theoretical results, the performance of coordinate descent

methods is strongly correlated to the problem dimension.

We will test our algorithm on a well-known application:

eigenvalue complementarity problems with sparse data. The

eigenvalues of a matrix A ∈ R
n×n can be seen equivalently

as the roots of the characteristic polynomial det(A − λIn).
It is well-known that the eigenvalues can have an important

role in systems and control theory, e.g. to describe expected

long-time behavior of a dynamical system or to represent

only intermediate values of a computational method in robust

control. In some circumstances, the optimization approach

for eigenvalue computation is better than the algebraic one.

A classical optimization problem formulation involves the
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Rayleigh quotient as the objective function of some non-

convex optimization problem [5]. The Eigenvalue Comple-

mentarity Problem (EiCP) is a generalization of the classical

eigenvalue problem, which can be formulated as follows:

(EiCP) Problem:

Given matrices A and B, find λ ∈ R and x 6= 0 such that
{

w = (λB −A)x,

w ≥ 0, x ≥ 0, wTx = 0.

It is interesting to note that any non-negative and irreducible

matrix has an unique (including the multiplicity) complemen-

tarity eigenvalue, which is its Perron root [16]. Therefore, for

the case when A is non-negative and irreducible and B = In,

the solution of (EiCP) is an eigenvector corresponding to the

largest eigenvalue. Finding the maximal eigenvalue for some

matrix has many applications in engineering, system theory,

graph theory and mechanics.

Moreover, if matrices A and B are symmetric, then

we have symmetric (EiCP). In [3] and [10] it has been

shown that Symmetric (EiCP) has multiple equivalent con-

vex/nonconvex optimization formulations. We describe fur-

ther the main nonconvex formulation concerning the sym-

metric (EiCP) problem. The numerical experiments from [17]

show the advantage of the nonconvex formulations of the

large-scale (EiCP) problem in comparison with the convex

formulation. Taking in account that, for A,B � 0, the convex

formulation of (EiCP) is given by a QCQP problem:

min
x∈Rn

xTAx

s.t. xTBx ≤ 1,

we remark that the quadratic constraints are relatively hard

to satisfy in comparison with the standard simplex set, even

for a first-order method. In [3], [10], [17] we can find

recent results on convergence analysis of gradient methods

for solving the logarithmic Rayleigh quotient formulation:

min
x∈Rn

f(x)

(

:= ln
xTBx

xTAx

)

(8)

s.t. eTx = 1, x ≥ 0.

and a relevant motivation for the numerical efficiency of this

approach. In order to have well-defined objective function, in

most of the aforementioned papers the positive-definiteness

of matrices A and B has been assumed. In this paper, we

consider the class of non-negative matrices, i.e. A,B ≥ 0,

with positive diagonal elements, i.e. Aii 6= 0 and Bii 6= 0
for all i = 1, · · · , n. For this class of matrices the problem

(8) is also well-defined on the simplex. In order to apply

our algorithm (CRCD) on the logarithmic formulation of the

(EiCP) problem, we have to compute the Lipschitz constants

Lij . For brevity we introduce the notations ∆n = {x ∈
R

n : eTx = 1, x ≥ 0} for the standard simplex and the

function gA(x) = lnxTAx. For a given matrix A, we denote

Aij = [AT
i AT

j ]
T the pair (i, j) of block-rows of matrix A

and (Aij)ij the pair (i, j) of block-columns from Aij .

Lemma 4: Given non-negative matrix A ∈ R
n×n such

that Aii 6= 0 for all i = 1, · · · , n, then the function

gA(x) = lnxTAx has 2 block-coordinate Lipschitz gradient

on the standard simplex, i.e

‖∇ijgA(x+hij)−∇ijgA(x)‖ ≤ Lij‖hij‖ ∀x, x+hij ∈ ∆n,

where an upper bound on Lipschitz constant Lij is given by

Lij ≤
2N

min
1≤i≤N

Aii

‖(Aij)ij‖.

Proof: The Hessian of the function gA(x) is given by

∇2gA(x) =
2A

xTAx
− 4(Ax)(Ax)T

(xTAx)2
. Note that (∇2

ijgA(x))ij =

2(Aij)ij
xTAx

−
4(Ax)ij(Ax)Tij

(xTAx)2
. With the same arguments as in [17]

we claim that

‖(∇2
ijgA(x))ij‖ ≤ ‖

2(Aij)ij
xTAx

‖.

From the Mean Value theorem we have:

‖∇ijgA(x+ hij)−∇ijgA(x)‖ =
∥

∥

∥

∥

(
∫ 1

0

(∇2
ijgA(x+ τhij))ijdτ

)

hij

∥

∥

∥

∥

≤

∫ 1

0

‖(∇2
ijgA(x+ τhij))ij‖ · dτ · ‖hij‖ ≤

‖
2(Aij)ij
xTAx

‖ · ‖hij‖ ∀x, x+ hij ∈ ∆n.

Observing that min
x∈∆n

xTAx > 0 we obtain

min
x∈∆n

xTAx ≥ min
x∈∆n

(

min
1≤i≤N

Aii

)

‖x‖2 =
1

N
min

1≤i≤N
Aii.

and the above result can be easily derived.

