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Abstract: The subject of compressed sensing, especially, the related concept of sparse
representation has been growing into an exciting area with a diverse set of applications in
the fields of image sensing and analysis, signal compression, network reconstruction, etc. The
efficacy of the associated techniques depends on the ability to discover a suitable basis for a
sparse representation of the underlying signal. This paper presents a method for discovering
this basis adaptively from the data. Specifically, the method estimates the dictionary of basis
functions that maps the sub-sampled signal to the sparse representation of the signal. We present
an application of this technique to the reconstruction of missing data, which is an important
problem in all data-driven methods. Two case studies, namely, the reconstruction of missing
data in a liquid level system and missing pixels of a 2-D signal (image) are presented. Results
show that the proposed algorithm outperforms the existing KSVD algorithm in terms of both
accuracy and speed of the reconstruction.

Keywords: compressed sensing;random sampling;missing data;basis pursuit;level
system;KSVD.

1. INTRODUCTION

Compressed sensing is an exciting branch of signal pro-
cessing with a growing number of applications in signal
compression, image analysis, etc. The problem of com-
pressed sensing is primarily concerned with the recovery
of the signal on a regular and finer grid from its measure-
ment (or representation) available on an irregular grid of
time or space or any other independent dimension (e.g.,
frequency). Recovering signals from limited or irregularly
spaced data is an old problem, but the formulation and the
solution methodologies are novel (Donoho, 2006; Candes,
2008). Several methods have appeared since the intro-
duction of this problem in what is considered as a sem-
inal paper by Donoho (2006). An important requirement
underlying the use of these techniques, however, is that
there exists a domain in which the underlying signal has
a sparse representation. This requirement actually stems
from the original motivation for compressed sensing. If a
regularly sampled signal can be represented by a fewer
coefficients, typically at irregularly spaced locations and in
a transformed domain (e.g., Fourier or wavelet domain),
then it is efficient to store only those fewer numbers. While
this is well-known, the contribution of compressed sens-
ing theory has been in providing methods to (i) directly
compute the significant coefficients without the need for
obtaining the complete sampled signal and (ii) to recover
the original signal from the significant coefficients or even
from irregularly sampled data, both under the assumption
of existence of a basis space for sparse representation.

Applications of compressed sensing can be broadly divided
into (i) design of algorithms and hardware for efficient
storage of signals and (ii) recovery of signals from irregu-
larly spaced data using sparse representations. The present
work belongs to the latter category. Irregularly spaced
data, specifically missing data are a commonplace in pro-
cess measurements due to a number of known reasons
such as sensor malfunctions, power outages, transmission
errors, etc (Guo et al., 2012). Developing methods for
handling missing data has been a topic of research over
the last four to five decades. A popular technique for
handling the problem of simultaneous model development
and missing data is the Expectation Maximisation (EM)
algorithm (Gopaluni, 2008; Moon, 1996). The EM algo-
rithm iteratively estimates the missing data and the model
parameters so that the likelihood of the complete data
is maximized. However, it is computationally expensive,
making it prohibitive for online applications. Several ap-
plications such as control and monitoring require online
recovery of lost data.

The problem of missing data reconstruction fits naturally
into the compressed sensing framework. Recently devel-
oped compressed sensing techniques can be used effectively
to estimate missing data [Romberg, J. and Wakin (2007)].
Donoho (2006) shows that O(K logN) non-adaptive mea-
surements are enough to reconstruct a signal of length N
samples, given the signal is K sparse in some basis, i.e.,
its representation should have K zero-valued coefficients.
Given the basis, various algorithms such as Basis Pursuit,
Orthogonal Matching Pursuit (OMP), etc are available
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in literature to reconstruct sparse representation of the
signal from available data. See Elad (2009) for a detailed
discussion of these algorithms. On the other hand, finding
a suitable sparsifying basis for a given application remains
an open-ended problem.

