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Abstract— A quadratically converging algorithm for the com-
putation of the distance to instability of a broad class of nonlin-
ear eigenvalue problems is presented, including the polynomial
eigenvalue problem and the delay eigenvalue problem. The
algorithm is grounded in a recently presented approach for
computing the pseudospectral abscissa. The application of the
algorithm only relies on the availability of a method to compute
the rightmost eigenvalue of perturbed problems obtained by
adding rank one perturbations to the coefficient matrices, for
which, in case of large and sparse matrices, efficient iterative
algorithms can be used.

I. INTRODUCTION

In order to analyze the robustness of dynamical systems
with respect to uncertainy the stability radius (distance to
instability) is an important concept. In this paper we consider
the stability radius computation for a broad class of nonlinear
eigenvalue problems of the form

(
m∑

i=0

Aipi(λ)

)
v = 0, λ ∈ C, v ∈ Cn, (1)

where Ai ∈ Cn×n, i = 0, . . . , m and the functions pi : C→
C, i = 0, . . . , m are entire and satisfy pi(λ̄) = pi(λ). This
class includes polynomial eigenvalue problems and nonlinear
eigenvalue problems arising in the analysis of linear delay
differential equations as special cases. Although many of
these problems can be reformulated as linear eigenvalue
problems (for example, by a so-called linearization of a
polynomial eigenvalue problem or by a transformation to an
equivalent operator eigenvalue problem for the delay eigen-
value problem [15]) we will not consider the unstructured
distance to instability of a particular type of linearization.
Instead, as in the works [13], [16] on pseudospectra, we
will explicitly take the structure of the original nonlinear
eigenvalue problem into account in the definition of stability
radii, which we relate to the effect of perturbations on the
individual coefficient matrices Ai in (1).

For the linear eigenvalue problem level set methods are
well established methods for computing the distance to
instability and related quantities such as the pseudospectral
abscissa and H∞ norms. The underlying idea is that the
intersections between the singular value curves of a transfer
function and a constant function can be computed from
the solutions of a Hamiltonian eigenvalue problem. This
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property lays at the basis of the bisection based algorithm
for computing the stability radius in [4] and the quadratically
converging algorithms for computing H∞ norms and pseu-
dospectral abscissa in [1], [3]. Although these algorithms
are very robust, they are computationally demanding, since
they require in each iteration step the computation of all
eigenvalues on the real or imaginary axis of a structured
matrix of twice the size of the original problem, and they do
not extend to nonlinear eigenvalue problems.

Recently in [8] an algorithm for computing the pseu-
dospectral abscissa of a matrix has been proposed, which
relies on the property that eigenvalues can be shifted to
the boundary of the pseudospectrum by adding rank one
perturbations to the matrix and on the characterization of
extrema of the pseudospectra as fixed points of a nonlinear
map. A related algorithm based on a steepest ascent dif-
ferential equation on the manifold of normalized rank one
matrices has been proposed in [7]. Using similar ideas the
H∞ norm computation is addressed in [6]. These algorithm
only require the computation of the rightmost eigenvalue
of matrices obtained by adding rank one perturbations to
the original matrix, for which -in case of large and sparse
problems- efficient iterative solvers can be used. In [14]
it is demonstrated how the method of [8] extends towards
nonlinear eigenvalue problems, starting from the observation
that critical perturbations on the different matrices Ai in (1),
i.e., perturbations shifting eigenvalues to the boundary of the
pseudospectra contours, can be chosen as multiples of the
same rank-one matrix.

As we shall see in Section 2 the distance to instability
can be characterized by the bound on the perturbations for
which the corresponding pseudospectral abscissa is zero.
This will lead us to an algorithm based on computing a
zero of the spectral abscissa function. Every iteration of the
algorithm involves the computation of the spectral abscissa,
for which we use the approach of [14], and its derivative with
respect to the perturbation bound ε, which can be obtained
as a by-product. Therefore, the applicability to a particular
class of nonlinear eigenvalue problems ultimately relies on a
procedure to compute rightmost eigenvalues. An overview of
methods and software for the quadratic eigenvalue problem
can be found in, for instance, [17] and the references therein.
For the delay eigenvalue problem we refer to [2], [5], [10].
General purpose methods for solving nonlinear eigenvalue
problems of the form (1) are described in, e.g., [11], [19],
[12], [20] and the references therein.

