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Abstract: The occurrence of model-plant mismatch is a common problem in dynamic model
based applications such as state estimation. The use of an inaccurate model results in biased
estimates of the states. Hence, conventional state estimation algorithms are modified in various
ways to compensate for model-plant mismatch. In this work, the performance of four adaptive
state estimation algorithms is compared in the presence of a model plant mismatch arising due
to random drifts in parameter values. The comparison is carried out through simulations on
a benchmark non-isothermal CSTR problem. Simulation results demonstrate that online re-
identification of the parameters susceptible to drift or change is the most effective approach to
minimize the effect of model-plant mismatch on the state estimates.
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1. INTRODUCTION

In various chemical processes, online estimation of the
process states forms an essential part of monitoring the
process conditions and state-feedback based control. This
is because processes are affected by various random dis-
turbances and it is difficult to obtain regular and noise-
free online measurements of many process states, such
as concentrations, compositions, etc. The Bayesian state
estimation approach is widely used because it provides a
systematic and general approach to handle the effect of
various random uncertainties on the process states and
measurements. Bayesian state estimation algorithms use
a first-principles based dynamic model and the statistical
properties of the random disturbances and measurements
to obtain the posterior distribution of the state estimates.
The accuracy of the state estimation algorithms is, there-
fore, reliant on the accuracy of the dynamic model used
to generate the state predictions (Chitralekha et al., 2010)
and the statistical properties of the process disturbances
and noise (Fitzgerald, 1971; Bavdekar et al., 2011).

The standard Bayesian state estimation algorithms avail-
able in the literature are developed under the assumption
that the values of model parameters used are reasonably
accurate (Patwardhan et al., 2012). In most cases, the
model building exercise is carried out offline using batches
of input-output data. The model structure and parameters
obtained from this exercise are then deployed for online
use. However, it is well known that due to changes in
process or equipment conditions, certain parameters of a
process or unit may change over time. For example, in
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a catalytic reactor, the catalyst activity may change as
time progresses due to various reasons, such as sintering,
fouling, etc. Another example is the variation in the height
equivalent to a theoretical plate (HETP) of a packed-bed
distillation column due to changes in the available surface
area of the packed-bed particles. This variation affects the
final composition of the distillate and bottoms streams.
Such random drifts introduce a time-varying model-plant
mismatch (MPM), which deteriorates the accuracy of the
model used to generate state predictions. Using a model
without accurate parameters can lead to biased estimates
of the unmeasured states, which can have further im-
plications on applications such as state-feedback control,
where the controlled variables are not directly measured.
Hence, it becomes essential to modify the standard state
estimation algorithms to compensate for the parametric
model-plant mismatch.

Joint state and parameter estimation formulations (Gor-
don et al., 1993; Kitagawa, 1998; Tulsyan et al., 2013) are
one of the most popular approaches used to compensate for
model plant mismatch. In this approach, the parametric
variations are modelled using a random walk model and
the new parameter estimates are jointly obtained along
with the state estimates using the Bayesian state estima-
tion algorithm. However, one limitation of this approach
is that the maximum number of parameters that can be
uniquely estimated is equal to the number of measure-
ments available (Pannocchia and Rawlings, 2003). More-
over, if the sensitivity matrix of the state-to-measurement
equations is ill-conditioned, the parameter estimates ob-
tained in such conditions are less accurate (Olivier et al.,
2012). Kantas et al. (2009) provide a comprehensive
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overview of joint state and parameter estimation algo-
rithms using particle filters and discuss the pros and
cons associated with each of them. The dual state and
parameter estimation approach (Gove and Hollinger, 2006;
Moradkhani et al., 2005; Olivier et al., 2012) overcomes the
limitation posed due to ill-conditioning of the sensitivity
matrix of state-to-measurement equations by solving the
state and parameter estimation problem, independently
and in parallel to each other. Both– the joint and dual–
state and parameter estimation approaches attempt to
reduce the errors arising from model plant mismatch by
online re-identification of the model parameters.