A simple choice of basis is a fixed or pre-specified basis
matrix (e.g., of the sinusoidal family). However, as is
known in several signal processing applications, a fixed
basis is not necessarily and usually the most appropriate
basis for a given process. The reason is that, a fixed basis,
while being mathematically suitable, does not necessarily
explain the physics of the process. An alternative is to
use an adaptive basis, i.e., one that is derived from the
data, which is the line of approach used in this work.
While an adaptive method aids in extracting the basis
that is appropriate to the given application, there is also
a provision to impose the amount of sparsity as desired
by that application. In the compressed sensing literature,
one comes across a few different adaptive techniques to
construct the basis matrix for sparse representations. The
Method of Optimal Dictionaries (or the Method of Op-
timal Directions), popularly known as MOD algorithm,
developed by Engan et al. (1999) (see also Candes (2008))
is one of the simplest techniques available for this purpose.
A widely used method is based on the K-SVD algorithm
due to Aharon et al. (2006). This method involves iterative
computation of Singular Value Decomposition (SVD) of
residual matrix as well as computation of inverse of the
obtained matrix. In a different work, Xie and Feng (2009)
propose the Kernel Fuzzy Codebook Estimation (KFCE)
algorithm, which integrates the distance kernel trick with
fuzzy clustering algorithm to obtain the basis matrix . A
major shortcoming that is common to all the aforemen-
tioned techniques is that they require complete data to
construct the basis matrix, which restricts their usage in
applications with missing data.

In the present work, we present a method to obtain an
optimal estimate of sparsifying basis (matrix) for a given
signal from its measurements where the data missing at
random. The proposed methodology is independent of the
locations of missing samples.

Two different scenarios, namely time domain and spatial
domain sparsity, are taken up for study with demonstra-
tions on two case studies, reconstruction of missing level
readings from a single liquid-level system and reconstruc-
tion of missing pixel values in an image respectively.

This paper is organized as follows. In Section 2 the basics of
compressed sensing are reviewed. The proposed technique
for the dictionary estimation is discussed in Section 3.
Section 4 presents the application of the method to the
aforementioned case studies. Concluding remarks appear
in Section 5.

2. FOUNDATIONS OF COMPRESSED SENSING

As described in §1, compressed sensing is concerned with
representing a signal with as few irregularly spaced coeffi-
cients or samples as possible, in contrast to the standard
representation of a signal using regularly spaced samples
(of usually large size). It rests on an important require-
ment, which is that the signal of interest should have a

sparse representation in some basis space. An N -length
vector x is said to be sparse if the number of non-zero
elements of x is much smaller than N . The discrete-time
impulse sequence (Kronecker delta function) {x[k] : x[k] =
0, k 6= 0, x[0] = c, c 6= 0}, for example, has the maximum
sparsity.

Several measures of sparsity exist. In general, a sparsity
measure should possess certain attributes such as scaling
invariance, sensitivity to re-distribution of amplitudes,
etc. See Hurley and Rickard (2009) and the references
therein for a comparison of sparsity measures and an in-
depth treatment of this topic. In the compressed sensing
literature, the l0-norm is frequently used as a measure of
sparsity, at least, for theoretical formulations. The zeroth
norm does not follow the usual definition of a p-norm. The
following definition is used instead. For any vector x,

||x||0 = #{i|xi 6= 0} (1)

where # denotes the cardinality of the set.

The mathematics of compressed sensing is as follows.
Consider a regularly sampled signal, denoted by s ∈ Rn.
Let y ∈ Rm denote the signal obtained by irregularly
sampling s, with (m� n). Note that the samples in y are
irregularly spaced. The sub-sampling operation in matrix
form can be written as

y = Ls (2)

where L ∈ Rm×n is the sampling matrix consisting of
1’s and 0’s at the appropriate locations. Recovering the
signal from (2) uniquely is not possible since we have lost
information in moving from s to y. Mathematically, it is an
underdetermined problem, i.e., it contains more number of
unknowns than equations.

Now assume that the signal s is sparse in some basis set
B, and denote the associated representation by x

s = Bx (3)

where B is an invertible mapping from the space of x to
the space of s.

Combining (2) and (3) yields

y = Ax (4)

where A = LB. Since, it is insisted that x is sparse, the
optimization problem to solve (4) is setup as

arg min
x
||x||0 such that y = Ax (5)

The matrix A is also known as the overcomplete dictio-
nary.

Solving (5) is a non-convex NP-hard problem. Conse-
quently, the zero-norm is replaced by a suitable norm.
Donoho (2006) proposed the 1-norm minimization - a
convex problem.

arg min
x
||x||1 such that y = Ax (6)

Candes (2008) proved that the zero-norm solution is iden-
tical to the 1-norm solution as long as A satisfies a condi-
tion known as the restrictive isometric property (RIP). A
basis pursuit (BP) algorithm can be used to solve (6)

The optimization problem in (6) is re-written in the
standard way as

x̂ = arg min
x
||y −Ax||22 + λ||x||1 (7)
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Two widely used techniques to solve (7) are the least
absolute shrinkage and selection operator (LASSO) and
basis pursuit de-noising (BPDN. We choose to employ
the BPDN in this work due to its robustness (to noise)
property. Another advantage is that even when x is not
sufficiently sparse, s can be approximated with a small
error.