The structure of the paper is as follows. In Section II we
introduce the problem and briefly describe the algorithm for
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the pseudospectral abscissa computation of [14]. Section III
is devoted to the main result, the computation of stability
radii. In Section IV the application to time-delay systems
is briefly discussed. Finally, numerical experiments are de-
scribed in Section V.

II. PRELIMINARIES

A. Pseudospectra and stability radii

We consider the nonlinear eigenvalue problem (1). In what
follows we call

F (λ) :=
m∑

i=0

Aipi(λ) (2)

the characteristic matrix. We denote the spectrum by Λ and
the spectral abscissa by α, i.e.

Λ(F ) := {λ ∈ C : det (
∑m

i=0 Aipi(λ)) = 0} ,
α(F ) := sup {<(λ) : λ ∈ Λ(F )} .

We are interested in the effect of bounded perturbations of
the matrices Ai on the spectrum, which leads to the perturbed
eigenvalue problem,

(
m∑

i=0

(Ai + δAi)pi(λ)

)
v = 0, λ ∈ C, v ∈ Cn. (3)

The first step in the robustness analysis is to define the class
of perturbations under consideration, as well as a measure
of the combined perturbation

∆ := (δA0, . . . , δAm).

In analogy to the classical definition of ε-pseudospectrum of
a matrix [18], we allow the perturbations δAi, i = 0, . . . , m,
to be complex matrices, i.e.,

∆ ∈ Cn×n×(m+1). (4)

Introducing weights wi ∈ R+

0 , i = 0, . . . , m, where R+

0 =
R+ \ {0}∪ {∞}, we define the following global measure of
the perturbations:

‖∆‖glob :=

∥∥∥∥∥∥∥




w0‖δA0‖2
...

wm‖δAm‖2




∥∥∥∥∥∥∥
∞

. (5)

In this way the condition

‖∆‖glob ≤ ε

corresponds to the natural assumptions of taking perturba-
tions satisfying

‖δAi‖2 ≤ ε/wi, i = 0, . . . ,m.

This uncertainty bound is also used in [16] and fits within
the general class considered in [13]. Taking a weight equal
to infinity implies that the corresponding matrix is not
perturbed.

With the above class of allowable perturbations and with
the measure (5) we define the ε-pseudospectrum of (1) as
the set

Λε(F ) =⋃
‖∆‖glob≤ε

{λ ∈ C : det (
∑m

i=0(Ai + δAi)pi(λ)) = 0}
(6)

and we define the corresponding pseudospectral abscissa as

αε(F ) := sup {<(λ) : λ ∈ Λε} . (7)

In [13] the following explicit expression for the pseudospec-
tra is obtained.

Proposition 2.1: For the perturbation class (4) and mea-
sure (5) the pseudospectrum Λε of (2) satisfies

Λε(F ) =

{
λ ∈ C : σn

(
m∑

i=0

Aipi(λ)

)
≤ ε‖w(λ)‖1,

}

(8)
where σn(·) denotes the smallest singular value and

w(λ) =
[
p0(λ)
w0

· · · pm(λ)
wm

]T

. (9)

We say that F is exponentially stable if all zeros are
confined to the open left half plane and bounded away from
the imaginary axis, i.e., α(F ) < 0. To assess the robustness
of stability w.r.t. perturbations on the coefficient matrices Ai

we introduce the concept of a stability radius.
Definition 2.2: The stability radius of (2) w.r.t. the pertur-

bation class (4) and measure (5) is defined as

r(F ) := inf {ε ≥ 0 : αε ≥ 0} .
Throughout the paper we make the following assumption.
Assumption 2.3: For all r ∈ R and ε ≥ 0 the set Λε∩{λ ∈

C : <(λ) ≥ r} is bounded.
This assumption implies that, by varying ε in a continuous
way, a transition from the situation where αε < 0 to a
situation where αε ≥ 0 is characterized by eigenvalues
moving from the open left half plane to the imaginary axis
(i.e., right half plane eigenvalues coming from the point at
infinity cannot occur). Combined with the characterization
(8) this leads to the following expression for the stability
radius [13, Corollary 3].

