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Abstract: In this paper, we develop a novel Model Predictive Controller (MPC) based on
soft output constraints for regulation of a cement mill circuit. The MPC is first tested using
cement mill simulation software and then on a real plant. The model for the MPC is obtained
from step response experiments in the real plant. Based on the experimental step responses
an approximate transfer function model for the system is identified. The performance of the
MPC in the real plant compares favorably to the existing control system based on fuzzy logic.
Compared to the other controllers, soft MPC handles the real time uncertainties effectively. It
also regulates the cement mill circuits better and in a plant friendly way by using less variation
in the manipulated variables (MVs).
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1. INTRODUCTION

The annual world consumption of cement is around 1.7
billion tons and is increasing at about 1% a year. The
electrical energy consumed in the cement production is ap-
proximately 110 kWh/ton. Global cement production use
approximately 2% of the worlds primary energy consump-
tion and 5% of the total industrial energy consumption
(Concil, 1995; Austin et al., 1984). 30% of the electrical
energy is used for raw material crushing and grinding while
around 40% of this energy is consumed for grinding clinker
to cement powder (Fujimoto, 1993; Jankovic et al., 2004).

Clinker grinding can be done either using a ball mill or
a vertical roller mill. It is the final stage in cement pro-
duction where the clinker is ground with other materials
to form fine cement powder. The ball mill is the most
common process for cement grinding. The reasons are it
high reliability, its possibility of gypsum dehydration and
the easy maintenance of ball mills.

The ball mill, is designed for grinding of clinker, gypsum
and dry or moist additives to produce any type of cement
and for separate dry grinding of similar materials with
moderate moisture content. All mill types may operate
in either open or closed circuit and with or without pre-
grinder, to achieve maximum overall grinding efficiency
and high flexibility in terms of product quality. Fig. 1
shows a typical layout of the mill. Usually ball mills
are divided into two chambers depending on the size of
the input material used and the availability of a clinker
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Fig. 1. Ball mill layout

pre-grinding circuit. Up to 5% gypsum and/or natural
anhydrite is added to regulate the setting time of the
cement. Other chemicals, such as those which regulate
flow or air entrainment, may also be added. Fine grinding
using ball mills is in general extremely energy inefficient.
Many plants use a roll crusher to achieve a preliminary
size reduction of the clinker and gypsum. Just 4% of the
energy available is efficiently used for grinding.

Efficient control is required in order to reduce the specific
production costs while maintaining the product quality
at an acceptable level. The control philosophy for cement
mill thus remains challenging as low production results
in huge power consumption and high production may
cause inefficient grinding. The cement grinding controller
must provide economically efficient production which is
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equivalent to delivery of a consistent on target product
quality with minimal power consumption.

Conventionally, the grinding circuits are controlled by
multi-loop PID controllers and linear predictive controllers
(Chen et al., 2008). The uncertainties in the linear pre-
dictive model of the cement mill circuit stems from large
variations and heterogeneities in the feed material as well
as operational variations. These sources of variations give
rise to nonlinear behavior and variations in the dead-
times of the cement mill circuit. The models are obtained
from step response experiments conducted on the cement
mill circuit. The uncertainties may be characterized by
the gains, time constants, and time delays in a transfer
function model. To control such circuits, we propose a
MPC that uses soft constraints (soft MPC) to robustly
address the large uncertainties present in models that
can be identified for cement mill circuits (Prasath and
Jørgensen, 2009; Prasath et al., 2010).

The developed soft MPC is compared to a normal MPC
on the ECS/Cemulator (Prasath et al., 2010). In this
paper, we provide the details on the implementation of
soft constrained MPC on a real cement grinding circuit
and compare its performance to the existing fuzzy logic
based control system.

This paper is organized as follows. The principle of predic-
tive controller consisting of a regulator and an estimator
with soft output constraints is described in section 2.
Section 3 gives the details of model identification and the
comparison of soft MPC with fuzzy logic controller in a
real cement milling process and the results are discussed
from the plots. Conclusions are given in Section 4.

