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Abstract: Power transformer is one of the most vital equipment in an electrical system and
its failure results in huge economic losses. Amongst the various data driven techniques available
in literature for diagnosing faults in a power transformer, Support Vector Machine (SVM) is
one of the most promising. In this context, SVMs have typically been implemented using all
the gaseous species available from dissolved gas analysis (DGA). In this work, we propose
to enhance the diagnostic performance of SVMs by using them with an optimally identified
subset of gaseous species available from DGA. We propose to use mutual information to identify
these optimal species (features). The approach is applied on industrial datasets corresponding
to various commonly encountered faults in power transformers. The results show that better
diagnostic performance is obtained when CO2 concentration measurement is not used.

Keywords: Feature Selection, Mutual Information, Support Vector Machine (SVM), Power
Transformer, Dissolved Gas Analysis (DGA)

1. INTRODUCTION

Power transformers are one of the most expensive piece
of equipment used for power generation and transmission.
Failure of power transformers can cause huge economic
losses as the cost of replacement, transportation, instal-
lation and repairs are very high. Some of the commonly
encountered faults associated with the power transformer
include partial discharge, arcing, overheating and cellulose
degradation (IEEEGuide, 2009). Dissolved Gas Analysis
(DGA) is popularly used to diagnose these faults in oil-
immersed transformers. DGA refers to the analysis of the
gases dissolved in the oil bath of a transformer. These gases
are formed due to degradation of oil and other insulating
materials.

Various standards such as Key Gas Method, IEC ratios,
Rogers Ratio (IEEEGuide, 2009; Duval, 1989; Rogers,
1978; Fist, 2000) etc. are used to interpret the DGA data
for fault diagnosis. These standards are easy to use as
they can be applied across a variety of power transformers.
Additionally several data driven techniques such as PCA
(Erdal et al., 2009), neural networks (Zhengwei et al.,
2009), fuzzy logic (Naresh et al., 2008) and support vector
machines (Lv et al., 2005; Bacha et al., 2012; Han et al.,
2011) have also been applied in literature to the DGA
data for diagnosing faults in power transformers. These
data driven methods are specific to the available datasets
(transformers) and hence are expected to yield better diag-
nostic performance than the available standards. Amongst
the data driven methods, SVM is one of the most promis-

ing. Fault diagnosis systems for power transformers based
on SVM have been shown to be more efficient when com-
pared to other techniques such as ANN, fuzzy logic etc (Lv
et al., 2005). SVM has several desired features, such as: it
requires comparatively lower computational efforts while
training, the training problem can be solved optimally,
nonlinear decision boundaries can be easily obtained and
it works well even when only a few samples are available.

It is well known that the diagnostic performance of data
driven techniques can be enhanced by using an appro-
priately selected set of features. Of the several variables
measured in a process, some may be non-informative for
the diagnosis problem at hand (Verron et al., 2008). Use of
these variables while performing fault diagnosis can lower
performance due to noise associated with such variables.
Feature selection techniques can be used to identify the
most optimal set of features which can enhance the per-
formance of a diagnostic technique. However, to the best
of our knowledge, in the area of fault diagnosis of power
transformers, the possibility of using feature selection tech-
niques to enhance the performance of the SVM based
diagnostic technique has not been investigated. The aim of
our current work is to use an appropriate feature selection
technique to improve the performance of the SVM based
fault diagnosis in power transformers.

Several feature selection techniques are available in gen-
eral pattern classification literature. In particular, feature
selection based on mutual information proposed by Verron
et al. (2008) is an effective way for selecting the optimal
set of variables while developing a classifier. Mutual in-
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formation quantifies the mutual dependence between the
process variables and the class. For a specified number of
variables, the set of variables giving the maximum mutual
information can be identified as the most promising set of
variables for efficient fault diagnosis.