Proposition 2.4: If the zeros of F are confined to the open
left half plane and Assumption 2.3 holds then we have

r(F ) =



sup

ω∈R

∥∥∥∥∥∥

(
m∑

i=0

Aipi(jω)

)−1
∥∥∥∥∥∥

2

‖w(jω)‖1





−1

,

(10)
with w given by (9).
Using (10) the computation of the stability radius can be
turned into a frequency sweeping test. However, a gridding
procedure, where for each grid point a singular value needs
to be calculated, is computationally expensive, while making
an appropriate choice of the grid points is a difficult task.
Note also that gridding leads to an upper bound on the
stability radius. In this work we will use Proposition 2.4 for
analysis purposes only, while in Section III we will present
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an alternative approach for determining the stability radius,
based on computing a zero of the pseudospectral abscissa
function.

B. Computing the pseudospectral abscissa of large-scale
problems

In [14] a fast algorithm for computing the pseudospectral
abscissa is proposed, which we briefly outline. Assump-
tion 2.3 guarantees the presence of a globally rightmost point
of the pseudospectrum Λε, which we denote by λε, i.e.,

<(λε) = αε.

Let (uε, vε) be a pair of normalized left and right singular
vectors corresponding to

σn

(
m∑

i=0

Aipi(λε)

)

and let c ∈ Cn be such that uε satisfies the normalization
constraint

c∗uε ∈ R+
0 .

We make some technical assumptions, on which the algo-
rithm relies.

Assumption 2.5: The following conditions are assumed:
1) the smallest singular value of

∑m
i=0 Aipi(λε) is sim-

ple;
2) the rightmost eigenvalue of

(
m∑

i=0

(
Ai − pi(λε)

wi|pi(λε)|uεv
∗
ε ε

)
pi(λ)

)
v = 0. (11)

is simple;
3) we have pi(λε) 6= 0 whenever wi is finite, for 0 ≤ i ≤

m.
The cases where Assumption 2.5 are not satisfied correspond
to degenerate cases, see [14] for a detailed discussion. In
Propositions 3.1 and 3.3 of this reference it has been shown
that under Assumption 2.5 the triple (λ, u, v) = (λε, uε, vε)
is an isolated solution of the following system of equations
and inequalities:

(
m∑

i=0

(
Ai − pi(λ)

wi|pi(λ)|uv∗ε

)
pi(λ)

)
v = 0, (12)

u∗
(

m∑

i=0

(
Ai − pi(λ)

wi|pi(λ)|uv∗ε

)
pi(λ)

)
= 0, (13)

u∗u = v∗v = 1, c∗u > 0, (14)

u∗
(

m∑

i=0

Aip
′
i(λ)

)
v − ε

m∑

i=0

pi(λ)p′i(λ)
wi|pi(λ)| > 0. (15)

Furthermore, λε is the rightmost eigenvalue of the perturbed
eigenvalue problem (11). The meaning of (12)-(15) can be
summarized as follows. Conditions (12)-(13) characterize
points lying on curves described by

σk

(
m∑

i=0

Aipi(λ)

)
= ε‖w(λ)‖1, k ∈ {1, . . . , n},

which include the boundaries of the pseudospectrum (case
where k = n). Condition (15) is an optimality condition
characterizing that the outwards pointing normal vector to
the set{

λ ∈ C : σk

(
m∑

i=0

Aipi(λ)

)
− ε‖w(λ)‖1 ≤ 0

}

lies in the direction of the positive real axis. Conditions (14)
are normalization constraints.