On the other hand, adaptive state estimation algorithms
are proposed in the literature, that attempt to compen-
sate for errors arising from model-plant mismatch through
mechanisms other than re-identification of model param-
eters. These methods are based on the premise that the
contribution towards the prediction error covariance of the
states arises from two terms, namely the model dynamics
of covariance propagation and the covariance of the process
disturbances. A model-plant mismatch introduces extra
error in propagation of the estimation error covariance,
which is accounted for by tuning the value of the covari-
ance of the process disturbances. Efe et al. (1999) have
proposed an adaptive Kalman filter, which uses a scaling
factor that is multiplied with the process noise covariance
matrix. The scaling factor is a positive real number, which
is computed based on the difference between the observed
sum of squared error of the innovations and the trace of
the innovations covariance matrix obtained from the state
estimation algorithm. Thus, the scaling factor modifies the
process noise covariance matrix in an adaptive manner. A
high value of the scaling factor indicates a deterioration in
the model predictions, thereby increasing the uncertainty
associated with the predicted states.

Linder and Shafai (1997) have proposed a robust PI
Kalman filter, which introduces artificial bias states, whose
dynamics are modelled as an integrator. The bias term is
then added to the state predictions in order to correct
for the error introduced due to model-plant mismatch.
The extent of the integral action is determined through
the innovations and an adaptive integral gain, which is
a function of the estimation error covariance matrices
and the measurement noise covariance. The algorithm
uses the steady state Kalman gain obtained from the
standard Kalman filter algorithm and an empirical tuning
method of the gain and integral terms to obtain a stable
realisation of the filter. Bodizs et al. (2011) have developed
the integral Kalman predictor (IKP) which is similar to
the one developed by Linder and Shafai (1997). In their
case, however, while the proportional term is fixed and
can be tuned, the integral term is adaptive and its value
is obtained through the solution of Riccati equations at
every sampling instant. Shenoy (2010) has proposed the
use of a proportional-integral Kalman filter (PI-KF), in
which the error arising due to model-plant mismatch or
linearisation is compensated by using a bias term, which
is integrated over time based on the innovation sequence.
While the concept of the PI-KF is similar to the IKP, there
are two key differences. First, the IKP is implemented as
a Kalman predictor. This implies that the IKP algorithm
does not make used of the current measurements to update

the predicted value of the states. One the other hand,
the implementation of the PI-KF is similar to that of the
standard KF. The second difference is that the integral
gain is computed adaptively in the IKP algorithm, while
it is used as a tuning parameter in the PI-KF algorithm.
In both algorithms, the number of integral states are equal
to the number of measurements available.

In this work, simulation studies are carried out to compare
the performance of the three adaptive state estimation
algorithms– the adaptive extended Kalman filter (EKF)
with covariance scaling, the PI-Kalman filter and the
integral Kalman predictor– in the presence of a model-
plant mismatch. The model-plant mismatch is introduced
via a random drift in certain parameter values of the
process and is, therefore, time-varying in nature. The
benchmark CSTR case study (Marlin, 1995) is used to
compare the state estimation algorithms. The performance
of these three algorithms is also compared with the popular
approach of joint state and parameter estimation (Gordon
et al., 1993).

The remainder of the paper is organised as follows. The
process model used for simulations and state estimation
is described in Section 2. The state estimation algorithms
that are compared in this study are described in Section 3.
The simulation case used to compare the performance of
the state estimators and the results obtained are described
in detail in Section 4, followed by the concluding remarks
in Section 5.

