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Abstract: This survey explores recent results in the development of optimization algorithms and
formulations for moving horizon estimation (MHE), nonlinear model predictive control (NMPC) and
dynamic real-time optimization (D-RTO), with extrapolative nonlinear dynamic (e.g., first principle)
models. We consider Nonlinear Programming (NLP) and NLP sensitivity as natural tools for formulation
and efficient solution of optimization problems for these three tasks. For MHE, we develop a maximum
likelihood formulation that directly incorporates nonlinear models, and is seamlessly adapted to updating
the arrival costs. This approach is also extended easily to M-estimators, which essentially eliminate
biased estimates due to gross errors. For NMPC, we develop formulations that incorporate well-
understood stability and robustness properties, even for large, complex plant models. Finally, recent
work has extended these capabilities from setpoint tracking objectives to more general stage costs that
are economically based, thus leading to a robustly stable strategy for D-RTO. In concert with these
problem formulations, the realization of MHE, NMPC and D-RTO requires the application of a fast NLP
solver for time-critical, on-line optimization, as well as efficient NLP sensitivity tools that eliminate
computational delay, and guarantee stability and robustness. Algorithms that meet these demands are
explored and outlined for these tasks. Finally, a number of challenging distillation case studies are
presented that demonstrate the effectiveness of these optimization-based strategies.

Keywords: Nonlinear Programming, Nonlinear Model Predictive Control, Moving Horizon Estimation,
Dynamic Real-time Optimization

1. INTRODUCTION

Model-based control and optimization frameworks represent an
attractive alternative for the operation of complex processes.
These frameworks allow the incorporation of accurate and
complex dynamic process models and the direct handling of
multivariable interactions and operational constraints. In addi-
tion, the ability to incorporate nonlinear extrapolative models,
including detailed first-principles models, allows tighter inte-
gration of the controller to higher level economic optimiza-
tion layers such as real-time optimization (RTO), planning and
scheduling. Important enabling developments for this include
advanced strategies for DAE-constrained optimization and NLP
algorithms, as well as enhanced formulations with stability and
robustness guarantees.

Nonlinear model predictive control for tracking and so-called
“economic” stage costs, as well as associated state estimation
tasks, are reviewed, formulated and analyzed in considerable
detail by Rawlings and Mayne (2009) and Mayne et al. (2000).
Due to advances described in Chen and Allgöwer (1998);
Magni and Scattolini (2007); Diehl et al. (2005b) and Findeisen
et al. (2003), fundamental stability and robustness properties
of NMPC are well-known, and many of the key issues related
to the applicability and relevance of NMPC are understood.
Moreover, the availability of detailed dynamic process models
for off-line process analysis and optimization allows NMPC to
be realized on challenging process applications. Nevertheless,
an important hurdle is the cost and reliability of on-line compu-
tation; lengthy and unreliable optimization calculations lead to
unsuccessful controller performance.

Recent developments for NMPC address the important prob-
lem of computational delay. Li and Biegler (1989) proposed
the Newton-type strategy for constrained nonlinear processes,
where the nonlinear model is linearized around a nominal tra-
jectory, and a QP is solved at every sampling time. A real-time
iteration NMPC was proposed by Diehl et al. (2005a) where
only one Newton or QP iteration of the NLP is executed on-line
at every sampling time, instead of solving the NLP completely.
More generally, NMPC strategies have been developed that
separate optimization problem into an off-line NLP based on
predicted states, and fast on-line calculation for the actual state.
A neighboring extremal update (NEU) approach was proposed
in Würth et al. (2009), where an optimal control problem is
solved over a long time horizon. Then, during each sampling
time a fast update, determined by a QP, is performed for the
control variable. Feasibility and optimality criteria are then
checked to estimate the performance of each update. This was
recently extended in Wolf et al. (2011) with additional QP steps
to refine the solution on line to improve controller performance.
Also, nonlinear model-predictive control is adjusted online in
Alamir (2000) based on the expected computation time and the
number of iterations of the optimization problem. Findeisen and
Allgöwer (2004) extended the NMPC formulation to account
for computational delay. In addition, a number of fast NMPC
strategies have been developed including Diehl et al. (2005a)
and Ohtsuka (2004).

Knowledge of the plant state is essential for realization of
NMPC. In practice state information can only be inferred
through a set of noisy measurements, in combination with the
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dynamic process model. For linear systems this is done via
Kalman Filters (KF). Based on linearizations of the nonlin-
ear plant model, Extended Kalman Filters (EKF) are typically
applied (Jazwinski (2007); Bryson and Ho (1975)). However,
EKF may have poor performance for highly nonlinear systems
(Daum (2005); Prakash et al. (2010)), thus spawning related
estimation methods that include the Unscented Kalman Filter
(Julier et al. (2000)), the Ensemble Kalman Filter (Evensen
(1994)), and the Particle Filter (Arulampalam et al. (2002)).
On the other hand, none of these methods is able to deal with
bounds on the states, and this may lead to increased estimation
error or divergence of the estimator (Haseltine and Rawlings
(2005)). Remedies to handle constrained nonlinear state estima-
tion include Nonlinear Recursive Dynamic Data Reconciliation
(Vachhani et al. (2004)), Unscented Recursive Nonlinear Dy-
namic Data Reconciliation (Vachhani et al. (2004, 2006)), the
Constrained Ensemble Kalman Filter (Prakash et al. (2010)),
and the Constrained Particle Filter (Prakash et al. (2008)). In
contrast to the above estimators, the state estimation problem
can be formulated directly as a nonlinear programming (NLP)
problem. Here we consider Moving Horizon Estimation (MHE)
(Muske and Rawlings (1993); Michalska and Mayne (1995);
Robertson et al. (1996)), which uses a batch of past measure-
ments to find the optimal state estimates with an objective
function based on maximum likelihood concepts. MHE has
very desirable asymptotic stability properties (Rao et al. (2003))
with bounds on plant states handled directly by the NLP solver.
Efficient algorithms for MHE are presented in Ohtsuka and
Fujii (1996), Tenny and Rawlings (2002), Zavala et al. (2008),
Kuehl et al. (2011) and Abrol and Edgar (2011), which also
address computational delay.

Finally, the ability to perform nonlinear state estimation and
model-based control naturally extends to dynamic real-time
optimization (D-RTO). Current practice in process applications
decomposes economic optimization into two layers. First, real-
time optimization (RTO), optimizes an economic objective with
steady state models, leading to a setpoint handled by the lower-
level control layer. The advanced control layer (using, e.g.,
NMPC) then tracks the setpoint to achieve a new steady state.
However, this two-layer structured method assumes that model
disturbances and transients are neglected in the RTO layer
(Engell (2007); Adetola and Guay (2010)). Moreover, model
inconsistency between layers and unresolved transient behavior
may lead to unreachable setpoints (Rawlings et al. (2008)).
Finally, since the control layer has no information on dynamic
economic performance, it may generate trajectories that simply
track suboptimal setpoints to steady state (Rawlings and Amrit
(2009)).

