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Abstract: We give a simple and accurate method for estimating the paramters of continuous
time systems under the constraint that all the poles of the system lie to the left of the line
s = −1. The method relies on the simple solution of a linear system of equations in the complex
domain. We demonstrate by the use of simulation that the proposed methods gives accruate
estimates when compared to existing methods. Methods for obtaining sparse solutions, which
help in determining the order of the system are also given.
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1. INTRODUCTION

Developing an accurate model for a process is one of the
most important issue in designing and tuning control algo-
rithms. Many of the previously studied methods for system
identification are in the discrete-time. For example, some
of the standard discrete time identification techniques are
discussed in (Ljung, 1987). However, in many cases it is
desirable to estimate a continuous model for the process.

Continuous Time Identification (CTI) has gathered in-
terest of late and there is considerable literature on the
subject. For example, see (Young, 1981),(Unbenhauen and
Rao, 1990), (Rao et al., 2006) and the references therein.
CTI methods can be divided into two main cateogries:
1) Indirect and 2)Direct methods. Indirect methods first
estimate a discrete time model and then compute the
continuous time model from the discrete model. Direct
methods estimate the continuous model from input output
data directly.

The main challenge with indirect methods is that accurate
conversion of models from discrete to continuous time is
difficult when the sampling time is too small or large.
Also, the zeros of the discrete time model cannot be easily
transferred to continuous time (Garnier et al., 2003).

In direct methods, the most fundamental problem is the
estimation of the time derivatives. Ofcourse, if the deriva-
tives can be estimated accurately from sampled data then
the solution can be obtained by an application of sim-
ple least squares. However, numerical estimation of time
derivatives is not always accurate. The issue of derivative
estimation is resolved in different ways in the literature.
To highlight the differences between proposed method
and existing methods, we describe the existing methods
briefly. For details and a nice review of these methods
please see (Garnier et al., 2003). The existing methods
can be broadly classified into 1) Pre-filtering methods 2)

Integration based methods and 3) Modulating function
based methods.

Pre-filtering is done so as to reduce the errors in derivative
estimation. The filter has to be designed so that it covers
the range of frequencies of the process. At the same time it
has to suppress high frequency components correspoding
to noise. Some of the filters used in practice are State
Variable Filters (SVF) and Generalized Poisson Moment
Functionals (GPMF).

Methods based on integration, integrate the basic dif-
ferential equation, so as to avoid computing derivatives.
In this method, typically, nth order integrals have to be
performed.

Finally, in the Modulating Function approach, the deriva-
tives of the input and output are transferred to the deriva-
tives of the modulating functions (which are smooth),
thereby bypassing the need to estimate derivatives from
sampled data. Equations resulting from many such modu-
lating functions are used in estimating an Equation Error
model using least squares.

The proposed method is based on the observation that
the Laplace transformed differential equation contains
much information as the transformed equation is valid for
(uncountably) infinitely many values of s. By exploiting
this fact, many equations (in fact, as many as required) can
be written involving the parameter vector. The resulting
equations can then be directly solved. In this paper we

only consider systems of the form an
dny
dtn + an−1

dn−1y
dtn−1 +

a1
dy
dt + a0y(t) = b0u(t).

The paper examines the optimal choice of s’s. The result-
ing matrix for any choice of s’s is the Vandermonde matrix,
infamous for being highly ill-conditioned. The optimal
Vandermonde matrix in terms of condition number is the
Discrete Fourier Transform matrix. It is this choice of
s’s on the unit circle that constrains the location of the
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dominant pole of the process and the input to be to the
left of the line s = −1.

2. PROPOSED METHOD

2.1 Noiseless Case

Consider a noiseless system described by

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ a1

dy

dt
+ a0y(t) = u(t) (1)

which when transformed into the laplace domain (assum-
ing zero initial conditions) gives

(ans
n + an−1s

n−1 + · · ·+ a1s+ a0)y(s) = u(s) (2)

This equation is only valid in the intersection of the region
of convergences of the Laplace transforms of both y and
u. Writing the above equation for n+ 1 different values of
s in this region, we get the matrix-vector equation given
by Ax = b, where

A =


1 s1 s21 · · · sn1
1 s2 s22 · · · sn2
...