2. PROCESS MODEL

A general nonlinear process can be mathematically repre-
sented using the following equations

dx

dt
= f (x,u,θ, t)

y (t) = h (x, t)
(1)

where, x ∈ R
n represents the process states, u ∈ R

m

represents the manipulated inputs, θ ∈ R
p represents the

model parameters and y ∈ R
r represents the process mea-

surements. For the purpose of simulations and modelling
for state estimation the process is discretised as follows

xk = xk−1 +

kT
∫

(k−1)T

f (x (τ) ,uk−1,θk−1, τ) dτ +wk−1(2)

=F (xk−1,uk−1,θk−1) +wk−1 (3)

yk = h (xk) + vk (4)

where, wk−1 ∼ N (0̄,Q) represents the random unmod-
elled process disturbances and vk ∼ N (0̄,R) is the mea-
surement noise. The process disturbances can be modelled
to enter through the inputs or as additive in the state
dynamics. Further, it is assumed that wk−1 and vk are
mutually independent random signals.

3. STATE ESTIMATION IN PRESENCE OF MPM

The adaptive state estimation algorithms that are com-
pared in this work are described briefly in this section.
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3.1 Joint EKF

The most popular approach to account for random changes
in the parameter is to model the parametric variations
as an integrated white noise process and simultaneously
estimate the process states and parameters using the EKF.
The joint EKF algorithm, henceforth abbreviated to as J-
EKF, is as follows

x̂k|k−1 =F
(

x̂k−1|k−1,uk−1, θ̂k−1|k−1

)

(5)

θ̂k|k−1 = θ̂k−1|k−1 (6)

Define the following augmented vectors and matrices

x̂a =
[

x̂ θ̂

]

Qa =

[

Q 0̄
0̄ Qθ

]

(7)

where, Qθ refers to the covariance of the noise in θ. The
Kalman gain is computed as follows

Pk|k−1 =ΦaPk−1|k−1Φ
T
a + ΓaQ

aΓT
a (8)

Kk =Pk|k−1C
T
a

(

CaPk|k−1C
T
a +R

)−1
(9)

where, Φa =

[

Φ Φc

0̄ Ip

]

, Φ = ∂F
∂x

∣

∣

x̂k−1|k−1

, Φc =

∂F
∂θ

∣

∣

θ̂k−1|k−1

; Γa =

[

Γw 0̄
0̄ Ip

]

, Γ is the partial differential

of F based on the source of the process noise. E.g., if
noise enters through inputs, Γ = ∂F

∂u

∣

∣

uk−1

. If process

noise is modelled as additive in state dynamics, Γ = Ir.
C = ∂h

∂x

∣

∣

x̂k|k−1

and Ca = [C 0̄].

The updated values of the joint states and their covariance
matrix are obtained as

x̂a
k|k = x̂a

k|k−1 +Kk

(

yk − ŷk|k−1

)

(10)

Pk|k = (In+p −KCa)Pk|k−1 (11)

Finally, x̂k|k = x̂a
k|k(1 : n) and θ̂k|k = x̂a

k|k(n+ 1 : n+ p).

3.2 EKF with covariance scaling

The adaptive Kalman filter with covariance scaling pro-
posed by Efe et al. (1999) is described in this section. The
prediction step is given by

x̂k|k−1 =Φx̂k−1|k−1 + Γuuk−1 (12)

ŷk|k−1 =Cx̂k|k−1 (13)

The predicted and innovation covariance matrices are
obtained as

Pk|k−1 =ΦPk−1|k−1Φ
T +Ωk−1ΓdQΓT

d (14)

Pee,k =CPk|k−1C
T +R (15)

=CΦPk−1|k−1Φ
TCT +Ωk−1CΓdQΓT

d C
T(16)

where, Ω denotes the scaling factor, which is used to
modify the covariance matrix in the presence of model-
plant mismatch. Let β, γ and δ denote the trace of Pee,k,

CΦPk−1|k−1Φ
TCT and CΓdQΓT

d C
T respectively. Fur-

ther, let ν denote the sum of squares of the observed inno-
vations vector

(

yk − ŷk|k−1

)

. The value of Ω is obtained
as follows

Υk = aΩ0 + bΩk−1 + c

(

νk − γk

δk

)

(17)

Ωk =max (Υk, 0) (18)

If νk = βk

Υk = aΩ0 + (b+ c) Ωk−1 (19)

Ωk =max (Υk, 0) (20)

where, a, b, c are constants such that a+ b+ c = 1 and Ω0

is the value of the scaling factor at k = 0 and is normally
chosen as Ω0 = 1.0.