As a result, it is often desirable to apply economically-oriented
NMPC that directly optimizes the plant’s economic perfor-
mance subject to dynamic constraints. Recent studies on dy-
namic real-time optimization (D-RTO) have reported signif-
icant performance improvements with economically-oriented
NMPC formulations (Zavala and Biegler (2009b); Rawlings
and Amrit (2009); Engell (2007); Aske et al. (2008); Am-
rit et al. (2013)). In addition, stability theory supporting
economically-oriented NMPC requires development beyond
the mature results for setpoint tracking based on a discrete Lya-
punov analysis. This problem formulation and stability analysis
must be modified to ensure a stable and robust D-RTO imple-
mentation, especially if steady state operation is expected.

This study addresses recent results for NMPC, MHE and D-
RTO that are based on advanced step concepts that particularly
focus on efficient NLP algorithms for background solutions
along with on-line updates based on NLP sensitivity. The next
section summarizes both the MHE and NMPC problem for-
mulations used in this study. Section 3 then presents an opti-
mization framework based on interior-point NLP solvers and
sensitivity concepts. Section 4 presents properties and formula-
tions for advanced step MHE (asMHE) and NMPC (asNMPC)
strategies. Section 5 discusses recent advances to asMHE for
the fast calculation of the arrival cost and the incorporation of
detection and elimination of measurements with gross errors.
Section 6 describes a multi-step extension of asNMPC that
allows very large process models to be solved in background
over multiple time steps. Section 7 then provides recent up-
dates for economic NMPC properties and demonstrates their
impact with a large-scale D-RTO study. All of these advances
are demonstrated with large-scale distillation case studies with
nonlinear first principle models. Finally, section 8 summarizes
the paper along with directions for future work.

2. NLP STRATEGIES FOR MHE AND NMPC

We begin with the following discrete-time nonlinear dynamic
model of the plant:

xk+1 = f (xk,uk)+ξk, yk = h(xk)+ζk (1)
where xk ∈ ℜnx is the true plant state at sampling time tk and
uk ∈ ℜnu is the control input. The nonlinear dynamic model
f (·, ·) : ℜnx+nu → ℜnx is the nominal model. The observed
output yk ∈ ℜny with ny ≤ nx is related to the state-space xk
through the nonlinear mapping h(·) : ℜnx → ℜny . The true
plant deviates from the nominal prediction due to the process
disturbance ξk ∈ ℜnx and measurement noise ζk ∈ ℜny which
we assume are Gaussian errors with ξk ∼N (0,Qk) and ζk ∼
N (0,Rk).

Using this information, we would like to compute an estimate
x̃k of the current state xk that can be used for our model-based
controller. In order to do this, we first solve the following MHE
problem:

min
zk−N ,...,zk

Φ(zk−N) +
1
2
(

k

∑
l=k−N

ζ
T
l R−1

l ζl +
k−1

∑
l=k−N

ξ
T
l Q−1

l ξl)

(2a)

s.t. zl+1 = f (zl ,ul)+ξl , l = k−N, . . . ,k (2b)

yl = g(zl)+ζl (2c)

zl ∈ X (2d)

where {z∗k−N|k, ...,z
∗
k|k} refers to the optimal state estimates at

each time step k and Φ(zk−N) = ||zk−N − x̃k−N ||2
Π̂
−1
k−N|k−1

is the

arrival cost that represents all the information before k− N,
not included in the horizon. Here the prior estimate of the past
plant state is denoted as x̄k−N with its associated covariance
Π̂
−1
k−N|k−1.

From the solution of (2) we obtain the optimal estimate x̃k = z∗k|k
and define the NMPC problem,
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min
vl

Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl) (3a)

s.t. zl+1 = f (zl ,vl) l = 0, . . .N−1 (3b)

z0 = x̃k (3c)

zl ∈ X,vl ∈ U,zN ∈ X f (3d)

where we assume that the states and controls are restricted to
the domains X and U, respectively. The stage cost is given
by ψ(·, ·) : ℜnx+nu → ℜ, while the terminal cost is denoted by
Ψ(·) : ℜnx+nu →ℜ. For tracking problems, we can assume that
the states and control variables can be defined with respect to
setpoint and reference values, and that when ζ = ξ = 0 the
dynamic model (1) has the property: f (0,0) = 0,g(0) = 0.

After solution of (3) the control action is extracted from the
optimal trajectory {z∗0...z∗N v∗0, ...,v

∗
N−1} as uk = v∗0 At the next

time, the plant evolves as,
xk+1 = f (xk,uk))+ξk, yk+1 = g(xk+1)+ζk+1 (4)

and we shift the measurement sequence one step forward to
solve the new MHE problem (2) and obtain x̃k+1. Then we set
k = k + 1 and use the new state estimate x̃k to solve the next
NMPC problem (3).

We refer to the above strategies as ideal MHE and ideal NMPC,
where the on-line calculation time is neglected. Ideal NMPC
has well-known stability properties (see Magni and Scattolini
(2007); Zavala and Biegler (2000)). with the following assump-
tions.
Definition 1. A continuous function α(·) : ℜ→ℜ is a K func-
tion if α(0) = 0,α(s)> 0,∀s > 0 and it is strictly increasing.
Assumption 1. (Nominal Stability Assumptions of Ideal NMPC)

(1) The terminal cost Ψ(·) satisfies Ψ(x)> 0,∀x ∈ X f \{0}.
(2) There exits a local control law u = h f (x) such that

f (x,h f (x)) ∈ X f ,∀x ∈ X f .
(3) Ψ( f (x,h f (x)))−Ψ(x)≤−ψ(x,h f (x)),∀x ∈ X f .
(4) ψ(x,u) satisfies αp(|x|) ≤ ψ(x,u) ≤ αq(|x|) where αp(·)

and αq(·) are K functions.

where X f is the terminal region.

Under these assumptions we can state the following theorem.
Theorem 1. (Nominal Stability of Ideal NMPC) Consider the
moving horizon problem (3) and associated control law u =
h f (x) that satisfies Assumption 1. Then, the objective function
of (3) is a Lyapunov function and the closed-loop system is
asymptotically stable.

Robust stability properties for NMPC are developed in Rawl-
ings and Mayne (2009). In particular, Ideal NMPC approach
satisfies the Input to State Stability (ISS) property for plants
described by (1) that have bounded uncertainties.