In this work, we propose use of mutual information to
select optimal set of features that lead to enhanced per-
formance of SVM based diagnostic technique for power
transformers, as compared to using all features. We apply
our approach to industrial DGA datasets. In particular,
the available data corresponds to different operating con-
ditions (fault and normal) of power transformers. Thus
the resulting fault diagnosis problem is a multi-category
classification problem. We use multilayer SVM classifier
to classify this multi-category data. Each layer of this
multilayer SVM classifies the data to one of the two appro-
priately selected classes. For different number of specified
features, the most promising set of features is obtained
via mutual information. The classification accuracies of
the resulting SVM classifiers for these various number of
specified features are then compared to obtain the optimal
set of features. The proposed approach of using mutual
information based feature selection in combination with
support vector machines as a classifier, can be applied to
variety of other fault diagnosis problems as well.

The rest of the paper is organized as follows: in Section
2, we describe the relevant techniques used in the paper.
In Section 3, we discuss the industrial datasets available
to us, the architecture of the multilayer SVM classifier to
be used to classify the available datasets and the proposed
feature selection technique. The feature selection results
are also reported and discussed in this section. The paper
is concluded in section 4.

2. DESCRIPTION OF RELEVANT TECHNIQUES

In this section, we first discuss the Support Vector Ma-
chines in general followed by the description of the feature
selection technique based on mutual information.

2.1 Support Vector Machines

Support vector machine (SVM) is a supervised learning
method used in pattern classification and regression (Vap-
nik, 1995). In our paper, we summarize the classification
application of SVM. An SVM can be used to classify data
belonging to one of the two classes as illustrated in Figure
1. In this figure, the two symbols (triangle and diamond)
represent the data belonging to two classes. Given a set of
training samples as in Figure 1, a number of classifiers
(boundary separating the two classes) can be obtained
which separate the two classes. SVM involves finding an
optimal hyperplane which maximizes the margin between
the two classes. Support vectors are the data samples
which are closest to the optimal hyperplane in both the
classes and are thus most difficult to classify. The equation
of the hyperplane is described with the help of these
support vectors. Example of a linear classifier obtained
using SVM is shown in Figure 1. In this figure, the solid
line represents the linear hyperplane obtained by using
SVM. The filled data points are the support vectors.

Fig. 1. Separation of two classes by linear SVM

In several situations, the data belonging to different classes
overlaps and hence a linear hyperplane as in Figure 1 will
not be able to completely separate the two classes. For
such cases, nonlinear SVM can be used. In our work, we
also propose to use nonlinear SVM since the fault classes
in a power transformer are expected to be overlapping.
The algorithm for obtaining such nonlinear SVM is thus
described as follows:

Given the training dataset T = {(x1, y1), (x2, y2), . . . ,
(xn, yn)} where xi ∈ Rd is ith training sample and yi ∈
{−1, 1} denotes the corresponding class label. In nonlinear
SVM, the data is mapped from d-dimensional space to
N-dimensional feature space by employing a nonlinear
function as (Lv et al., 2005):

ψ(x) = [ϕ1(x) ϕ2(x) . . . ϕN (x)]T (1)
A linear SVM is then obtained in this high dimensional
space. Based on this SVM, an observation vector x can be
classified to one of the two classes depending on the value
of class label y(x) obtained as: y(x) = sgn(w.ψ(x) + b)
where sgn(.) denotes the sign (±1, 0) function, with 0
indicating a tie. w is the weight vector and b is the bias
corresponding to the linear SVM in the N dimensional
feature space. These parameters are to be obtained so that
the margin is maximized in the N dimensional features
space. This can be achieved by solving the following
optimization problem (Lv et al., 2005):

min
(w,b,ξ)

J = 1
2‖w‖

2
2 + C

n∑
i=1

ξi

such that,

yi[w.ψ(xi) + b] ≥ 1− ξi, i = 1, 2, . . . , n

ξi ≥ 0, i = 1, 2, . . . , n


(2)

In above formulation, ξi are the slack variables added to
allow misclassification. The constant C, referred to as the
regularization parameter, is user specified and controls the
relative influence of the two competing terms (the margin
and the misclassification). Instead of directly solving the
above formulation, the dual of the above optimization
problem is used to obtain the support vectors. The dual
formulation is presented in equation 3 (Lv et al., 2005).
The dual optimization formulation is quadratic program-
ming in nature. If ai > 0, then the corresponding xi repre-
sents the support vector. The advantage of formulation 3
over formulation 2 is that in formulation 3 only the inner
product of samples in the higher dimensional space needs
to be known.
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max
a