Using the previous lemma, we can derive the block-

coordinatewise Lipschitz constants for the objective function

of the logarithmic formulation of the (EiCP). In the notations

introduced before, the logarithmic formulation is given by

min
x∈∆n

f(x) := gB(x)− gA(x).

Therefore, the local Lipschitz constants Lij of function f are

estimated as Lij ≥
2N

min
1≤i≤N

Bii
‖(Bij)ij‖+

2N
min

1≤i≤N
Aii

‖(Aij)ij‖.

In [17] a variant of Difference of Convex functions (DC)

algorithm is analyzed. The authors in [17] transformed both

previously mentioned formulations of (EiCP) to equivalent

(DC) formulations and solve these problems using (DC) Al-

gorithm. Further, we present a comparison between (CRCD)

Algorithm and (DC) Algorithm from [17]. For completeness,

we also present the (DC) Algorithm for logarithmic formu-

lation of (EiCP). Given x0 ∈ R
n, for k ≥ 0 do:

Algorithm DC [17]

1. Set yk =

(

µIn +
2A

〈xk, Axk〉
−

2B

〈xk, Bxk〉

)

xk,

2. Solve the quadratic program

xk+1 = argmin
{µ

2
‖x‖2 − 〈x, yk〉 : 〈e, x〉 = 1, x ≥ 0

}

,
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where µ is a parameter chosen in a preliminary stage of

the algorithm such that the function 1
2µ‖x‖

2 + ln(xTAx)
is convex. Note that (DC) Algorithm has a relatively cheap

iteration, since the most computations are performed at Step

2 where matrix vector multiplication has to be computed

and a projection onto simplex needs to be done. Note that

in the case when at least one matrix A and B is dense,

the computation of the sequence yk is involved, typically

O(n2) operations. However, when these matrices are sparse

the computation can be done efficiently. There are efficient

algorithms for computing the projection onto simplex, e.g.

Block Pivotal Principal Pivoting Algorithm described in [3],

whose iteration complexity is of order O(n). In practical

application, the value of parameter µ is crucial for the rate of

convergence of (DC) Algorithm. The authors in [17] provide

an approximation of µ that can be computed easily when the

matrix A from (8) is positive definite. However, for indefinite

matrices (as the case of non-negative irreducible matrices

considered in this paper) one requires the solution of certain

NP-hard problem to obtain the good approximation.

For numerical experiments we implemented both methods

in C code and tested the algorithms on a PC with Intel Xeon

E5410 CPU and 8 Gb RAM memory (without using any kind

of parallelism) for large-scale sparse (EiCPs). We generated

random sparse symmetric non-negative and irreducible ma-

trices of dimension n and in both algorithms we start from

random initial points. Each line of the generated matrices has

at most 20 nonzero entries. The stopping criterion in both

algorithms is |f(xk)−f(xk+1)| ≤ ǫ. Since computing µ is
TABLE I

PERFORMANCE OF ALGORITHMS (CRCD), (DC) AND (DC-T).

ALGORITHMS (CRCD) AND (DC) ARE DESCRIBED IN PREVIOUS

SECTIONS AND ALGORITHM (DC-T) IS A VERSION OF (DC) INVOLVING

TUNING OF PARAMETER µ.

n
(DC) (DC-T) CRCD

µ CPU / iter f∗ µt CPU / iter f∗ CPU / iter f∗

5000 n 0.01 / 2 82.257 2n 0.02 / 8 104.15 0.06 / 105679 104.26

20000 n 0.01 / 2 41.87 1.45n 0.16 / 58 52.12 0.07 / 94969 52.09

50000 n 0.02 / 2 58.46 1.41n 0.25 / 27 72.83 0.26 / 202705 72.49

75000 n 0.03 / 2 91.77 1.45n 0.83 / 59 114.92 0.41 / 300868 114.03

10
5 n 0.05 / 2 100.25 1.43n 2.38 / 118 125.27 0.96 / 564346 125.19

5 ·105 n 0.39 / 2 133.60 1.43n 21.06 / 105 167.19 10.73 / 3292800 167.09

7.5 ·105 n 0.76 / 2 150.35 1.43n 39.29 / 105 187.99 18.03 / 4978021 187.89

10
6 n 1.14 / 2 417.83 1.43n 65.12 / 107 522.23 27.23 / 7201888 522.09

very difficult, we try to tune µ in Algorithm (DC) developed

in [17] for solving (EiCP) problems. In the first case, we

take µ = n and from the table we observe that Algorithm

(DC) can not find the optimal value f∗. In the second case,

after extensive simulations we find an appropriate value

for µ such that the Algorithm (DC) produces an accurate

approximation of the optimal value. From the table we

see that our Algorithm (CRCD) is comparable with the

Algorithm (DC).

V. CONCLUSIONS

In this paper we have developed a random coordinate

descent algorithm for solving sparse nonconvex optimization

problem with composite objective function. Our main theo-

retical result is the sublinear convergence rate to a stationary

point under typical assumptions for composite optimization.

Also, we have tested the behavior of our method on solv-

ing large-scale sparse eigenvalue complementarity problems.

From simulations we observe that our method is comparable

with state-of-the art methods developed for this application.
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