On the other hand, the computation time to solve (2) and
(3) does lead to computational feedback delay, which can
impact plant performance and even destabilize the process. To
reduce the on-line computational time we consider two crucial
elements, a fast NLP algorithm for background solution of the
NLPs (2) and (3) and a fast on-line correction step based on
NLP sensitivity. In the next section, we develop both tools in
the context of primal-dual interior-point solvers.

3. INTERIOR-POINT NLP SOLVERS

Both NLP problems (2) and (3) can be represented as:
minx F(x,η), s.t. c(x,η) = 0, x≥ 0 (5)

where x ∈ ℜn is the variable vector containing the states, con-
trols and outputs, and η is a fixed data vector used for sensitivity
purposes. The equality constraints are c(x,η) : ℜn → ℜm. In
interior-point solvers, the inequality constraints of problem (5)
are handled implicitly by adding barrier terms to the objective
function,

minx F(x,η)−µ

nx

∑
j=1

ln(x( j)), (6a)

s.t. c(x,η) = 0, (6b)

where x( j) denotes the jth component of vector x. Solving (6)
for the sequence of µ l → 0, with l = 0,1,2, . . . ,∞ leads to
solution of the original NLP (5). As shown in Forsgren et al.
(2002), convergence of solutions of (6) to (5) have been proved
under mild conditions.

For a given barrier parameter value µ , IPOPT solves the primal-
dual optimality conditions of barrier problems (6) directly,

∇xF(x,η)+∇xc(x,η)λ −ν = 0, (7a)

c(x,η) = 0, (7b)

X ·Ve = µe, (7c)

where X = diag(x),V = diag(ν), e ∈ ℜnx is a vector of ones,
and λ ∈ ℜnλ and ν ∈ ℜnx are Lagrange multipliers for the
equality constraints and bounds, respectively. The gradient of
the objective function is ∇xF(x,η) ∈ ℜnx while ∇xc(x,η) ∈
ℜnx×nλ is the constraint Jacobian. To solve this system of
nonlinear equations IPOPT uses an exact Newton method,
starting the iteration sequence at point sT

o := [xT
o λ T

o νT
o ]. At

the ith Newton iteration, the search direction ∆si = si+1− si is
computed by linearization of the KKT conditions (7), Hi Ai −I

Ai
T 0 0

Vi 0 Xi

[ ∆xi
∆λi
∆νi

]
=−

[
∇x f (xi,η)+Aiλi−νi

c(xi,η)
XiVie−µe

]
(8)

where Ai := ∇xc(xi,η). Matrix Hi ∈ ℜnx×nx is the Hessian of
the Lagrange function L = F(xi,η)+c(xi,η)λi−νi

T xi. After
solving a sequence of barrier problems for µ → 0, the solver
returns the solution triple sT

∗ (η) = [xT
∗ λ T
∗ νT
∗ ] for problem (5).

Solving the KKT system (8) is the most computationally de-
manding step in the solution of the NLP. However, the KKT
matrix arising from discretized dynamic optimization problems
is often very sparse and structured. In IPOPT, after eliminating
the bound multipliers from the KKT system (8), we apply a
symmetric indefinite factorization of the resulting KKT ma-
trix. The computational complexity of this strategy is gener-
ally favorable (often scaling nearly linearly with problem size).
However, significant fill-in and computer memory bottlenecks
might arise during the factorization step if the sparsity pat-
tern is not properly exploited. In order to factorize the KKT
matrix, efficient sparse linear solvers should be applied, e.g.
HSL library with the METIS option (Duff (2004)). Moreover,
since the structure of the KKT matrix does not change between
iterations, the linear solver needs to analyze the sparsity pattern
only once.
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For sensitivity of the NLP, we note that problem (5) is para-
metric in the data η and the optimal primal and dual variables
can be treated as implicit functions of η . For a sufficiently
small µ`, the KKT conditions (7) of the barrier problem (6) can
be expressed as the equations ϕ(s(η),η) = 0 and we denote
K∗(η0) as the KKT matrix in (8).

To compute approximate neighboring solutions around an al-
ready available nominal solution s∗(η0), we invoke the follow-
ing classical results,
Theorem 2. (NLP Sensitivity) (Fiacco (1983)) Assume that
F(·) and c(·) of the parametric problem (5) are twice contin-
uously differentiable in a neighborhood of the nominal solution
s∗(η0) and this solution satisfies LICQ, strict complementarity
and SSOC, then s∗(η0) is an isolated local minimizer of (5)
and the associated Lagrange multipliers are unique. Moreover,
for η in a neighborhood of η0 there exists a unique, continu-
ous and differentiable vector function s∗(η) which is a local
minimizer satisfying SSOC, strict complementarity and LICQ
for (5). Finally, there exists a positive Lipschitz constant L
such that ‖s∗(η)− s∗(η0)‖ ≤ L‖η −η0‖ along with a positive
Lipschitz constant LF such that the optimal values F(η) and
F(η0) satisfy ‖F(η)−F(η0)‖ ≤ LF‖η−η0‖.

Under these results, a step ∆s(η) computed from,

K∗(η0)∆s(η) =−(ϕ(s∗(η0),η)−ϕ(s∗(η0),η0))

=−ϕ(s∗(η0),η). (9)

with ∆s(η)= s̃(η)−s∗(η0), is a Newton step taken from s∗(η0)
towards the solution of a neighboring problem. Consequently,
s̃(η) satisfies,

‖s̃(η)− s∗(η)‖ ≤ Ls‖η−η0‖2 (10)
with Ls > 0. Furthermore, since the KKT matrix K∗(η0) is
already available from the solution of the nominal problem,
computing this step requires only a single backsolve, which can
be performed orders of magnitude faster than the factorization
of the KKT matrix.

When the perturbation η−η0 induces an active-set change, the
linearization of the complementarity relaxation (7c) contained
in the nominal KKT matrix K∗(η0) may drive the first Newton
iteration outside of the feasible region and the sensitivity ap-
proximation is inconsistent. A number of strategies have been
developed to accommodate active set changes. These include
the extension of (9) to quadratic programming problems as well
as simple clipping strategies, which choose a stepsize along ∆s
to ensure that uk remains within bounds. Detailed discussion
and evaluation of these strategies can be found in Yang and
Biegler (2013).