...
...

...
1 sn+1 s

2
n+1 · · · snn+1



x =


a0
a1
a2
...

an−1



b =


u(s1)/y(s1)
u(s2)/y(s2)
u(s3)/y(s3)

...
u(sn+1)/y(sn+1)



(3)

The matrix A in equation (3) is known as Vander-
monde matrix and has the interesting property that if
s1, s2, · · · , sn are all distinct then the matrix is invertible
(or has full rank). Therefore, if s1, s2, s3, · · · , sn+1 are cho-
sen so that they are all distinct, (3) has a unique solution,
which should coincide with the original parameter vector.

2.2 Numerical Issues

Typically, only y(t) ∀t ≥ 0 is known and not its laplace
transform. However, the laplace transform can be found
numerically from the time domain data, i.e.

∫ ∞
0

e−sty(t)dt ≈ δ
T∑
k=0

e−skδy(kδ) (4)

where δ is the sample time. Note that for values of s
outside the region of convergence, the laplace transform
will diverge so the choice of s is important. In the following,
let R denote the intersection of the region of convergences
of y and u.

If all s1, s2, s3, · · · , sn+1 are chosen to lie in R, theoret-
ically, equation (3) has a unique solution. However, in
practice a few numerical issues need to be addressed to
obtain accurate solution. The two main problems that
might arise are :

(1) Bad conditioning of A which results in inaccurate
estimates of the parameter vector

(2) Errors in the estimating the laplace transforms
u(s), y(s) numerically

These two problems are addressed in the following. Van-
dermonde matrices are known to be highly ill conditioned
and therefore the values of s need to be chosen carefully.
The Discrete Fourier Transform Matrix given by

D =



1 1 1 · · · 1

1 e−
i2π
n+1 e−

i4π
n+1 · · · e−

i2nπ
n+1

1 e−
i4π
n+1 e−

i8π
n+1 · · · e−

i4nπ
n+1

...
...

...
...

...

1 e−
i2nπ
n+1 e−

i4nπ
n+1 · · · e−

in22π
n+1

 (5)

is a Vandermonde matrix with the choices sk = e−
i2kπ
n+1 , k =

0, 1, · · ·n. The condition number of D denoted κ(D) is
equal to one, i.e. κ(D) = ‖D‖2‖D−1‖2 = 1 as D is an
orthogonal matrix.

Therefore, A = D is chosen so that A has perfect con-
ditioning. Finding the Vandermonde matrix A of a given
size with the smallest condition number (with real entries)
can only be posed as an optimization problem as closed
form solutions do not yet exist. For example, see Walter
(1975) for explicit constructions of Vandermonde matrices
for small sizes and a nonlinear programming algorithm for
large sizes. Here, the condition number used is based on
the 1-norm, i.e., κ(A) = ‖A‖1‖A−1‖1.

The matrix D contains values of s which lie on the unit
circle. As all the choices of s need to lie in R, complex
numbers s with real parts greater than −1 should also lie
in R so that the choice A = D is meaningful. This choice
of A also places a constraint on the input u. For example,
u cannot be chosen to be a step as the ROC of the laplace
transform of u is Re(s) > 0. Instead if u(t) = e−at where
a > 1, then Re(s) > 1 is a part of ROC and the choice
A = D can be substantiated.

Another important consequence of the choice is that the
poles of the system also need to lie to the left of the line
Re(s) = −1. Finally, with the choice A = D, the solution
vector can simply be calculated as (n+ 1)−1AT b.

Errors in the numerical estimation of the laplace transform
also have an impact on the performance of the algorithm.
If the dominant pole of the transfer function between y
and u, i.e., 1

ansn+an−1sn−1+···+a1s+a0 lies far away to the

left of the line s = −1, then the errors should be small.
This is because y(t) decays much faster in this case and
hence errors for large values of t will be minimal.