2. SOFT MPC ALGORITHM

The principle of soft MPC algorithm used to control the
cement mill circuit is discussed in Prasath and Jørgensen
(2009). The cost function is formulated as a regularized
`2 output tracking problem with input and soft output
constraints as given in (1a).

min
{z,u,η}

φ =
1

2

N−1∑
k=0

‖zk+1 − rk+1‖2Qz + ‖∆uk‖2S

+

N∑
k=1

1

2
‖ηk‖2Sη + s′ηηk (1a)

subject to the constraints

zk = bk +

n∑
i=1

Hiuk−i k = 1, . . . N (1b)

umin ≤ uk ≤ umax k = 0, . . . N − 1 (1c)

∆umin ≤ ∆uk ≤ ∆umax k = 0, . . . N − 1 (1d)

zk ≤ zmax,k + ηk k = 1, . . . N (1e)

zk ≥ zmin,k − ηk k = 1, . . . N (1f)

ηk ≥ 0 k = 1, . . . N (1g)

in which ∆uk = uk − uk−1.

The output predictions used by the regulator are generated
based on the finite impulse response coefficients extracted
from the model. To have offset free steady state control
when unknown step disturbances occur, we include a

Fig. 2. Penalty function for soft MPC (red) and normal
MPC (blue).

integrator feedback loop to the controller (Prasath and
Jørgensen, 2009).

The objective function with input and soft output con-
straints is converted into a dense quadratic program which
can be solved efficiently. The cost function and the solution
of the quadratic program are discussed by Prasath and
Jørgensen (2008, 2009). The feedback loop to the given
controller is a simple integrator based on the FIR models
obtained to add as a simple bias to the estimator. Here
we make an assumption that the disturbances enter the
controller as constant output disturbances. The values
of zmin,k − ηk and zmax,k + ηk are determined based on
variance of the noise in each measurements. Figure 2
illustrates the basic principle of soft constrained based
MPC (soft MPC). The soft MPC provides one way to de-
tune the controller such that it can handle the significant
uncertainties in the process. The main difference between
the normal MPC and the soft MPC is that the penalty
function of the normal MPC is quadratic whereas the
penalty function of the soft MPC is constructed such that
it is zero or almost zero within the dead-zone between
the soft limits and grows quadratically when the set-point
error exceeds the soft limits. The small penalty within the
soft limits ensures that the controller produces a steady
state offset free response. Also the small penalty within
the limits makes the controller react only a little to small
variations in the measurements.

3. SYSTEM IMPLEMENTATION

The developed soft MPC is initially implemented for
the ECS/CEMulator. The ECS/Cemulator is a rigorous
cement plant simulator that is normally used for operator
training and can also used as a realistic surrogate for a
real cement mill for comparing different controllers by
creating similar operating conditions. Prasath et al. (2010)
provides a comparison of the soft MPC and the normal
MPC using the ECS/Simulator. In this paper, the soft
MPC is tested in a real cement mill and compared with
that of the existing high level controller based on the
fuzzy logic principle. The main difference in controlling
the cement mill in the CEMulator and the real plant is
that the CEMulator has uncertainty and noise defined by
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Fig. 3. Typical operator station of a cement mill controller

the user and operates the same way all the time. The
CEMulator is based on a first principle models of the
process and mechanical conditions. The real plant has a
number of significant uncertainties to be handled because
of raw material variations, wear and tear of mechanical
devices etc.

The plant where we implement the controllers is an in-
dependent grinding unit. The major raw material clinker
is obtained from plants from different parts of India and
transported through railway wagons. The cement mill
present in the plant is a closed circuit ball mill with two
chambers. The cement ball mill has a design capacity of
150 tonnes/hour with a sepax separator. The separator
can be varied around 70% to have better efficiency. The
recirculation ratio of the circuit is 1.5%. The final product
types are Ordinary Portland Cement (OPC) and Puzza-
lona Portland cement (PPC). The difference between OPC
and PPC is that in PPC, fly-ash is added as one of the raw
material to improve the fineness of the cement. Thus the
production level and the operating range is different for
OPC and PPC. A typical operator station for the cement
mill circuit is shown in Figure 3.