4. ADVANCED-STEP MHE AND NMPC STRATEGIES

Treatment of problems (2) and (3) with the above NLP and
sensitivity tools corresponds to the off-line and on-line com-
ponents, respectively, of advanced step strategies. At time tk we
use the current estimate x̃k and control uk to predict the future
state and associated measurement,

x̄k+1 = f (x̃k,uk), ȳk+1 = g(x̄k+1) (11)
With the prediction ȳk+1 we begin the execution of the MHE
problem (2). Simultaneously, we can use the predicted state
x̄k+1 to start the execution of the NMPC problem (3). Since
both problems are decoupled their executions can be done in

parallel, thus reducing solution time. At the solution of these
problems, we hold the corresponding KKT matrices Kmhe

∗ and
Kmpc
∗ .

Once the true measurement yk+1 becomes available, we com-
pute a fast backsolve with Kmhe

∗ to obtain an approximate
state estimate x̃as

k+1 (different from the optimal state estimate
x̃k+1). Using the approximate state estimate we perform a fast
backsolve with Kmpc

∗ to obtain the approximate control action
uk+1. Consequently, the proposed framework for the advanced-
step MHE and NMPC strategies, asMHE and asNMPC, respec-
tively, can be summarized as follows:

In background, between tk and tk+1:

(1) Use current estimate x̃as
k and control uk to predict the

future state x̄k+1 = f (x̃as
k ,uk) and corresponding output

measurement ȳk+1 = g(x̄k+1).
(2) Using the predicted ȳk+1 and x̄k+1 solve problems (2) and

(3) between tk and tk+1.
(3) Hold the KKT matrices Kmhe

∗ and Kmpc
∗ .

On-line, at tk+1:

(1) Obtain the true measurement yk+1 and reuse factorization
of Kmhe

∗ to quickly compute s̃MHE from (9) and extract
x̃as

k+1.
(2) Use x̃as

k+1 and reuse factorization of Kmpc
∗ to quickly com-

pute s̃MPC from (9) and extract uk+1.
(3) Set k := k+1, and return to background.

Stability and robustness properties of the advanced step strategy
have been analyzed in Zavala and Biegler (2009a). Since ex-
plicit bounds on the estimator error ‖xk− x̃k‖ can be established
for the MHE formulation (2) (Alessandri et al. (2008)), this
error can be treated as a disturbance ξk with x̃k := xk +ξk. The
following robustness result applies to the combined asMHE and
asNMPC strategies.
Theorem 3. Assume that the NLPs for (2) and (3) can be solved
within one sampling time. Assume also that nominal and robust
stability assumptions for ideal NMPC hold (see Zavala and
Biegler (2009a)), then there exist bounds on the noise ξ and ζ

for which the objective function, obtained from the combined
asMHE-asNMPC strategy, is an input to state stable (ISS)
Lyapunov function, and the resulting closed-loop system is ISS
stable.

4.1 Distillation Case Study

To demonstrate the performance of the asNMPC controller,
we consider a distillation example that separates methanol and
n-propanol. The model originates from Diehl et al. (2002)
and consists of differential-algebraic equations (DAEs) based
on dynamic MESH (mass, equilibrium, summation and heat)
equations for each tray as well as condenser (i=0) and reboiler
(i=NT+1). Here we consider a column with NT = 40 trays
along with a total condenser and a reboiler. The feed stream
enters the column at tray i = 21. Detailed presentation of the
DAE model, along with physical property equations (enthalpy,
Antoine equation, etc.) can be found in Diehl et al. (2002) and
López-Negrete et al. (2013).

For this example we considered 60 second sampling times, and
10 sampling times in the predictive horizon. The continuous
time DAE model is transformed into the discrete time model
(1) using orthogonal collocation on finite elements. Using 3
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Figure 1. asNMPC control of a binary distillation column
showing Temperatures on trays 14 and 28

point Radau collocation, the NLP consists of 19814 variables
and 19794 equality constraints. To account for plant model
mismatch we add zero mean, Gaussian noise to the differential
variables (total molar holdup and liquid compositions at each
tray) with variance 10−4 for the holdups and 10−6 for the
compositions. The control variables of this problem are the
reboiler heat duty and the reflux ratio. The objective function
takes the form in (3) with two setpoints on temperatures from
trays 14 and 28. These two measurements are sensitive to
changes in overhead and bottom product compositions.

Figure 1 shows the simulation results for the change from
setpoint 1 to setpoint 2, and compares the performance of ad-
vanced step NMPC with the ideal case. The average solution
time of the NLP (3) was 9.4 CPU seconds, while the sensitivity
step (9) takes an average of 0.063 CPU seconds. Thus, compu-
tational delay has been reduced by over two orders of magni-
tude. Both ideal and advanced step NMPC strategies effect the
setpoint change and show virtually identical performance.

5. ADVANCES IN MOVING HORIZON ESTIMATION

NMPC formulations are readily adapted to the integration of
state estimation components. In previous work, we analyzed the
application of fixed gain and Extended Luenberger observers,
along with EKF. Incorporating these state estimators within
NMPC leads to input to output practical stability (ISpS) strate-
gies (Huang et al. (2010b, 2012b)). Moreover, as demonstrated
in Huang et al. (2010a), asNMPC combined with these ob-
servers is straightforward to implement and leads to efficient,
offset-free performance even on challenging nonlinear process
systems, including air separation units with over 1500 DAEs.

These formulations are very successful for combined state esti-
mation and nonlinear control. On the other hand, accurate dis-
tributional information on these estimates is often lacking. As
an alternative, the more complex application of MHE requires
solution of an additional NLP (2), but (with Gaussian ξl ,vl) also
provides a firm statistical basis for the estimates.

Moreover, the advanced step MHE formulation allows for the
ready integration of a consistent state estimation strategy with
asNMPC, with negligible additional on-line cost; an approx-
imate state estimate x̃(k) can be obtained with a fast on-line
computation requiring a single backsolve of (9). In addition,
after new measurements are obtained at tk the arrival cost
Φ(x̃k−N) in (2) requires an update of the covariance Π̂

−1
k−N|k−1.

Detailed derivation of this covariance update is given in López-
Negrete and Biegler (2012). A prior covariance estimate is
generated by propagating the EKF equations forward, while
the posterior covariance is derived from an Extended Kalman
Smoother (EKS). Both updates arise from discrete Riccati
equations that grow cubically with problem size; this covari-
ance update becomes expensive for large systems.

Instead, the posterior update can be computed very efficiently
from the sensitivity of the KKT system of (2). In López-Negrete
and Biegler (2012) we prove the following result.
Theorem 4. (Covariance of state estimates). Assume that the so-
lution of (2) has no active bound constraints, and the linear in-
dependence constraint qualification (LICQ) and sufficient sec-
ond order conditions hold. Then the inverse of the reduced Hes-
sian (2), with the choice of zk−N as the independent variables,
is an approximation of the smoothed covariance for the arrival
cost.