Figure 1 shows the comparison of the numerical and actual
laplace transforms for y(s) given by:

G(s) =
1

(s+ 2) ∗ (s+ 2.2) ∗ (s+ 2.1)

∗ 1

(s+ 2.8) ∗ (s+ 3.0) ∗ (s+ 2.1)

u(s) =
1

s+ 1.5
y(s) = G(s)u(s)

(6)
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In this system, it can be seen that the real parts of the
poles are less than s = −1. This is required for previously
described reasons.

(a) Real part

(b) Imaginary part

Fig. 1. Comparison of numerical and actual laplace trans-
forms

The numerical laplace transforms are calculated using (4),
width δ = 0.1, T = 100. It can be seen from the figure that
the difference between the two is minimal. However, this
breaks the theoretical guarantee that the solution obtained
is exactly equal to the parameter vector.

Therefore, in practice one can expect that the computed
solution to differ slightly from the original if the matrix A
is well conditioned. If the s’s are chosen randomly in (3)
the condition number of A has been found to be very
high (e.g. of the order of 1010), which makes the inversion
process unstable even for small changes in the observation
vector u(s)/y(s). This observation reiterates the fact that
Vandermonde matrices are typically ill-conditioned for
arbitray values of s1, s2, · · · , sn.

2.3 Noisy Case

Consider the system described by

u(t) = an
dny

dtn
+ an−1

dn−1y

dtn−1
+ a1

dy

dt
+ a0y(t)

z(t) = y(t) + e(t)
(7)

where z(t) is the observed data and e(t) is noise such that
|e(t)| < ε ∀t. The laplace transform of this system is

z(s) = y(s) + e(s)

z(s) = u(s)/(ans
n + an−1s

n−1 + · · ·+ a1s+ a0) + e(s)

Therefore, (ans
n + an−1s

n−1 + · · · + a1s + a0) = u(s)
z(s) +

(ans
n + an−1s

n−1 + · · ·+ a1s+ a0) e(s)z(s) . For various values

of s, this can be written as Ax = b+ e′, where e′ contains

the values of (ans
n+an−1s

n−1 + · · ·+a1s+a0) e(s)z(s) for the

chosen values of s. With further simplification, this can be
written as Ax = b + BAx. where B is a diagonal matrix

containing the values e(s)
z(s) .

The bound on e′ is first computed as this gives the
magnitude of the error in the equation Ax = b+ e′.

‖e′‖2 = ‖BAx‖2
≤ ‖B‖2‖A‖2‖x‖2
≤ ‖B‖2‖A‖2‖x‖2

≤
∣∣∣∣ e(smax)

z(smax)

∣∣∣∣ ‖A‖2‖x‖2
(8)

where smax is the value for which
∣∣∣ e(s)z(s)

∣∣∣ attains its max-

imum among the chosen values of s. Note here that the
above is meaningful for A = D only if the Laplace trans-
form of the noise e(s) converges for Re(s) > −1. In this

case, ‖e′‖ ≤
∣∣∣ e(smax)
z(smax)

∣∣∣√n‖x‖2.

If true Brownian motion (Mörters et al., 2010) is consid-
ered a model for e(t), it can be shown that the Laplace
transform converges (almost everywhere, in the sense of
measures) only for Re(s) > 0. Therefore, the above choice
of A = D is not applicable. However, in most simula-
tions performed using MATLAB, for e.g. using the uni-
form random number generator, it was found that the
numerical Laplace transform of noise indeed converges for
Re(s) > −1. We shall avoid explicit calculations of the con-
vergence of the Laplace Transform of the continuous noise
processes and assume in the following that it converges in
Re(s) > −1.