W = − 1
2

n∑
i=1

n∑
j=1

aiajyiyj(ψ(xi).ψ(xj)) +
n∑
i=1

ai

such that,
n∑
i=1

aiyi = 0

0 ≤ ai ≤ C, ∀i = 1, 2, . . . , n


(3)

Such inner products can be specified in terms of a Kernel
function (K). Thus the optimum hyperplane equation can
be obtained by using the following equation∑

i∈SV
aiyiK(xi, x) + b = 0 (4)

where SV represents the set of indices of the support
vectors. The bias b in Eq (4) is calculated using the
following equation:

b = ym−
∑
i∈SV

aiyiK(xi, xm), where m = arg[max
i
ai] (5)

The selection of Kernel function K(xi, xj) = ψ(xi).ψ(xj)
which is a symmetric positive definite function in original
space Rd based on Mercer conditions is an important
design choice in SVM (Lv et al., 2005). Some of the
popularly used Kernel functions are (Lv et al., 2005):
Linear, Polynomial, Gaussian radial basis and Sigmoid.
The Gaussian radial basis kernel given as

K(xi, xj) = exp

(
−‖xi − xj‖22

2σ2

)
(6)

will be used in our work.

SVM for Multicategory Classification: The above
was a summary of obtaining SVM for a two class classifi-
cation problem. A classification problem involving several
classes can be solved by using multiple SVMs where each
SVM separates two appropriately selected classes. This
architecture will be discussed in section 3 where we present
the proposed work.

2.2 Feature Selection using Mutual Information

In this paper we use mutual information based feature
selection technique as presented in Verron et al. (2008). It
consists of two steps: i) sorting the variables according to
the mutual information a variable shares with the class,
and ii) selection of the best set of variables based on the
classification accuracy. These two steps are summarized
next:

Mutual Information: The mutual information I(X,Y )
of two random vectors X and Y can be viewed as a
quantity measuring the mutual dependence between these
two vectors and can be computed as (Verron et al., 2008):

I(X,Y ) =
∑
x,y

P (x, y)log
P (x, y)
P (x)P (y)

(7)

In above equation, P (x, y) is the joint probability mass
function of X and Y , and P (x) and P (y) are the marginal
probability mass functions. In supervised classification the
classes (C) is viewed as a multinomial random variable
with k possible values (k is the number of classes) and the
probability mass function is given as P(C = c) = P(c).
Here P(c) can be thought of as the prior probability of
the data belonging to the cth class. For computing the
mutual information between the process variable vector X

and the class the following are assumed: (i) X is a random
variable with a multivariate normal density function i.e.
X ∼ N(µ,Σ) and (ii) X conditioned on C = c follows a
multivariate normal density function with parameters µc
and Σc. The mutual information between X and C then
turns out to be (Verron et al., 2008):

I(X,C) =
1
2

[
log(| Σ |)−

k∑
c=1

P (c)log(| Σc |)

]
(8)

Mutual information can now be computed for all possible
groups of available variables. The most important group
of variables for the classification task will be the one that
has a large mutual information. However, since mutual
information will increase as more and more variables
are considered, mutual information is used to select an
appropriate set of variables when the number of variables
p to be selected is specified.

Selection of the best group of features: In approach used
by Verron et al. (2008), the classification accuracy using
an appropriate classifier is computed for all the groups
obtained for various values of p. The group corresponding
to the maximum classification accuracy is then selected as
the best set of features.

3. PROPOSED WORK : SVM BASED FAULT
DIAGNOSIS OF POWER TRANSFORMER USING

OPTIMAL FEATURES

In this section, we first discuss the industrial datasets
used by us followed by the architecture of the multilayer
SVM classifier to be used to classify the available datasets.
We then present our proposed mutual information based
feature selection technique before presenting the results.