Moreover, for nonlinear dynamic processes, the reduced Hes-
sian approximation of the covariance matrices incorporates ad-
ditional second order information, which is not included in
typical EKS (or EKF) formulations. Otherwise, the following
result from López-Negrete and Biegler (2012) shows where the
reduced Hessian covariance is equivalent to the EKS formula-
tion.
Theorem 5. (Covariance of linear Gaussian systems). For a lin-
ear unconstrained Gaussian system the approximation given in
Theorem 4 is exact and the inverse of the reduced Hessian is
the Kalman Smoothing covariance.

Extracting reduced Hessian information from (2) can be done
very efficiently from the KKT conditions of the NLP (Pirnay
et al. (2012)). To see this, we modify (5) as:

min F(x), s.t. c(x) = 0 (12)
and assume that no bounds on x are active at the solution. Fur-
thermore, we partition the variable vector into dependent (xD ∈
Rm) and independent (xI ∈Rn−m) variables, xT = [xT

D, xT
I ]. We

then modify the KKT system of (12) as follows:[
H∗ A∗

A∗,T 0

][
Sx
Sλ

]
=−
[
T
0

]
(13)

where the matrix T ∈ R(n−m)×n is given by T T = [0 | In−m].
We define Sx = ZSZ +Y SY , where Z ∈ R(n−m)×n, Y ∈ Rm×n,
SZ ∈ R(n−m)×(n−m), Y ∈ Rm×(n−m) and choose A∗,T Z = 0, with
A∗,TY and R = [Y | Z] nonsingular. Also, we determine Z and
Y by using A∗,T = [AT

D | AT
I ], with AD square and nonsingular.

This leads to Y T = [Im | 0], ZT = [−AI(AD)
−1 | In−m].

Multiplying the first row of (13) by RT and substituting Sx =
ZSZ +Y SY leads to the equivalent linear systemY T H∗Y Y T H∗Z Y T A∗

ZT H∗Y ZT H∗Z 0
A∗,T 0 0

[ SY
SZ
Sλ

]
=−

Y T T
ZT T

0

 (14)
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From (14) we have SY = 0 and SZ = (ZT H∗Z)−1, the inverse
of the reduced Hessian. Consequently, with the choice of zk−N
as the independent variables, this sensitivity-based approach
leads to efficient determination of the smoothed covariance for
the arrival cost in (2). Moreover, compared to the classical
forward/backward (EKF/EKS) evolution of the covariance with
the Riccati equations, with cubic complexity, we see that the
computational cost increases approximately linearly with our
approach. For a system with 250 states, this leads to a 500-fold
reduction in the calculation of the covariance matrix (López-
Negrete (2011)).

5.1 M-Estimator MHE Formulation for Gross Errors

Using asMHE for state estimation relies on predicted mea-
surements that are close to the actual measurements. However,
when measurements are contaminated with gross errors we
also need to assess their influence on the accuracy of the state
estimates. For this, Nicholson et al. (2013) develop an extended
MHE formulation that is robust to gross errors. Detecting such
errors and eliminating their bias is a crucial step to obtaining
robust state estimates. Robust M-Estimators for gross error
detection are considered here because they can easily be im-
plemented within our NLP formulation.

Two robust M-Estimators are considered in Nicholson et al.
(2013), the Fair (Huber-type) and Redescending (Hampel-type)
estimators. The Fair Function (Huber (1981)) is given by

ρ
F
j (ε j) =C2

[
|ε j|
C
− log

(
1+
|ε j|
C

)]
(15)

where ρ j is the estimator associated with the jth measurement,
C is a tuning parameter, and ε j is the studentized prediction er-
ror. The influence function for the Fair Function is proportional
to its first derivative:

dρF
j (ε j)

dε j
=

ε j

1+ |ε j |
C

(16)

For small residuals the Fair Function is a good approximation
of the least squares estimator, but as residuals become larger
it transitions to a linear function where less weight is put on
gross error measurements. Also, the influence function of the
Fair Function will approach a constant, confirming that the Fair
Function is robust to large measurement errors. Finally, the
Fair Function can be adjusted using its tuning parameter C to
balance efficiency with robustness. Smaller values of C cause
the Fair Function to become less efficient, thus causing smaller
residuals to deviate more from a Gaussian distribution.

The Redescending estimator (Hampel (1974)) is given by the
piecewise function:

ρ
R
j (ε j) =



1
2

ε
2
j , |ε j| ∈ [0,a)

a|ε j|−
a2

2
, |ε j| ∈ [a,b)

2ab−a2

2
+

a(b2−2(b+ |ε j|)c+ |ε j|2)
2(c−b)

, |ε j| ∈ [b,c)

ab− a2

2
+

a(c−b)
2

, |ε j| ≥ c,

(17)
where ε j is again the studentized prediction error and a, b,
and c are tuning parameters, which define the 4 regions in
the estimator. Each region behaves differently depending on

the magnitude of the residuals. The first derivative of the
Redescending estimator is

dρR
j (ε j)

dε j
=


ε j, |ε j| ∈ [0,a)
±a, |ε j| ∈ [a,b)

±a(c−|ε j|)
(c−b)

, |ε j| ∈ [b,c)

0, |ε j| ≥ c.

(18)

Again, for small residuals the Redescending estimator is a good
approximation of the least squares estimator. As the residuals
increase, they have less influence on ρR until eventually the
estimator just becomes a constant value. This translates to an
influence function that becomes zero after passing the threshold
defined by the tuning parameter c. In practice, this has the same
effect as removing any gross error measurement that exceeds
this threshold. The Redescending estimator depends on three
tuning parameters. Heuristic tuning methods (Arora and Biegler
(2001)) have been developed and good performance can be
obtained from either the Fair Function or the Redescending
estimator for various tuning parameter values.

M-estimators can be incorporated into our NLP formulation by
simply replacing the measurement error terms in the objective
function with the ρ function of the desired estimator. Our new
NLP problem becomes

min
zk−N ,...,zk

Φ(zk−N) +
1
2
(

k

∑
l=k−N

ρ
ME
l (vl)+

k−1

∑
l=k−N

ξ
T
l Q−1

l ξl)

(19a)

s.t. zl+1 = f (zl ,ul)+ξl (19b)

yl = g(zl)+ vl (19c)

zl ∈ X (19d)

One danger of using robust M-Estimators is the possibility of
type-1 errors, i.e. incorrectly identifying good measurements as
gross errors. While there is no way to completely eliminate type
1 errors there is a trade-off that must be considered between the
influence put on large residuals and the number of type-1 errors.
This trade-off must be taken into account when choosing the
tuning parameters for the robust estimators in order to achieve
good state estimation. Another concern is nonconvexity of the
Redescending estimator. Even with nonlinear plant models, the
likelihood of obtaining local solutions (and Type 1 errors) is
higher with the Redescending estimator, and careful initializa-
tion strategies should be considered for (19).