The updated estimates of the states and the covariance
matrix are obtained as follows

Kk =Pk|k−1C
TP−1

ee,k (21)

x̂k|k = x̂k|k−1 +Kk

(

yk − ŷk|k−1

)

(22)

Pk|k = (In −KkC)Pk|k−1 (23)

It should be noted that although the above algorithm is
proposed for linear systems with a Kalman filter, it can
be easily modified for nonlinear systems with an EKF,
henceforth abbreviated as A-EKF.

3.3 Proportional-integral Kalman filter

The proportional-integral Kalman filter (PI-KF) (Shenoy,
2010) integrates the errors arising due to linearization and
model-plant mismatch and adds this error to the predicted
values of the states.

x̂k|k−1 =Φx̂k−1|k−1 + Γuuk−1 +Piυk−1 (24)

ŷk|k−1 =Cx̂k|k−1 (25)

where, Pi ∈ R
n×n is analogous to the gain in a PI-

controller. υk−1 ∈ R
n is the error term, obtained as

υk = υk−1 +Ki

(

yk−1 − ŷk−1|k−2

)

(26)

where, Ki can be viewed as a “forgetting factor” that
influences the impact of the past measurements on the
accumulated error. The remainder of the algorithm is
identical to the standard Kalman filter.

Pk|k−1 =ΦPk−1|k−1Φ
T + ΓdQΓT

d (27)

Kk =Pk|k−1C
T
(

CPk|k−1C
T +R

)−1
(28)

x̂k|k = x̂k|k−1 +Kk

(

yk − ŷk|k−1

)

(29)

Pk|k = (In −KkC)Pk|k−1 (30)

While the algorithm has been proposed for a linear system,
it can be easily modified and extended for state estimation
of nonlinear systems, using the EKF (PI-EKF).

3.4 Integral Kalman predictor

Bodizs et al. (2011) have proposed an integral Kalman
predictor (IKP), in which an integral term is added to the
predicted states. While the proportional gain of the inte-
gral states can be tuned to achieve desired performance,
the integral gain is computed in an adaptive manner.
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ek−1 = yk−1 − ŷk−1 (31)

x̂k =Φx̂k−1 + Γuuk−1 +Kxek−1 +Kiαk−1 (32)

αk =αk−1 +Kαek−1 (33)

ŷk =Cx̂k (34)

Kx =
(

ΦPk−1|k−2Φ
T +KiP

T
xαC

T
)

×

(

CPk|k−1C
T +R

)−1
(35)

Kα =PT
xαC

T
(

CPk|k−1C
T +R

)−1
(36)

P̄k|k−1 = Φ̄P̄k−1|k−2Φ̄
T
+ Q̄− Φ̄P̄k−1|k−2 ×

C̄T
(

C̄P̄k|k−1C̄
T +R

)−1
C̄P̄k−1|k−2Φ̄

T
(37)

where, α ∈ R
r represents the integral states, Ki ∈ R

n×r

represents the integral gain.

Φ̄ =

[

Φ Ki

0̄r×n Ir

]

C̄ =
[

C 0̄r

]

(38)

and

P̄k|k−1 =

[

Pk|k−1 Px,α

PT
x,α Pα

]

Q̄ =

[

Q 0̄
0̄ 0̄

]

(39)

4. CASE STUDY: CSTR

A first-order, catalytic and non-isothermal reaction tak-
ing place in a CSTR can be described by the following
differential equations (Marlin, 1995)

rA =Cdk0 exp

(

−
E

RTr

)

CA (40)

V
dCA

dt
= F (CA,in − CA)− V rA (41)

V ρCp

dTr

dt
= ρCpF (Tin − Tr)−

aF b+1
c

Fc +
aF b

c

2ρcCpc

(T − Tc,in)