3.1 Data Available

We have used two industrial datasets for demonstrating
the utility of our approach. Each dataset was divided
into training and testing data. The training data for
dataset 1 was used for selecting optimal features using
mutual information. These set of features were then used in
dataset 2 as well. For each of the datasets, the SVMs were
trained using the training data. Performance was then
evaluated using the classification accuracy on the testing
data. We use DUPLEX algorithm (Montgomery et al.,
2001) to divide a given dataset into training and testing.
The DUPLEX algorithm ensures that both the training
and the testing subsets contain representative samples
from the entire sample space. The available datasets are
described next:

Dataset 1: The industrial DGA data for both the normal
and fault conditions of power transformers was provided
by Crompton Greaves, a power transformer manufacturing
company in Mumbai, India. The dataset contains 324
observations of which 214 were selected for training and
110 for testing. Each observation consists of concentration
values of seven gases: H2, CH4, C2H6, C2H4, C2H2, CO
and CO2. Table 1 lists this data, labeled as dataset 1.

Dataset 2: This dataset is obtained from Duval and De-
Pablo (2001). It contains DGA data corresponding to
normal as well as fault conditions from various types of
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Table 1. Datasets 1 and 2

Class type
Dataset 1 Dataset 2
No. of total,
train and test
samples

No. of total,
train and test
samples

Normal [37,24,13] [25,16,9]

Partial Discharge [43,28,15] [26,17,9]

Arcing [26,17,9] [45,30,15]

Overheating [141,94,47] [10,6,4]

Cellulose Degradation [77,51,26] [10,6,4]

Fig. 2. Architecture of multilayer SVM

transformers installed at different locations around the
world. After excluding samples with missing values of any
variable, 116 valid samples are obtained of which 75 are
selected for training and 41 for testing. Table 1 lists this
data, labeled dataset 2. This dataset is not used for feature
selection but only to investigate the utility of the optimal
features selected using dataset 1.

3.2 Multilayer SVM Classifier

The fault diagnosis of power transformer is a multi-
category classification problem. Hence multilayer SVM
classifier is used for building a fault diagnosis system
for power transformer. The multilayer SVM involves the
classification of data into one of the two appropriate classes
at each layer (Lv et al., 2005). We propose to develop four
SVMs to identify the five classes: normal, partial discharge,
arcing, overheating and cellulose degradation. The archi-
tecture for the multilayer SVM is shown in Figure 2. SVM
1 separates the normal state from the fault state while
SVM 2 separates discharge faults from thermal faults. The
third and the fourth SVM classify the discharge faults as
either partial discharge or arcing, and thermal faults as
either overheating or cellulose degradation, respectively.
The preprocessed data (discussed later) is fed to this
multilayer SVM classifier for fault diagnosis.

For a given set of features, the following steps are involved
in using multilayer SVM classifier for fault diagnosis in
power transformers.

1) Data Preprocessing: The available data lists the actual
value (in concentration units) of the gas content obtained
by DGA. For diagnosing faults in a power transformer,
the data is processed using Eq (9) to obtain the relative
content of gaseous species to be considered instead of the
actual values:

uv =
cv

maxpi=1(ci)
∀v = 1, 2, . . . , p (9)

where p is total number of variables in the feature set
under consideration and ci denotes the concentration of
species i. The rationale behind this scaling is that the fault
patterns are related to the relative content of gases rather
than their absolute values (Lv et al., 2005). Apart from the

given set of scaled features, an additional feature capturing
the maximum concentration for a given observation is
added. This feature is (Lv et al., 2005):

up+1 = log10(
p

max
i=1

ci) (10)

2) Training the SVMs: For a specified feature set, the
training data after preprocessing (as discussed above) is
used to obtain (train) the four SVMs as mentioned in
Figure 2. Training each SVM involves finding a hyperplane
obtained by solving formulation in Eq 3 corresponding to
appropriate classes. For example, to train SVM2, fault
data split as either discharge fault or thermal fault is
used. The value of regularization parameter C (Eq 3) was
chosen to be 100. For obtaining each SVM, Gaussian radial
basis Kernel function (described in section 2.1) was used
with the value of σ = 1. These values were taken from
Lv et al. (2005). The SVMs are trained using LIBSVM
toolbox (Chang and Lin, 2011) in MATLAB R©.
3) Testing the trained SVMs: The test data is also pre-
processed as the training data. Then, the SVM classifier
developed based on training data is used to assign the test
data to one of the five classes. The performance of the clas-
sifier is obtained in terms of the classification accuracy that
is the percentage of test data samples that are correctly
classified. The classification accuracy is calculated for the
complete classifier as well as for the individual SVMs.