5.2 Distillation Case Study

For our state estimation formulations we use a horizon length of
10 measurements and we discretize the model using orthogonal
collocation with 3 collocation points. NLP (19) now has 21,642
variables and 20,718 constraints. The simulations are run for
300 time steps and each sampling time is 60 seconds. Again we
assume that there is no plant-model mismatch in order to isolate
the effects of the gross errors on each formulation. The co-
variance values for the measurements on tray temperature and
volumetric tray holdup are diag{0.0625,10−8} while covari-
ance for the process noise on mole fraction, tray molar holdup,
condenser holdup and reboiler holdup are diag{10−5,1,10,5}.
In general, we see that the MHE and asMHE estimates are very
similar but the average on-line time required for the asMHE
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Figure 2. Comparison of the MHE and asMHE formulations
with and without M-Estimators for the distillation case,
showing M21, the molar holdup on tray 21

formulation is only 0.022% of the time required to solve the
MHE problem. The MHE formulation (2) took on average
45.48 CPU seconds to solve, while the on-line component of the
asMHE formulation requires an average of 0.01 CPU seconds.
This leads to a large reduction in the on-line computational
expense without sacrificing the performance of the estimator.

We generate gross errors as sudden step changes in the mea-
surement errors in the temperature measurements and volumet-
ric holdups on 20 of the trays. Magnitude and location of the
step errors were generated randomly and about 15% of all mea-
surements contain gross errors. The results are shown in Figure
2. We observe that the two M-estimators provide a significant
improvement over the state estimates, when compared to MHE
with a weighted least squares formulation. Here the normalized
sum of squared errors for the state estimates are 864.43 for
MHE with least squares and 594.62 for asMHE. Using the Fair
function, the state estimate errors reduce to 2.27 for MHE and
1.86 for asMHE, while for the Redescending function, the state
estimate errors are 0.962 for MHE and 0.818 for asMHE. Thus,
while MHE and asMHE estimators based on (2) are unable to
track the true state, the Fair and Redescending modifications,
based on (19) are still able to predict accurate state estimates.

6. THE amsNMPC FORMULATION

The asNMPC strategy requires that problem (3) be solved
within one sampling time. If solution of problem (3) requires
Nsamp ≥ 1 sampling times, one could clearly update the control
variables less frequently, and thus detune the controller, but
performance of the controller would certainly suffer. For this
case, Yang and Biegler (2013) instead propose advanced multi-
step NMPC (amsNMPC) methods, which take two forms. The
serial approach performs a sensitivity update of the control
variable at every sampling time but solves the NLP problem
(3) over Nsamp ≥ 1 sampling times. On the other hand, the

parallel approach is applied over Nsamp processors and initiates
the solution of problem (3) at every sampling time. When the
controller receives an updated state estimate, the solution of
the most recent NLP solution receives a sensitivity correction
(9) to obtain the corresponding control variable, and the free
processor is applied to initiate a new NLP problem. The cycle
then repeats as NLP solutions and free processors are obtained.
The algorithms proceed as follows.

Parallel Approach
When Nsamp sampling times are required to solve the NLP prob-
lem, we solve problem (3) Nsamp sampling times in advance
to get the control variable for the current state. Here, v0|k is
updated from (9) once the new state estimate x̃k is obtained and
we define zNsamp|k as the Nsampth predicted state from the NLP
solution, given the initial condition x̃k. The updated zNsamp|k is
also the prediction that becomes the initial value of the next
NLP problem. Once the control variable is updated through
(9) at tk+1, the next available processor is applied to deal with
the next background NLP (3). The parallel approach is imple-
mented as follows:

For i = 0 : Nsamp−1,

Online: at tk+i, having x̃k+i, update v0|k+i and zNsamp|k+i using
(s∗(p0)+∆s(p)) from (3). Inject the updated v0|k+i as u(k+ i)
to the plant.

Background: take the updated zNsamp|k+i as the initial value and
solve the NLP problem (3) using a new processor.

Set k = k+Nsamp and repeat the cycle.

Serial Approach
Again, Nsamp sampling times are needed to solve the NLP
problem and the solution of the last NLP problem is known
at tk. Suppose the optimal solution of the last NLP solution
is known at tk. Knowing x̃k and uk we predict zNsamp|k as an
initial value and solve problem (3) between tk and tk+Nsamp . In
the meantime, the current control variables v1,v2, ...,vNsamp−1
are updated online using the sensitivity (s∗(p0)+∆s(p)), based
on solution of the previous NLP problem. However, for these
sensitivity-based updates, (9) cannot be applied directly. Instead
an augmented sensitivity system is constructed to account for
the predicted states and controls between tk and tk+Nsamp . This
augmented KKT sensitivity system is solved via Schur com-
plement decomposition and is described in Yang and Biegler
(2013).

The serial amsNMPC strategy is executed as follows:

Background: At tk, having x̃k and uk, update v0 and zNsamp using
∆s from (9). Solve problem (3) between tk and tk+Nsamp with an
updated zNsamp as the initial value.

Online: for i = 1 : Nsamp−1,

At tk+i, having z(k+ i), update the augmented sensitivity system
and obtain vi using ∆s. Inject the updated vi as u(k+ i) to the
plant.

Set k = k+Nsamp and repeat the cycle.
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Both approaches are closely related as they solve problem (3)
Nsamp steps in advance using the predicted states at k+Nsamp
from the current optimal solution. Moreover, as shown in Yang
and Biegler (2013), both satisfy nominal stability properties
under mild assumptions. On the other hand, the serial approach
uses only one processor, where (3) is solved every Nsamp sam-
pling times, and the first Nsamp control variables in the horizon
are updated through an augmented sensitivity approach. The
parallel approach uses multiple processors and problem (3) is
initiated at every sampling time, with the first control variable
updated using (9), but different KKT matrices are used at ev-
ery sampling time. With either approach, amsNMPC generally
reduces on-line computational cost by two to three orders of
magnitude, as with the asNMPC approach. We also note that
amsNMPC with Nsamp = 0, Nsamp = 1 and Nsamp = ∞ corre-
sponds to ideal NMPC, asNMPC and the basic NEU approach
(Würth et al. (2009)), respectively.