The algorithms in [14] are based on turning (12)-(15) into
a fixed-point iteration. The basic algorithm is as follows.

Algorithm 1 (fixed-point iteration):
Initialize (λ0, u0, v0) and repeat for k = 1, 2, ...
1) Compute λk as the rightmost eigenvalue of

(
∑m

i=0(Ai + δAi)pi(λ)) v = 0,

δAi = − pi(λk−1)
wi|pi(λk−1)|uk−1v

∗
k−1ε, 0 ≤ i ≤ m.

(16)
2) Define uk and vk as the left and right eigenvectors of

(16) associated with λk, which are scaled such that

u∗kuk = v∗kvk = 1, c∗uk > 0, (17)
u∗k (

∑m
i=0 Aip

′
i(λk)) vk

−ε
∑m

i=0
pi(λk)p′i(λk)
wi|pi(λk)| > 0.

(18)

Refinements of Algorithm 1 to make the iteration well
defined for all possible starting values1 and to enforce global
convergence to the globally rightmost point of the pseu-
dospectrum can be found in [14]. They all share the property
that their application only requires methods to compute the
rightmost eigenvalues and the corresponding left and right
eigenvectors, for which fast iterative solvers can be used if
the system matrices are large and spares. This feature makes
them applicable to large-scale problems.

III. COMPUTING THE STABILITY RADIUS

We start with a technical lemma about the spectral ab-
scissa function

R+ 3 ε 7→ αε(F ), (19)

which is a consequence of Assumption 2.3 and the charac-
terization (8).

Lemma 3.1: The function (19) is continuous, strictly in-
creasing, and

lim
ε→∞

αε = ∞.

Based on Definition 2.2 and Lemma 3.1 we can refine (for
exponentially stable F )

r(F ) = {ε > 0 : αε(F ) = 0},
i.e., we can compute the stability radius as the zero of the
spectral abscissa function.

The following, main result shows that for almost all ε
the derivative of the pseudospectral abscissa with respect
to ε exists and can be obtained as a by-product from its
computation using the method described Section II-B.

1Away from the fixed point it could happen that the normalizing condi-
tions (17)-(18) are too restrictive or allow multiple solutions [14].
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Theorem 3.2: Let ε̂ > 0 and assume that λε̂ is a globally
rightmost point of Λε̂. Let (uε̂, vε̂) be a pair of (left, right)
singular vectors corresponding to σn(

∑m
i=0 Aipi(λε̂)). Let

Assumption 2.5 be satisfied, with the triple (λε̂, uε̂, vε̂)
solving (12)-(15) for ε = ε̂. There exists a constant δ > 0
and a continuous function

(ε̂− δ, ε̂ + δ) 3 ε 7→ (λ(ε), u(ε), v(ε))

such that (λ(ε), u(ε), v(ε)) satisfies (12)-(15) for all ε ∈ (ε̂−
δ, ε̂ + δ), such that (λ(ε̂), u(ε̂)), v(ε̂)) = (λε̂, uε̂, vε̂) and

<λ′(ε̂) =

m∑
i=0

|pi(λε̂)|
wi

u∗ε̂
( m∑

i=0

Ai p′i(λε̂)
)
vε̂ − ε

∑m
i=0

(
p̄i(λε̂)p′i(λε̂)

wi|pi(λε̂)|
)

(20)
Moreover, if the globally rightmost point is unique2 then we
have

dαε

dε

∣∣∣∣
ε=ε̂

= <λ′(ε̂). (21)

Proof: If δ is sufficiently small then for all ε ∈ (ε̂ −
δ, ε̂ + δ), the equations and inequalities

( ∑m
i=0(Ai + δAi(ε))pi(λ(ε))

)
v(ε) = 0,

u(ε)∗
( ∑m

i=0(Ai + δAi(ε))pi(λ(ε))
)

= 0,

v(ε)∗v(ε) = 1, u(ε)∗u(ε) = 1,
=(c∗u(ε)) = 0, <(c∗u(ε)) > 0,
= (

u(ε)∗ (
∑m

i=0 Aip
′
i(λ(ε))) v(ε)