3.3 Feature Selection

The performance of the multilayer SVM classifier can be
improved by using only the informative variables instead
of using all the variables. The informative variables are
obtained by using feature selection technique based on
mutual information. In case of multilayer SVM, feature
selection can be performed in two ways: (i) overall feature
selection where the same set of variables is used for all
the SVMs, and (ii) pairwise feature selection in which
the feature selection technique is applied to individual
SVMs and hence the set of variables for each SVM may
be different. These two approaches are discussed next. As
discussed earlier, the feature selection is performed only
for dataset 1.

Overall Feature Selection: It involves the following steps:

(1) Step 1: This step is used for finding the groups
with maximum mutual information with specified
number of variables in each group. The training data
for each of the five classes in dataset 1 is used
for calculating the mutual information. The variable
selection problem is a combinatorial optimization
problem. Since each variable may or may not be
selected, there are 2n − 1 possibilities for n variables
(excluding the case when no variable is selected). For
small n, such as in our work, it is possible to explicitly
consider all these possible combinations. However,
for large n this explicit enumeration is not feasible
and heuristic strategies such as greedy search based
forward selection (Verron et al., 2008) can be used.
In our work, mutual information is computed for all
the possible (i.e. 27 − 1 = 127) groups of variables.
For each specified value p = 1, 2, . . . , 7 of number of
variables, the group with highest mutual information
is identified. Thus, after this step, for training dataset
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1, we have seven sets of features each corresponding to
seven possible values of p. Table 2 lists the resulting
seven sets of features.

(2) Step 2: This step is used to compare the classification
accuracy for each of the seven groups or sets of fea-
tures obtained above. For each group the multilayer
SVM classifier is obtained using the steps described
in section 3.2 and the performance compared based
on training dataset 1. These performances are listed
in Table 2. The group corresponding to the multilayer
SVM giving the maximum classification accuracy is
identified to be the optimal set of features.

Table 2. The best group of features with clas-
sification accuracies on dataset 1

No. of
fea-
tures

Features used Classif. accuracy
on train, test
data (%)

1 C2H2 58.87, 34.54

2 C2H4, C2H2 67.75, 58.18

3 C2H6, C2H4, C2H2 76.16, 59.09

4 CH4, C2H6, C2H4, C2H2 84.11, 60

5 H2, CH4, C2H6, C2H4, C2H2 87.38, 65.45

6 H2, CH4, C2H6, C2H4, C2H2,
CO

91.12, 73.63

7 H2, CH4, C2H6, C2H4, C2H2,
CO, CO2

87.38, 71.81

According to the classification accuracies for training
dataset1 listed in Table 2, it is seen that the best multilayer
SVM classifier is obtained when the best set of six features
is used. This best set of features does not include CO2,
thereby identifying CO2 as the least informative feature
for diagnosing the specified faults.

Table 2 also lists the classification accuracies for test
dataset 1 for the listed sets of features. As expected, the
performance in each case is inferior to that for the training
dataset. It is further seen that the best performance in case
of test dataset1 is once again obtained for the set of six
features that was identified as the optimal set based on
training dataset1. This validates the hypothesis that the
performance of the multilayer SVM is improved when the
recommended set of six features is used instead of using
all the available seven features. .

To further investigate the performance of the classifiers,
the performances of each of the individual SVMs used
in the multilayer SVM classifier for the training and the
testing data for dataset1 is tabulated in Table 3.