All the signals coming from the sensors of the grinding
process are collected in an ECS SCADA (Supervisory
Control And Data Acquisition of FLSmidth) system. The
measurement data is obtained from a PLC and logged
every 10 seconds in the system. The quality measurement
data (fineness/blaine) is entered every hour as an off-line
measurement using the samples collected through an auto-
sampling system.

The real time implementation of the soft MPC application
is done using a high level expert system tool developed by
FLSmidth. The execution interval of MPC will be 1 min
and the data update in the expert tool will be 30 seconds.

The normal running range of the elevator load is from
20 kW to 35 kW for obtaining blaine of 300 cm2/g. The
fuzzy calculation engine executes every 30 seconds. The
controller actions can be shifted from Fuzzy to MPC and
vice-versa using a software switch. The measurement data
obtained from the PLC through input/output modules
in the field is filtered, scaled and validated before used
in the controller. The output from the controller is also
scaled and configured for bump less transfer when it is
made online. This is important in order to have smoother
transition of set points when the controller is shifted from
manual to auto control loop. Interlocks are included in case
of emergency shut down during abnormal conditions like
power failure, feed starvation etc.

3.1 Model Identification

The models of the system are identified in open-loop by do-
ing step response tests. The general principle in the model
construction phase is to stabilize the system around its
desired operating point and then perturb the system with
a step change of each of the process inputs. The responses
of the output (measurement) variables are recorded. The
process inputs must be perturbed individually. By the
data obtained using this procedure, a model describing
the influence of the process inputs on the process outputs
can be constructed. The controller uses this model for
computation of the control actions. From Figure 4, it is
evident that the model obtained using step response tests
are quite uncertain. Thus when these models are used for
designing the controller, the performance of the controller
degrades because of uncertainties in the model (Prasath
and Jørgensen, 2008).

The feed and separator speed are perturbed individually
and the possible output values are measured and logged.
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Fig. 4. Model identification using plant data from step response tests. The model identified is indicated by a solid black
line. The other lines indicate plant data obtained from step response tests.

The lab measurement (fineness) is modeled by increasing
the frequency of sample collection i.e., collecting samples
for every 15 min and then generating a model based on
the data.

We consider 2 × 2 MPC controllers based on the models
Y (s) = G(s)U(s) with Y (s) = [Elevator Load; Fineness]
and U(s) = [Feed; Separator Speed]. Based on the plots
from the step experiments as shown in Fig. 4, we identify
the system transfer function

G(s) =


(0.47)(2s+ 1)

(17s+ 1)(15s+ 1)
e−4s

1

12s+ 1
e−3s

(−0.9)

(10s+ 1)(12s+ 1)
e−5s

2.5

(4s+ 1)

 (2)

3.2 Controller Performance Comparison

Since the source of raw material for grinding is obtained
from different regions, the physical and chemical properties
of the clinker are different for each batch of the clinker
used. This varies the grinding pattern for each of the
clinker types and impacts the grinding efficiency of the
cement mill. Hence the operating region of the parameters

in the mill shifts continuously. To compensate for the
quality variations in the feed material, we include target
adaptation using a real time optimizer over the controllers.
This helps in deciding the optimum operating range of the
mill for improving the grinding efficiency. The elevator load
is the parameter for control and so the target of elevator
load is changed periodically depending on the quality of
the final product. This helps to achieve optimum produc-
tion while achieving the desired fineness.The controller
varies the feed and separator speed to maintain elevator
load and fineness.