)

−ε
∑m

i=0

=(pi(λ(ε))p′i(λ(ε)))
wi|pi(λ(ε))| = 0,

< (
u(ε)∗ (

∑m
i=0 Aip

′
i(λε)) v(ε)

)

−ε
∑m

i=0

<(pi(λ(ε))p′i(λ(ε)))
wi|pi(λ(ε))| > 0,

(22)

where

δAi(ε) = − pi(λ(ε))
wi|pi(λ(ε))|u(ε)v(ε)∗ε, 0 ≤ i ≤ m.

describe a smooth curve. For notational convenience we
define

gi(ε) =
|pi(λ(ε))|

wi

for i = 0, . . . , m. We can rewrite the first two equations of
(22) as

( m∑

i=0

Aipi(λ(ε))
)
v(ε) =

m∑

i=0

gi(ε)u(ε)ε (23)

and

u(ε)∗
( m∑

i=0

Aipi(λ(ε))
)

=
m∑

i=0

gi(ε)v(ε)∗ε. (24)

Let us differentiate (23) w.r.t. ε, multiply it from the left by
u(ε)∗ and take the real part. Using

u′(ε)∗u(ε) + u(ε)∗u′(ε) = 0 =⇒ u′(ε)∗u(ε) ∈ jR,
v′(ε)∗v(ε) + v(ε)∗v′(ε) = 0 =⇒ v′(ε)∗v(ε) ∈ jR,

2If the spectrum is symmetric w.r.t. the real axis, then only the eigenvalues
in the upper half plane are considered.

we obtain:

<
(

u∗
(

m∑

i=0

Aip
′
i(λ)

)
v λ′

)
= ε <

(
m∑

i=0

g′i(ε)

)
+

m∑

i=0

gi(ε). (25)

The left hand size of (25) can be rewritten as

< (u∗ (
∑m

i=0 Aip
′
i(λ)) v)< (λ′(ε))

−= (u∗ (
∑m

i=0 Aip
′
i(λ)) v)= (λ′(ε))

= < (u∗ (
∑m

i=0 Aip
′
i(λ)) v)< (λ′(ε))

−ε
∑m

i=0 =
(

p̄i(λ)p′i(λ)
wipi(λ)

)
= (λ′(ε)) ,

where we used the optimality condition described by the last
two conditions of (22). The right hand side of (25) can be
computed as

ε

m∑

i=0

<
(

p̄i(λ)p′i(λ)
wi|pi(λ)|

)
< (λ′(ε))

− ε

m∑

i=0

=
(

p̄i(λ)p′i(λ)
wi|pi(λ)|

)
= (λ′(ε)) +

m∑

i=0

gi(ε).

Substituting the above expressions in (25) yields

λ′ε = <(λ′(ε)) =
m∑

i=0
gi(ε)

<
(

u(ε)∗
(

m∑
i=0

Ai p′i(λ(ε))

)
v(ε)

)
−ε

m∑
i=0

<
(

p̄i(λ)p′
i
(λ)

wi|pi(λ)|

) .

Evaluating this expression at ε̂, taking into account (22), we
arrive at (20).

The second assertion follows from αε = <(λ(ε)) when-
ever λ(ε) is the unique globally rightmost point of Λε.

It follows from Theorem 3.2 that the pseudospectral
abscissa function is differentiable whenever the globally
rightmost point of the pseudospectrum is unique and the
technical Assumption 2.5 is satisfied. This is the cases for
almost all ε, that is, except for special choices where the
pseudospectrum exhibits for instance more than one globally
rightmost point in the upper half complex plane. Therefore,
the pseudospectral abscissa is differentiable almost every-
where. The fact that the derivative must be strictly positive
can be readily seen from expression (20) and optimality
condition (15).

Finally, formulae (20)-(21) allow us to apply Newton’s
method to solve the equation

αε(F ) = 0

for ε, in order to compute the stability radius. This results in
Algorithm 2.