6.1 Distillation column case study

To demonstrate the amsNMPC approach, we consider a large-
scale propane-propylene distillation column. The distillation
model has the same DAE structure as in Section 4.1 but now
with 158 trays, and equilibrium constants approximated from
DePriester nomographs. The controlled states are the concen-
trations of propylene of the first and last trays, while the control
variables are the steam pressure in the reboiler and the bottoms
flow rate. The objective is to keep the states at their setpoints.
This case study compares the performance of ideal NMPC
and the parallel approach of amsNMPC. After discretizing the
ordinary differential equations with orthogonal collocation, the
NLP problem has 111650 variables and 111580 constraints.
Solution of problem (3) requires 90 CPU seconds, but with
a sampling time of only 60 s, Nsamp must be greater than
one, and amsNMPC must be used. To show the difference in
performance with different Nsamp; we assume we can choose
Nsamp = 0 (ideal NMPC), Nsamp = 1 (asNMPC) as well as
Nsamp = 2 and Nsamp = 3.

For this case, we change the setpoint at t = 30 and intro-
duce Gaussian noise with a standard deviation of 0.05% on
the output measurements. Fig. 3 shows that there is not much
difference among different cases in the states profile. Increasing
the noise level to 1% on all outputs but x[Ntray] in Fig. 4,
shows that the difference in the state profiles becomes larger
as noise level increases. With Nsamp = 3, the deviation from the
performance of ideal NMPC is the largest. As expected, NMPC
performance generally degrades as Nsamp increases, especially
for nonlinear systems with noise. Additional performance re-
sults and analysis can be found in Yang and Biegler (2013).

7. ECONOMIC NMPC AND DYNAMIC REAL-TIME
OPTIMIZATION

As explored in Biegler and Zavala (2009), combining the two-
layer RTO approach into a single dynamic optimization may
lead to significant improvements in process performance. In
particular, artificial setpoints used in (3) and determined from
a steady state optimization are no longer needed. Instead, a dy-
namic optimization directly maximizes an economic objective
using a well-tuned dynamic process model.

However, economic NMPC or, equivalently, dynamic real-time
optimization, is not as simple as replacing the stage costs in (3);
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Figure 3. Performance of the parallel amsNMPC with 0.05%
measurement noise
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Figure 4. Performance of the parallel amsNMPC with higher
level of noise

stability and robustness properties are still required. Moreover,
since the setpoint, i.e., the ’zero’ in Theorem 1, is unknown, we
need to consider how stability can be guaranteed.

The most direct way to enforce stability of economic NMPC
is to consider an infinite time horizon, N→∞. Significant early
advances have been made in designing NMPC controllers along
these lines (Angeli et al. (2012); Würth et al. (2009)), although
many issues relating to computation and robust stablity remain.
A more desirable result would be to assume that Economic
NMPC drives the process to a steady state. However, this
assumption cannot be guaranteed and counterexamples have
been presented in Angeli et al. (2012).

Nevertheless, there are several reasons to require convergence
to a steady state. In particular, production planning with eco-
nomic models over long time scales is based on steady state
models, and consistency with these models must be ensured.
Also, plant stability and robustness are easier to analyze under
steady state assumptions. Finally, steady state (or cyclic steady
state) operation is easier to monitor, analyze and manage.

To ensure that Economic NMPC converges to steady state we
revisit NMPC stability analysis through the following construc-
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tions. We first define the optimal steady state. To establish the
Lyapunov function, a transformed system is introduced by sub-
tracting the optimal steady state from the original system. Here,
the original system is asymptotically stable at the optimum if
the transformed system is asymptotically stable at the origin.
In addition, we need to show that the transformed Lyapunov
function is strictly decreasing. This requires an additional mod-
ification to create a rotated Lyapunov function, related to the
original system.

To define implicit reference values for the states and controls,
we consider the steady state optimization problem given by:

minψ(z,v), s.t. z = f (z,v),z ∈ X,v ∈ U (20)
with the solution given by (z∗,v∗). We introduce a transformed
system by subtracting the optimal steady state from the pre-
dicted values as follows:

z̄l = zl− z∗, v̄l = vl− v∗ (21)

and the transformed state evolves according to

z̄l+1 = f̄ (z̄l , v̄l) = f (z̄l + z∗, v̄l + v∗)− z∗ (22)

and z̄l ∈ X̄ and ūl ∈ Ū, where X̄ and Ū are the corresponding
sets for the transformed system. From equation (22), we see that
when (z̄l , v̄l) = (0,0),

z∗l+1 = f (z∗l ,v
∗
l ) = z∗ (23)

Similarly, we define the transformed stage and terminal costs
as:

ψ̄(z̄l , v̄l) = ψ(z̄l + z∗, v̄l + v∗)−ψ(z∗,v∗) (24)

Ψ̄(z̄l , v̄l) = Ψ(z̄l + z∗, v̄l + v∗)−Ψ(z∗,v∗) (25)

(26)

and Ψ̄(0,0) = ψ̄(0,0) = 0, so that the NMPC subproblem is
now given by:

min Ψ̄(z̄N)+
N

∑
l=0

ψ̄(z̄l , v̄l) (27)

s.t. z̄l+1 = f̄ (z̄l , v̄l), l = 0, . . . ,N

z̄0 = x̃k− x∗k , z̄l ∈ X̄, v̄l ∈ Ū, z̄N ∈ X̄ f ,

A key concern is that Assumption 1(4) generally does not
hold for transformed economic stage costs ψ̄ and does not
directly lead to a Lyapunov function. Instead, Diehl et al. (2011)
suggested the alternative rotated stage cost given by:

L(z̄l , v̄l) = ψ̄(z̄l , v̄l)+ λ̄
T (z̄l− f̄ (z̄l , v̄l)). (28)

where λ̄ is the multiplier from the equality constraints in (20).
This function has a local minimum at (0,0) and a global
minimum if L is convex. Moreover, this stage cost satifies
Assumption 1(4) if L is strongly convex. From f̄i(0,0) = 0,
L(z̄, v̄)≥ 0, L(0,0) = 0, and [z̄T v̄T ]∇L(0,0)≥ 0 we can write:

L(z̄, v̄) = ∇L(0,0)T
[

z̄
v̄

]
+1/2

∫ 1

0
[z̄T v̄T ]∇2L(τ z̄,τ v̄)

[
z̄
v̄

]
dτ

≥ 1/2
∫ 1

0
[z̄T v̄T ]∇2L(τ z̄,τ v̄)

[
z̄
v̄

]
dτ. (29)

If L(z̄i, v̄i) is strongly convex, we have for some γL > 0,

L(z̄, v̄)≥ 1/2
∫ 1

0
[z̄T v̄T ]∇2L(τ z̄,τ v̄)

[
z̄
v̄

]
dτ

≥ γL(|z̄|2 + |v̄|2)≥ β∞(|z̄|) (30)

and Assumption 1(4) holds. If (30) does not hold, regularization
terms may be added to the original stage cost in (3) for
economic NMPC.