The frequent power restrictions in the plant do not allow
to run the cement mill more than 16 hours in a day.
Normally the plant runs during the night, when the
external electricity demand is low, and is stopped during
the day. Mostly, the cement mill produces PPC as the main
product. Also based on the demand, the cement plant may
decide to run with OPC product for 3 − 4 hours. Hence,
we normally get only 12 − 15 hours of continuous mill
run to test our controllers. Depending on the dispatch
requirements, sometimes the plant will be deciding on
the type of cement to be produced for the particular day
resulting in frequent shifting of operating points for the
controller.
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Fig. 5. Comparison of soft MPC with the fuzzy logic controller for a cement grinding circuit. The controlled variables
are elevator (denotes the elevator load in kW) and fineness (cm2/g) and the manipulated variables are feed (tph)
and separator speed (%). The red line indicates the reference targets in measurements and blue line indicates the
actual values. The dotted lines denote limits for both actuators and measurements

To have a common platform for comparison of the fuzzy
logic controller and the soft MPC, both controllers are
made online in similar operating conditions by running
the controllers with the same source of clinker. This helps
us to have a fair comparison of the controllers with similar
material properties and it is quite easy to evaluate the
performance based only on the process variations. The
target adaptation based on operating range shift is also
made available for both controllers.

First, the fuzzy controller is taken online for 15 hours
and then the controller is switched to soft MPC for
the next 12 hours. Both controllers are tested with the
cement mill running continuously in a single recipe and
producing Puzzalona Portland Cement(PPC). In PPC,

gypsum, clinker and fly ash are the feed materials. This
is to make sure that the controllers are compared in a
fair basis with same operating conditions. It is confirmed
that the fuzzy controller is perfectly tuned such that the
soft MPC is tested against the best controller available
in the plant. This is justified as the plant runs the fuzzy
controller continuously whenever the mill is started and
the plant personnel is quite satisfied with the performance
of the fuzzy controller.

The following tuning and weighting factors are used while
applying the soft MPC scheme to control the grinding
circuit: Prediction- and control horizon N = 300, number
of impulse response parameters n = 100. The tuning
weights on the errors are Qz = [5 × 10−2 0; 0 2.5 ×
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Fig. 6. Control variables (CVs) and actuator variations (MVs) with soft MPC running the controller online with OPC
product. The pink line in the plot indicates the recipe change over and also the time when the controller is taken
online

10−5]; the tuning weights on the manipulated variables
are S = [5 × 102 0; 0 2.5 × 105]; and the quadratic soft
constraint tuning weights are Sη = [9× 103 0; 0 5× 102].
The sampling time Ts = 1 min. The linear soft constraint
tuning weight is set to zero.

The tuning weight on the fineness is small compared to
the tuning weight on elevator load; the fineness is an
hourly sampled measurement and less accurate compared
to elevator load. Also the weight on the separator speed
is set to a large value because it is not permitted to move
aggressively. This ensures a relatively stable operation.

From Fig. 5, we see that the soft MPC has the ability to
control and stabilize the cement mill. The manipulated
variables are smooth with the controlled variables are
reasonably controlled. However it can be seen that the
controller runs at its high limits and hence the actuator
movements are restricted to move on the higher side. These
conditions occur because of the conditions in the plant
where there is inconsistency in quality variations of the
raw material fed into the mill. Nevertheless, because of
the limited variations in the separator speed, we observe
that the standard deviation of the fineness has improved
significantly for the soft MPC compared with the fuzzy
logic controller.

Fig. 6 illustrates the performance of the soft MPC for
a case where there is a large margin for the controller
to adjust its actuator to maintain the desired target of
controlled variables. The MPC algorithm uses soft con-
straints to create a piecewise quadratic penalty function
in such a way that the closed loop system is less sensitive
to model uncertainties. Thus the soft MPC moves the
actuator very little within the soft constraints and takes
aggressive actions outside the soft limit band resulting in
smooth and stable operation of the cement mill circuit.

During the tests, it has been observed that the soft
MPC handles operating point transitions better than the
Fuzzy controller. In addition soft MPC reduces the quality
variations (variations in fineness).

4. CONCLUSION

A controller with soft output constraints for handling
the uncertainties of the cement mill circuit has been
developed and implemented in a real cement grinding
circuit plant. We implemented the controller in a real
time cement plant to compare the performance of the
controller with the existing Fuzzy controller running on
the plant. The results indicate that the soft MPC handles
the significant uncertainties efficiently and provides very
good performance compared to other controllers.
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