Algorithm 2: Initialize ε0 and compute for k = 1, 2, . . .
(until convergence):

εk+1 = εk − αεk
(F )

dαε

dε (F )
∣∣
ε=εk

.
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IV. APPLICATION TO TIME-DELAY SYSTEMS

We apply the previous results to the delay eigenvalue
problem [2], [5], [10],

F := −λI + A0 +
m∑

i=1

Aie
−λτi , (26)

where consider perturbations on ∆ := (δA0, . . . , δAm) on
(A0, . . . , Am), measured by (5). Since the weights ~w =
(w0, . . . , wm) play an important role in the subsequent
analysis we will make the dependence of the pseudospectral
abscissa and the stability radius on the weights explicit in
the notation and write αε(F ; ~w) and r(F ; ~w).

The property
∣∣e−jωτi

∣∣ ≡ 1, ∀ω ∈ R, 0 ≤ i ≤ m,

lays at the basis of the following proposition, which directly
follows from expression (10).

Proposition 4.1: Consider the function (26) Let ~w(1) =(
w

(1)
0 , . . . , w

(1)
m

)
∈ R+

0

m
and ~w(2) =

(
w

(2)
0 , . . . , w

(2)
m

)
∈

R+

0

m
be such that

m∑

i=0

1

w
(1)
i

=
m∑

0=1

1

w
(2)
i

. (27)

Then we have

r
(
F ; ~w(1)

)
= r

(
F ; ~w(2)

)
.

In other words the stability radius is independent of the
distribution of the perturbations over the different coefficient
matrices as long as (27) is satisfied. However, the shape
of the pseudospectra and, in particular, the pseudospectral
abscissa do depend on the distribution, as shown in the next
proposition.

Proposition 4.2: Let ~w = (w0, . . . , wm) ∈ R+

0

m
and

define
~w0 =

(
1∑m

i=0 w−1
i

,∞, . . . ,∞
)

.

The corresponding pseudospectra satisfy

(Λε(F ; ~w) ∩ C+) , ⊆ (Λε(F ; ~w0) ∩ C+) ,
(Λε(F ; ~w) ∩ C−) ⊇ (Λε(F ; ~w0) ∩ C−)

and, consequently,
{

αε(F ; ~w0) ≤ αε(F ; ~w), ε ≤ r(F ; ~w0),
αε(F ; ~w0) ≥ αε(F ; ~w), ε > r(F ; ~w0).

Proof: For the delay eigenvalue problem (26) expres-
sion (8) becomes

Λε(F ; ~w) =

{
λ ∈ C : σn

(
−λI + A0 +

m∑

i=1

Aie
−λτi

)

≤ ε

(
1
w0

+
m∑

i=1

e−<(λ)τi

wi

)}
, (28)

from which the assertions directly follow.
Proposition 4.1 allows some flexibility in (re)distributing

the perturbations over the different coefficient matrices, via
the choice of weights, in the application of Algorithm 2,
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Fig. 1. Effect of distribution of weights over the coefficient matrices, for
Example 1.

which is based on computing a zero of the pseudospectral
abscissa function. Proposition 4.2 suggests to concentrate the
perturbation on the non-delayed term, as this leads to the
highest of slope the pseudospectral abscissa function around
the intersection with the real axis, which is to be preferred in
terms of condition of the zero. This is now illustrated with
a numerical example.

Example 1: Consider (26) with m = 1,

A0 =



−0.080 −0.030 0.200

0.200 −0.040 −0.005
−0.060 0.200 −0.070


 ,

A1 =




0.0471 −0.0504 −0.0607
−0.0942 −0.1008 −0.1214

0.0471 0.0504 0.0607




and τ1 = 6. In Figure 1 we plot the spectral abscissa function
for two sets of weights: (w0, w1) = (1,∞), i.e., only the
constant term is perturbed, and weights (w0, w1) = (∞, 1).
The two sets of weights yield the same stability radius.