+ (−∆Hrxn)V rA (42)

where, x = [CA Tr]
T

are the process states. CA is the
reactant concentration, Tr is the reactor temperature.
The manipulated inputs are the reactant flow rate F
and coolant flow rate Fc. The reactor temperature (Tr)
is the only available measurement. The catalyst activity
is denoted by Cd and its value is 0 < Cd ≤ 1. The
process parameters and steady conditions are given in
Table 1. The sampling time for this process is chosen
as T = 0.4 min. To simulate the conditions of process
disturbances, the manipulated inputs are corrupted with
a zero-mean Gaussian white noise and the measurement
noise is simulated by adding a zero-mean Gaussian white
noise to the measurement of Tr. The covariance matrices
of the process disturbances (Q) and measurement noise
(R) are given in Table 1. It is well-known that catalyst
activity (Cd) changes with time. To simulate this drift in
the catalyst activity, the parameter Cd is modelled using
a random walk model

Cd,k = Cd,k−1 + wc,k−1 (43)

where, wc ∼ N (0, qc) is the random noise in the catalyst
activity.

The scenario of a model-plant mismatch was created by
introducing the change in catalyst activity (Eq. 43) only
in the process, while the model for the state estimators

begins with the nominal value of Cd. The adaptive state
estimation algorithms used in this work are expected to
compensate for the changes in Cd based on the mechanism
proposed in their algorithms.

Table 1. Operating conditions

Param. Value Param. Value

V 1 m3 CA,in 2 kmol/m3

Cp 1 cal/(g K) ρ 106 g/m3

Cpc 1 cal/(g K) ρc 106 g/m3

Tin 323 K Tc,in 365 K
Cd 0.8 k0 1.25× 1010min−1

E
R

8830.1 K −∆Hrxn 130× 106 cal/kmol

CA,ss 0.265 kmol/m3 Tr,ss 394 K
Fss 1 m3/min Fc,ss 15 m3/min

Q 10−4
×diag[0.25 9.0] R 0.0225

qc 2× 10−6

4.1 Results

The results of performances of the J-EKF, A-EKF, PI-
EKF and IKP for state estimation of the CSTR are pre-
sented here. Simulations are carried out for the CSTR for
1000 sampling instants (400 min.). The variation in the
catalyst activity, Cd, is shown in Fig. 1. This identical vari-
ation is used with all state estimation algorithms. This is
done in order to have a fair comparison of the performance
of the state estimation algorithms. The CSTR process was
excited by subjecting the two inputs, F and Fc to a pseudo
random binary sequence (PRBS) signal. The amplitude of
the PRBS in F was 0.2 m3/min with switching frequency
[0 0.025 ωN ], where ωN is the Nyquist frequency. The
amplitude of the PRBS was 2 m3/min with switching
frequency [0 0.038 ωN ]. The manipulated inputs were cor-
rupted with a zero-mean Gaussian noise with covariance
Q, given in Table 1. Similarly the measurements of the
temperature were corrupted with a zero-mean Gaussian
noise with covariance R given in Table 1. Identical reali-
sations of the input and measurement noise were used with
all the state estimation algorithms. It should be noted that
the input signals sent to the process are corrupted with
noise, while those sent to the state estimators are not. The
root mean squared error (RMSE) of the state estimates is
used as a metric to compare the performance of each state
estimation algorithm. For every state, the RMSE is defined
as

RMSE =

√

√

√

√

1

N

N
∑

j=1

(

xi,j − x̂i,j|j

)2
(44)

where, the subscript i refers to the ith element of the state
vector.