In the noisy case, it is more helpful to consider many
observations than dictated by the order of the system – the
number of rows of A can be chosen to be much larger than
the columns. In this case, the solution can be obtained
by standard least squares. For instance, for a sixth order
system the matrix A can be chosen to have dimensions
20×7 by constructing the matrix from the first 7 columns
of the 20×20 DFT matrix (5). Note that this ensures that
ATA = cI where c is a constant and κ(A) = 1. The least
squares solution is then given by xls = (ATA)−1AT b.

2.4 Numerical Experiments

Experiments on first, second order systems and the exam-
ple in the previous section are presented here.

(1) First order system: Let the process transfer func-
tion be given by G(s) = 1

s+2 . We first obtain the

response (y(t)) of this system to an exponential input
(u(t) = e−1.5t) using simulink (The exponential input
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can be programmed using S-functions in MATLAB).
The identification algorithm is provided with this
data. In practice, one does not know the order of
the system before hand. Therefore, we give some
leeway and choose n = 3. That is, we are solving
for a third order system even though the data have
been produced by a first order response. The result
from the algorithm is x = (2.00, 1.20, 0.11, 0.0)T , i.e.
a0 = 2.00, a1 = 1.20, a2 = 0.11, a3 = 0.00.

It can be said that the identification method closely
approximates the true system. The third and fourth
elements a2, a3 are small compared to the first two
suggesting that the original system might indeed be
first order.

(2) Second order system: ConsiderG(s) = 1
s2+2∗1.4∗s+1

and u(s) = 1
s+1.5 as before. The solution obtained for

n = 3 is x = [1.18, 2.72, 1.46, 0.06] and for n = 4
is x = [1.36, 2.46, 1.62, 0.00,−0.15]. In both the cases
the higher order coefficients are small compared to
a0, a1, a2. However, it is not accurate to say that
system is second order based on the obtained solution
as a5 = −0.1533 does not seem to be small enough.
This issue is analyzed later in Section 4.

(3) Sixth order system: Consider the system described
in equation (6). The solution from the algorithm when
n = 6 is x = [163, 423.35, 456.18, 260.92, 83.51, 14.17, 1.0].
The original parametor vector after expanding the
terms is x0 = [163, 423, 456, 261, 84, 14, 1]. For n = 7
the solution obtained is
x = [163, 439, 500, 309, 112, 24, 2.8, 0.2].

3. COMPARISON

We compare the proposed method with the SVF and the
GPMF methods mentioned in the introduction. For the
sixth order system above, Table 1 shows the coefficients
obtained from these methods. Note that, the Laplace
transform for the input 1

s+1.5 has been directly used in the
simulation instead of calculating it from the input data.
For the output however, the Laplace transform has been
computed from the data as described previously. Table 1
has been obtained by using the lssvf and lsgpmf functions
in the CONTSID toolbox. It can be observed that the
estimates from the proposed method are closer to the
actual values.

Table 1. Comparision of the proposed method with
SVF and GPMF in Noiseless case

Coefficient Actual SVF GPMF Proposed

a0 162.99 175.52 175.52 162.98

a1 423.36 455.68 455.69 423.37

a2 456.19 490.56 490.52 456.17

a3 260.97 280.15 280.06 260.92

a4 83.57 89.33 89.16 83.52

a5 14.2 15.05 14.97 14.16

a6 1.0 1.01 0.97 1.01

Table 2 shows the results when noise has been added to
the data. The output is corrupted using additive noise
z(t) = y(t) + e(t) where e(t) is a uniform random variable
such that |e(t)| < ε as in (8). ε has been chosen such
that the noise to signal ratio is equal to 0.05, i.e. 5%.
The results of the algorithm are then obtained by giving

Fig. 2. Comparison of the step responses of proposed
method with the SVF and GMPF methods

as input u(t), z(t) to the algorithms. For bias correction,
ivsvf and ivgpmf methods have been used in the results
shown in Table 2. The step response comparison has been
shown in Figure 2. It can be seen that the estimates of the
proposed method are closer to the true system.