ψ(zl ,vl)+‖zl− z∗‖2
Q +‖vl− v∗‖2

R (31)
where Q,R are suitably defined weighting matrices. Such a
regularization leads to the desired convexity property for the
rotated stage costs and ensures that Assumption 1(4) holds. In
addition, the terminal cost can also be considered by defining
the rotated terminal cost: LF(z) = Ψ̄(z̄)+ λ̄ T z̄.

Huang et al. (2012a) analyze the case of regularized Economic
NMPC formulations and prove nominal and ISS stability prop-
erties. Moreover, they extended this formulation to dynamic
processes that operate in a cycle steady state over a period of
K sampling times. (The particular case with K = 1 is the nor-
mal steady state). Such systems arise under periodic variation
of input conditions such as feedstocks, prices and boundary
conditions. These processes, which are never in steady state
but operate in cycles, include periodic adsorption processes,
reactors with reaction/regeneration cycles and processes which
follow diurnal variations in energy prices.

Within this optimization framework, Economic NMPC has
been demonstrated on a number of process applications. Amrit
et al. (2013) consider two literature processes and an extensive
set of case studies compare performance and costs between
tracking-type and Economic NMPC. These studies show that
optimizing process economics takes advantage of the type
and frequency of disturbances and can lead to an economic
advantage of 5-10% in steady-state profit over tracking-type
controllers.

For the dynamic real-time optimization of low density polyethy-
lene (LDPE) reactors, significant production improvements can
be made during fouling and defouling cycles (Zavala and
Biegler (2009b)). In particular, optimal adjustment of the tem-
perature profile can increase production levels by more than
10% compared to setpoint tracking.

For the control of compressors in gas pipeline applications, a
number of advantages can be seen in tracking diurnal variations
in electricity prices and cost savings of 5% were observed when
choosing real-time pricing over flat-rate schemes (Gopalakrish-
nan and Biegler (2013)).

Finally, for thermo-mechanical pulping in the paper industry,
the integration of economic objectives with an NMPC formula-
tion leads to potential reductions in energy cost of about 12%
for current process configurations (Harinath et al. (2011)), and
up to 24% with the addition of multiple pulping stages (Hari-
nath et al. (2013)).

7.1 Economic NMPC for Air Separation

To demonstrate Economic NMPC with a periodic cycle of K
sampling times, Huang et al. (2012a) consider the dynamic
model of an air separation unit. The unit contains two integrated
cryogenic distillation columns, each with 40 trays. The high
pressure column operates at 5-6 bars, while the low pressure
column operates at 1-1.5 bars and also has 40 trays. An air
feed flow is split into two substreams. The high pressure air
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(MA) enters the bottom of the high pressure column and the
expanded air (EA) enters the 20th tray of the low pressure
column. Crude nitrogen gas (GN) from the main heat exchanger
is also added to the 25th tray of the high pressure column.
The reboiler of the low pressure column is integrated with the
condenser of the high pressure column. The main products of
the high pressure column are pure nitrogen (PNI) (> 99.99%)
and crude liquid oxygen (∼ 50%). The low pressure column has
nitrogen product with∼ 99% purity and oxygen product (POX)
with ∼ 97% purity. The ASU model is represented by tray-by-
tray MESH equations for nitrogen, oxygen and argon and can
be found in Huang et al. (2009). The model is composed of
320 differential equations and 1,200 algebraic equations. Upon
discretization, problem (3) has 117,140 variables and 116,900
constraints.

The control structure is reported in Huang et al. (2009). We
choose the molar flow rate of product oxygen (POX-Y1), prod-
uct nitrogen (PNI-Y2), the temperature at 30th tray in the low
pressure column (Tl30-Y3), and temperature at the 15th tray in
the high pressure column (Th15-Y4) as output variables. Four
stream flow rates are considered as control variables, including
the expanded air feed (EA-U1), main air feed (MA-U2), reflux
liquid nitrogen (LN-U3) and crude nitrogen gas (GN-U4). The
stage cost is the electricity cost for the air feed compressor,
which equals (MA + EA)× electricity price. To demonstrate
periodic operation, a sinusoidally varying electricity price with
period of 60 minutes is used.

The NMPC formulation (20) with a periodic constraint is also
used to control the system. To guarantee the stability of the
closed loop system, a regularization term (31) is added to the
stage cost, with reference values for the outputs. Closed loop
responses are shown in Fig. 5 and 6. It is easy to see that both
input flowrates (EA and MA) exhibit sinusoidal behavior, and
are at their minimum when the electricity price is the highest.
Depending on the electricity pricing structure, Huang et al.
(2012a) report a 4-6% reduction in energy costs over optimal
setpoint tracking.
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Figure 5. Input profile for periodic ASU with Economic NMPC

8. CONCLUSIONS AND FUTURE WORK

Advances in large-scale nonlinear programming solvers and
sensitivity allow the formulation of nonlinear model-based esti-
mation (MHE) and control (NMPC) that require only negligible
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Figure 6. Output profile for periodic ASU with Economic
NMPC

on-line computation. This allows us to expand the scope of
control activities from mere setpoint regulation to trajectory
tracking and dynamic real-time optimization. Moreover, it al-
lows us to incorporate large-scale nonlinear process models into
dynamic on-line optimization strategies.

This study reviews recent results related to advanced step
MHE and NMPC. We summarize nominal and robust stability
properties for advanced step NMPC and discuss the extension
of this strategy to background calculations that are performed
over multiple sampling times. For MHE we describe a fast
method for the covariance update of arrival costs and we
modify the MHE formulation through the incorporation of M-
estimators, in order to remove the estimation bias due to gross
measurement errors. Finally, we extend the NMPC formulation
to consider economic stage costs that lead directly to dynamic
real-time optimization. All of these advances are illustrated
with distillation case studies with large-scale first principle
models.

These advances also lead to a number of open questions. Re-
lated to robust stability of NMPC, the ISS property assumes a
robust positive invariant (RPI) set but does not specify a guaran-
teed uncertainty margin. Future analysis with direct calculation
of RPI regions, possibly with tube-based NMPC approaches
need to be considered (Raković et al. (2006)). Along with
amsNMPC, multi-step variants of MHE also will be developed
along with deeper analysis of robust stability that extends the
results of Theorem 2. In addition, the use of M-estimators leads
to a promising strategy for detection of failed sensors and pro-
cess faults; it also extends the distributional assumptions of the
MHE formulation. Finally, recent results for Economic NMPC
raise interesting questions on the realization of dynamic RTO,
as well as the opportunity costs of operating at steady state and
the degree of regularization required.
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