The tuning parameters used in each algorithm are as
follows. For the J-EKF, the variance of the noise, qc, in the
process parameter is used to tune the algorithm, and its
value is given in Table 1. For the A-EKF, the parameters
a, b, c given in Eq. 17 and Eq. 19 are tuning parameters.
The values used in this work are a = 0.45, b = 0.25 and c =
0.3. For the PI-EKF, the values Pi = diag [0.05 1] and

Ki = 10−3 × [5 0.2]
T

are used for the integral states. In

the IKP algorithm, the value of Ki = [0.002 0.5]
T
is used

as the integral gain. The results reported in this work are
based on these values of the tuning parameters being used
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Fig. 1. CSTR: Random variation in catalyst activity, Cd

in their respective algorithms. For a part of the data, the
estimates of CA obtained using the four state estimators
are shown in Fig. 2 and Fig. 3, while the estimates of Tr

are shown in Fig. 4 and Fig. 5. The RMSE values obtained
for both the states, using the different state estimators are
given in Table 2. From the table, it can be seen that the
J-EKF has the least value of the RMSE, especially for the
unmeasured state, CA. The RMSE values for CA obtained
using the other adaptive state estimators are between 4
to 20 times of that obtained using the J-EKF. Similarly,
for Tr, the RMSE values obtained using the other adaptive
state estimators are 1.3-50 times the RMSE value obtained
using the J-EKF. While the figures are not able to clearly
differentiate the performance of the A-EKF and PI-EKF,
they clearly demonstrate the unsatisfactory performance
of the IKP. One of the reasons behind this is that while the
rest of the state estimators utilise the current measurement
for correcting the predictions of the process states, the IKP
algorithm does not make this correction. From the table of
the RMSE values, it is clear that online re-identification
of the parameters through algorithms like the J-EKF is
the most effective method to compensate for model-plant
mismatch.
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Fig. 2. CSTR: comparison of estimates of CA obtained
using the J-EKF and A-EKF
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Fig. 3. CSTR: comparison of estimates of CA obtained
using the PI-EKF and IKP
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Fig. 4. CSTR: comparison of estimates of Tr obtained
using the J-EKF and A-EKF
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Fig. 5. CSTR: comparison of estimates of Tr obtained
using the PI-EKF and IKP

5. CONCLUSIONS

A comparative study of four adaptive state estimation
algorithms was conducted in this work. The aim of this
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Table 2. RMSE of state estimates: Comparison
of estimator performance

Estimator CA Tr

J-EKF 0.0032 0.1337
A-EKF 0.0124 0.1674
PI-EKF 0.0142 0.2251
IKP 0.0689 6.2936

study was to gauge the performance of these adaptive
state estimation algorithms in the presence of a model-
plant mismatch occurring due to a random drift in the
values of certain process parameters. The three adaptive
state estimation algorithms, namely the EKF with covari-
ance scaling (A-EKF), the PI-EKF and the IKP were
compared with the conventional method of joint state
and parameter estimation (J-EKF). The comparison was
carried out through simulations on the benchmark CSTR
problem. The results of the simulation studies indicate
that the J-EKF has the best performance in terms of the
RMSE values of the state estimates, particularly for the
unmeasured state. Further, the results also demonstrate
that while the A-EKF and PI-EKF are able to reduce the
bias in the measured state, they are unable to do the same
for the unmeasured state. The performance of the IKP
was the worst amongst all estimators and the IKP did
not aid in reducing bias from both, the measured as well
as unmeasured states. This is because the IKP does not
use the current measurement to correct the error in the
prediction of the states. While the A-EKF, PI-EKF and
IKP seek to correct for the model prediction error through
external mechanisms such as covariance scaling or addition
of bias terms, the J-EKF attempts to rectify the prediction
error by changing the model parameters used. Thus, while
the J-EKF alters the model dynamics to minimise the
errors due in model predictions, the other estimators do
not alter the model. The results of the simulation case
study demonstrate that the most effective approach to
reduce the bias occurring due to a parametric model-plant
mismatch is to re-identify those model parameters, which
are deemed to be susceptible to change or drift. This work
assumes that the parameters whose values are changing
with time are known. However, one of the key challenges
in adaptive state and parameter estimation is to develop
methods that can detect such parameter changes so as
to re-estimate only that subset of the parameters whose
values are changing.
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