From Figure 3 it can be seen that the Nyquist plots of
SVF and GPMF methods coincide away from the original
system response and the proposed method is closer to the
original system.

Fig. 3. Comparison of Frequency Response

We conclude from these comparisons that the proposed
method performs satisfactorily when compared to existing
methods such as SVF and GPMF.

Table 2. Comparision of the proposed method with
SVF and GPMF in the Noisy case

Coefficient Actual SVF GPMF Proposed

a0 162.99 174.24 174.39 167.47

a1 423.36 456.57 456.41 419.61

a2 456.19 493.33 495.24 457.12

a3 260.97 284.05 283.23 266.19

a4 83.57 98.97 101.25 86.08

a5 14.2 16.13 15.73 16.86

a6 1.0 2.90 3.44 1.92
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4. SOLVING FOR SPARSE SOLUTIONS

The least squares solution to Ax = b may contain elements
which are close to zero but not exactly zero due to error
in computing b (i.e. in estimating the numerical Laplace
transform). Note that zero elements in the solution of
(3) are desirable because they provide us with a better
understanding of the order of the system. For example, we
want a5 to be exactly equal to zero in the second order
example above.

This combinatorial problem can be posed as, find x such
that

‖Ax− b‖2 ≤ ε, ‖x‖0 is minimized (9)

where ‖x‖0 is defined as the number of non-zero elements
of x. Obtaining a solution to this problem is computa-
tionally hard. A convex relaxed verion of this problem
known as Basis Pursuit Denoising (BPDN) is typically
solved instead:

‖Ax− b‖2 ≤ σ, ‖x‖1 is minimized (10)

Large literature exists on the convex relaxed problem
above. When the number of rows of A is smaller than
the number of its columns, this problem is studied in the
area of Compressed Sensing. When the number of rows of
A is larger than the number of its columns, the BPDN
is closely related to Lasso due to Tibshirani (Tibshirani,
1996) which has been well established in the statistical
commnunity.

For solving (10), a value for σ is needed. σ can be
calculated based on (8). Indeed, if Re(smax) > 0, then

‖e′‖ ≤
∣∣∣∣ e(smax)

z(smax)

∣∣∣∣√n‖x‖2
≤ ε

√
n

Re(smax)|z(smax)|
‖x‖2

(11)

The minimum value for Re(s)|z(s)| over the chosen values
of s can be used as to estimate ‖e′‖. However, in practice
it was found that this bound is too loose, allowing the
zero vector to be a solution, i.e. σ > ‖b‖2. Therefore, σ is
calculated in a different way as explained below.

Let xls be the least squares solution to Ax = b with A
chosen as in Section 2.3. The value for σ needs to be atleast
as large as ‖Axls − b‖. Therefore, σ = ‖Axls − b‖ + γ is
chosen, where γ > 0. With a value of γ = 10, the solution
obtained by solving (10) is shown in Table below (the
solution is denoted by xl1).

Coefficient xls xl1 x6ls
a0 167.47 164.83 167.47
a1 419.61 416.96 419.61
a2 457.12 454.48 457.12
a3 266.19 263.55 266.19
a4 86.08 83.44 86.08
a5 16.86 14.22 16.86
a6 1.92 0 0
a7 -1.35 0 0
a8 0.94 0 0
a9 1.30 0 0
a10 2.53 0 0

It can be seen that the solution xl1 contains many zeros
for the higher order terms. Even though the solution is

accurate for a0, a1, · · · , a5 the procedure fails to obtain
the correct value for a6. However, using this solution a
very close estimate of the order of the system can be
obtained. The results as presented here were implemented
using SPGL1 MATLAB code with the function spg_bpdn.

A problem with the BPDN algorithm is that the value
of σ has to be known. In the previous example, γ = 10
was chosen but this was based on trial and error. Another
method for finding sparse solutions is described below.