Where the problem of interest is in recovering the original
s, knowing B it can be estimated from

ŝ = Bx̂ (8)

The reconstructed vector s depends on the choice of matrix
A. Hence matrix A should be chosen wisely.

Compressed sensing has diverse applications in different
fields. To mention a few, data compression, image de-
noising, estimation of missing data etc. Data compres-
sion refers to encoding information using fewer bits than
the original representation with minimal information loss.
Donoho (2006) proved that k log n random Gaussian mea-
surements, i.e., k log n randomly selected projections of
the measurements on Gaussian basis functions, are enough
to reconstruct n samples of a signal. In such cases, the
sampling matrix L will be a random Gaussian matrix. Elad
and Aharon (2006) successfully used compressed sensing
techniques to remove text data from the image. They
considered sampling matrix L as 2-D DCT matrix.

The present work is concerned with the application of the
compressed sensing concepts to reconstruction of missing
data, under an important assumption - the underlying
signal has a sparse representation in a basis space. To the
best of the authors’ knowledge, there exists no significant
work in the literature using these ideas although the
problem (of missing data reconstruction) itself has been
studied for decades now.

3. PROPOSED METHOD

The missing data problem is concerned with recovery of
lost data. In terms of the previously introduced notations,
the problem is that of recovering s from the incomplete
signal y. The proposed method first estimates A and then
proceeds to estimating the basis B in an optimal manner.

Given a set of training samples Y = {yi}
Nj

i=1 in a group,
the signal in the ith block is given by,

yi = Axi + v (9)

where v ∼ N (0, σ2
vINj ) (Gaussian white noise), X =

{xi}
Nj

i=1 is the sparse representation of the original signal
in the dictionary A.

As a first step. imagine the complete signal s ∈ Rn to
be made up of P blocks of equal length. Each block is to
be reconstructed individually. Blocks that have samples
at same locations (same time stamps) are concatenated to
form a group. Assume G groups exist and Nj , j = 1, · · · , G

such sub-blocks exist in each group. Note that

G∑
j=1

Nj = m.

The algorithm is applied to each group individually with
the eventual idea of fusing estimates of B from each group.

The optimum value of A is obtained by solving the
optimization problem,

Â = arg min
A

 Nj∑
i=1

min
xi

‖yi −Axi‖22 + λ||xi||1

 (10)

where the summation across blocks in each group is
justified by the fact that the blocks contain uncorrelated
errors.

The inner and outer minimization problems are solved
iteratively. The BPDN algorithm is used to solve the inner
minimization for a given A while the outer one provides
the estimate of A given x as follows.

Let the individual residual vector be

ei = yi −Axi

Substituting

Â = arg min
A

Nj∑
i=1

min
xi

‖ei‖22 (11)

which can be written as

Â = arg min
A
‖E‖2F (12)

Solving (12), we obtain the overcomplete dictionary

Â = YX(XXT )−1 (13)

Equation (13) and the solution to (7) are solved iteratively
as prescribed by the algorithm in Figure 1, where Lj

is the sampling matrix for the jth group. The number
of iterations is a user-defined parameter and is usually
governed by the accuracy requirements.

Initialize A0 ∈ Rm×n, k = 0
(1) Normalise the columns in matrix A
(2) Find column-wise sparse representation of Y in A

as
arg min

X
||yi −Ajxi||22 + λ ‖x‖1

(3) Update matrix A by using formula

Ak+1 = YXkT (XkXkT )−1

(4) End for loop

(5) Estimate basis matrix B̂j = pinv(Lj)×Ak

Fig. 1. Algorithm to find basis for particular group of data

After calculating overcomplete dictionary A, the basis
matrix B can be calculated as

B̂j = pinv(L) A (14)

Each group gives rise to a different estimate Bj . The
overall estimate of B is obtained as a weighted average of
all the estimates Bj , j = 1, · · · , G. The weight of a group
is given by Nj/G. The proposed algorithm is illustrated
with the help of following case studies.