V. NUMERICAL EXPERIMENTS

First, we have applied Algorithm 2 to the benchmark
collection3 used in [9]. This consists of delay eigenvalue
problems of the form (26). The weights in the perturbation
measure are taken as

wi = ‖Ai‖2−1
, 0 ≤ i ≤ m,

i.e. the value of ε refers to the maximal relative size of the
perturbations. The results of Algorithm 2 are displayed in
Table I: the second column describes the system dimension
and the number of delays. The third and fourth column
display the spectral abscissa and the stability radius. In the
last column #it denotes the number of Newton iteration
to reach 10 digits accuracy, starting from the initial value
ε = 0. In accordance with Section IV the perturbations were
redistributed onto the non-delayed term via a change of the
weights term before the computations took place.

3The collection is available at the webpage
http://twr.cs.kuleuven.be/research/software/delay-control/benchmarks/.
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Problem (n, #delays) α r(F ) #it
1 (3,1) -2.866038425e-02 2.694529280e-2 5
2 (1,1) -1.102659477+00 9.264754751e-1 6
3 (3,3) -2.944578327e-01 4.347925858e-3 4
4 (4,9) 1.169539686+00 0 0
5 (8,20) 2.373606203+00 0 0
6 (10,7) -3.775473572e-01 2.743086262e-2 4
7 (20,9) -3.446892131e-02 2.566909280e-3 5
8 (40,3) -1.044598769e-01 7.458287673e-3 5
9 (5,1) -5.026086111e-01 3.524570232e-2 4
10 (4,3) -9.858488139e-02 1.190747662e-2 9

TABLE I
STABILITY RADIUS COMPUTATION FOR DELAY EIGENVALUE PROBLEMS

FROM THE SAME BENCHMARK COLLECTION AS USED IN [9].

k εk αεk
dαε
dε

∣∣∣
ε=εk

1 1.000000000e-05 -3.312014980e-01 1.183570721e+00
2 2.798424529e-01 4.488443869e-02 1.525601423e+00
3 2.504216370e-01 6.253282029e-04 1.483364073e+00
4 2.500000761e-01 1.250908710e-07 1.482770662e+00
5 2.499999918e-01 4.938617831e-15 1.482770544e+00

TABLE II
STABILITY RADIUS COMPUTATION FOR THE DELAYED PDE PROBLEM

DESCRIBED IN [10].

To demonstrate the applicability to a large-scale problem
we consider the PDE with delay from [10],

∂v(x, t)
∂t

=
∂2v(x, t)

∂x2
+ a0(x)v(x, t)+ a1(x)v(π−x, t− 1),

where a0(x) = −2 sin(x), a1(x) = 2 sin(x) and vx(0, t) =
vx(π, t) = 0. The second derivatives in space in are ap-
proximated with central differences. This gives rise to a
standard delay eigenvalue problem of the form (26), with
one delay and sparse matrices A0 and A1. The number of
spatial discretization points is taken such that n = 5000. The
weights are given by (w0, w1) = (1/2, 1/2).

The spectral abscissa is equal to −0.331213 < 0. An
application of Algorithm 2 yields the stability radius r =
0.250000. The result of successive Newton iterations is
displayed in Table II.

VI. CONCLUDING REMARKS

We described an algorithm for computing stability radii of
a large class of nonlinear eigenvalue problems of the form
(1) and illustrated its effectiveness by means of the delay
eigenvalue problem.

In many algorithms for solving nonlinear eigenvalue prob-
lems, the connection with a linearization of the eigenvalue
problem plays an important role. In this sense the adopted
approach for the computation of stability radii fully exploits
the dual representation of the eigenvalue problem: on the one
hand pseudospectra and stability radii are defined at the level
of the nonlinear problem in such a way that the structure of
the problem and the perturbations are fully respected; on
the other hand the corresponding algorithm relies on the
successive computation of selected eigenvalues, for which
the connection with the linearization may be beneficial.

Future works consists of imposing additional structure on
the perturbations of the individual coefficient matrices Ai in
(1) as well as restricting them to be real valued.
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