Let xls = (ATA)−1AT y be the least squares solution as
above. The best k-sparse approximation to xls is defined
as xkls = argminx‖x − xls‖, ‖x‖0 = k. In other words, xkls
consists of the first k maximum values of xls in the absolute
sense. The rest of the elements in xkls are equal to zero.

Fig. 4. Plot of k vs ‖Axkls − b‖ (= Error)

From Figure 4 it is possible to guess that the order of the
system is around 6 as the error plot is essentially constant
after k = 6. Typically, such plots are obtained by solving
the least squares solution for many values of k, the model
order. Here, the least squares solution is obtained only
once. The solution obtained for this order is shown in the
Table. It can be seen that the solution is just a truncation
of the least squares solution.

Fig. 5. Comparision of Nyquist plots for the sparse meth-
ods

Figure 5 compares the nyquist plots of the Original system
with the sparse systems obtained from xl1, x

6
ls. It can be
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seen that even though the sparse methods estimated a
system of one lower order the nyquist plots are in close
agreement.

5. CHALLENGES IN THE GENERAL CASE

In the general case (for example, for step inputs and
stable systems) it can only be assumed that the Laplace
Transforms for y, u will only converge for Re(s) > 0. In
order to cope with this using the proposed method, we
need a choice of s1, s2, · · · , sn so that Re(si) > 0 ∀i > 0
and the resulting matrix have good condition number.
However, it seems that (based on Monte Carlo simulations)
with such choice of si’s obtaining matrix with a good
condition number is very hard.

Therefore, we look for other paradigms where the inversion
process could be stable. One such approach is to use an
underdetermined system of equations via the methods of
Compressed Sensing. For example, it is known that (Ak-
cakaya and Tarokh, 2008) if A is a N × M,M < N
Vandermonde Matrix with distinct nodes (i.e. si’s) and
there exists a solution x to ATx = b such that ‖x‖0 < N

2
then this solution can be reconstructed exactly from the
knowledge of b. The authors in the above referenced paper
give a method for this reconstruction based on Euclid Al-
gorithm. It has been observed that the algorithm does not
result in the correct solution vector even if there are minute
changes in the vector b. In other words, the inversion (or
reconstruction) process is unstable.

In the realm of Compressed Sensing, properties such as
Coherence and Restricted Isometry Property (RIP) play
an important role in stability of inversion. We shall focus
on Coherence here as RIP is NP-hard to check. Coherence
of a matrix A is defined as

µ(A) = max
|〈ui, uj〉|
‖ui‖‖uj‖

where the maximum is taken over all i 6= j and ui’s are
columns of A.

Matrices with small Coherence allow stable reconstruc-
tion. The Coherence of Vandermonde Matrices is directly
related to the Turan’s problem (Bourgain et al., 2011).
Turan’s problem is to find the values of s1, s2, · · · , sn so
that

max

∣∣∣∣∣∣
n∑
j=1

skj

∣∣∣∣∣∣
is minimised. This can be seen to exactly equal to (upto a
constant) the coherence defined above when the si’s lie on
the unit circle. Turan’s problem does not have a generic
solution and is considered an important open problem. For
the purpose of System Identification in the general case,
an additional constraint that Re(si) > 0 ∀i also needs
to imposed in the Turan’s problem. Therefore, it can be
argued that fundamental results in other areas are needed
to apply the proposed method in the general case.

6. CONCLUSION

In this paper we have presented a new method based on
the simple solution to a system of equations which can be
used to obtain the coefficients of a differential equation.

In the noisy case, bounds on the Laplace transform of
the error have been derived and the least squares solution
is shown to give accurate results. When the order of the
system is not known, sparse methods such as Basis Pursuit
Denoising and another method (due to the first author)
have been shown to aid in estimating the unknown order.

To be able to solve the problem in the general case, one
needs fundamental results in other areas of mathematics
(such as positive solutions to the Turan’s problem). In
this paper, initial conditions and orders of numerators
greater than one are not considered. We believe that
these problems too can be tackled using the proposed
framework. This work will be pursued in future.
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