4. RESULTS AND DISCUSSIONS

To test the performance of the proposed algorithm, it is
applied to a signal for which the true dictionary is known.
The signal is a mixture of three sinusoidal waves having
frequency 0.1Hz, 0.2Hz and 0.3Hz respectively. 1000 sam-
ples of the signal is generated and 100 samples are taken for
reconstruction. To make the simulation realistic, Gaussian
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Fig. 2. Ratio of elements recovered from true dictionary
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Fig. 3. Ratio of samples available (m/n) vs reconstruction
error

white noise is added to the data. It is known that mix-
ture of sinusoidal signals is sparse in Fourier basis. Every
10 samples of data is considered as a block. The graph
below shows the percentage of recovered elements from
the original dictionary for a particular group of samples.
From Figure 2, it is clear that proposed algorithm recovers
elements from true dictionary well when compared to K-
SVD algorithm. To test the basis obtained from the above
example, missing data reconstruction is done using the
obtained basis. Different ratios of available to total number
of samples are considered and normalised reconstruction
errors for different ratios is plotted in Figure 3. For com-
parison purpose, signal is also reconstructed using Fourier
basis. From the graph it is clear that reconstruction done
using proposed algorithm estimated missing data with less
error when compared to the reconstruction done using
true Fourier basis as well as basis obtained using K-SVD.
Reconstructed sparse vectors using proposed algorithm,
KSVD as well as Fourier basis is shown in the Figure 4.
The proposed algorithm is tested on two scenarios. One

is on reconstruction of missing level data of a single tank
system and other is on reconstruction of missing pixels in
an image. For comparison purposes, reconstruction is done
using basis designed by K-SVD. The reconstruction error
is calculated using the given formula

p = 1− ||ŝ− s||2
||s||2

(15)
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Fig. 4. Reconstruction of spectrum of sinusoidal signals
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Fig. 5. Reconstruction of sparse vector using various algo-
rithms

p can take values in between 0 to 1. The value of p close to
1 suggests good reconstruction. For illustrative purpose,
reconstruction is done using basis designed by KSVD also.
While designing basis using KSVD, it is assumed complete
data is available.

4.1 Level Data

The objective of this example is to reconstruct steady
state level data of a single tank system with irregularly
spaced samples. The level data is collected from the liquid
level system perturbed by a step change of 1V to the
pump. After reaching steady state, 550 samples of level
data are noted down.The data is sampled randomly to
get 100 samples. Every 10 samples of data is considered
as a block. The reconstruction is done using the basis
obtained from the proposed algorithm as well as K-SVD.
Figure 5 refers to sparse signal reconstruction of level data
using proposed algorithm and KSVD. Figure 6 compares
the reconstructed level data from proposed algorithm
and K-SVD to the original level data. The normalised
reconstruction errors and time taken for reconstruction
are given in Table 1. Results show that reconstruction
done using the basis obtained by the proposed algorithm is
better than the reconstruction done by the basis obtained
using K-SVD in terms of both normalised error and time
taken for reconstruction.
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Fig. 6. Reconstruction of level data using basis obtained
from various algorithms

Table 1. Reconstruction of level data

S. No. Method used Normalised error (p) Time (Min)

1 Proposed method 0.958 15.46
2 K-SVD 0.916 24.15

Fig. 7. Estimated basis Matrix using proposed algorithm
with elements sorted by their variance

4.2 Image reconstruction

The objective of this example is to reconstruct 256 × 256
pixel image data by using 10000 pixel data. Every 16 ×
16 pixels is considered as a block. The designed basis
using the proposed algorithm and KSVD is shown in the
Figures 7 and 8. Original image is shown in the Figure
9. Reconstructed sparse vector is shown in the Figure 10.
The reconstructed images using proposed algorithm and
KSVD are shown in the Figures 11 and 12 respectively.
The normalised reconstruction errors and time taken for
reconstruction are given in the Table 2. Results show
that reconstruction done using the basis obtained by the
proposed algorithm is better than the reconstruction done
by the basis obtained using K-SVD in terms of both
normalised error and time taken for reconstruction.

5. CONCLUSIONS

We presented a novel technique to construct basis from
available data. The proposed algorithm is verified on the

Fig. 8. Estimated basis Matrix using KSVD with elements
sorted by their variance

Fig. 9. Original Image
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Fig. 10. Reconstructed sparse vector of image data using
various algorithms
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Fig. 11. Reconstructed Image using proposed algorithm

Fig. 12. Reconstructed Image using KSVD

Table 2. Reconstruction of image

S. No. Method used Normalised error (p) Time (min)

1 Proposed method 0.9384 35.47
2 K-SVD 0.895 64.74

sinusoidal signal for which we know the true basis in which
it is sparse. Basis designed using K-SVD algorithm is also
used to compare the results obtained. Results show that
when compared to K-SVD, the proposed technique recov-
ered elements well from the true dictionary. The designed
basis along with BPDN algorithm is used to reconstruct
both real time data as well as image data. In both cases,
the proposed algorithm outperforms the K-SVD algorithm
both in terms of accuracy of reconstruction as well as time
taken for reconstruction. In future, proposed algorithm can
be modified such that it can be used to reconstruct the
dynamic signals.
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