The following conclusions can be drawn by analyzing the
performance of individual SVMs in this table:
1) The best performance for most of the individual SVMs
is obtained for the case when the recommended set of six
features are used. For training data of dataset1, this set of
six features results in best performance for all SVMs other
than SVM4. For SVM4, its performance is marginally
inferior to the best set of five features. For testing data
of dataset1, the best performance for all the SVMs is
obtained with the recommended set of six features. This
means that if the user is interested only in distinguishing
between a specified pair of faults as considered in the
multilayer SVM architecture, the recommended set of six
features will again be the best set of features for each SVM.
2) The performance of SVM 1 is very good for the recom-

mended set of six features for both the training (98.13%)
and testing data (96.36%) for the dataset 1. Since SVM
1 distinguishes between the normal and fault conditions,
it can be concluded that fault detection can be performed
with high accuracy with the selected set of features.
3) The performance of SVM 3, which classifies the dis-
charge faults either as partial discharge or as arcing, is
100% most of the times for training data of dataset1. How-
ever, for the testing data, the accuracy goes down. This
indicates that overfitting is occurring during the training
step for this SVM. It might be possible to obtain higher
performance for testing data by using a lower value of the
regularization parameter C (Eq 3) during the training of
the SVM.
4) The performance of SVM 4 is worst amongst all the
SVMs for both the training and the testing data of dataset
1. This indicates that the two faults (overheating and
cellulose degradation) are not easily separable.

Table 3. Classification accuracy (in %) of indi-
vidual SVMs on training and testing data for

dataset 1

No. of features
(same set as in
Table 2)

SVM 1
(train,
test)

SVM 2
(train,
test)

SVM 3
(train,
test)

SVM 4
(train,
test)

1 88.78,
88.18

85.26,
77.31

100,
66,66

75.17,
52.05

2 88.78,
88.18

86.84,
83.50

93.33,
79,19

87.58,
76.71

3 92.05,
88.18

90.00,
86.59

93.33,
79.19

89.65,
76.71

4 95.32,
90.90

93.64,
85.56

100,
79.19

91.72,
73.97

5 96.26,
92.72

94.7,
90.72

100,
87.50

93.79,
75.34

6 98.13,
96.36

97.36,
91.75

100,
87.50

93.10,
76.71

7 96.26,
95.45

96.84,
91.75

100,
83.30

91.03,
75.34

Pairwise feature selection: We also perform pairwise fea-
ture selection for each SVM, where the mutual information
is calculated by considering training data for only the
corresponding two classes. The set of features giving the
maximum mutual information and maximum classification
accuracy is selected for that particular SVM. The steps
are the same as in the overall feature selection procedure
discussed above, with the difference that they are applied
individually to each SVM instead of applying them to the
overall multilayer SVM classifier. This pairwise procedure
results in a different set of features for each SVM con-
taining some or all of the six variables as listed in Table
4. Comparing the results in this table (last row) with the
results in Table 2 (second last row), it is seen that similar
overall performance is achieved even if different sets of
features are used for different SVMs.

Results for dataset 2:
The dataset 2 is now used to verify the performance with
the set of six features identified to be optimal based on
dataset 1. For this purpose, the multilayer SVM (Figure
2) is trained with the training data of dataset2 when
the recommended set of six features are used. The SVM
parameters (C, σ) were chosen to be the same as that in
dataset 1. Resulting performance for both training and
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Table 4. Features obtained for the individual
SVMs in multilayer SVM using pairwise fea-
ture selection with training data of dataset 1

SVM type Features used Classif. accuracy
on train, test
data (%)

1 H2, CH4, C2H6, C2H4,
C2H2, CO

98.13, 96.36

2 H2, CH4, C2H6, C2H4,
C2H2, CO

97.36, 91.75

3 CH4, C2H4, C2H2, CO 100, 79.16

4 H2, CH4, C2H6, C2H4,
C2H2

93.79, 75.34

Overall
multilayer
classifier

Using above set of fea-
tures for each SVM

91.58, 71.81

testing data of dataset 2 are listed in Table 5. For the
sake of comparison, performances obtained with the best
set of five features and all the features are also listed in
this table. It is seen that the set of six features leads to
acceptable performance, with its performance being the
best for training data and slightly inferior to that obtained
by the set of five features for testing data.

Table 5. Comparison of the classification accu-
racies of groups of features for dataset2

No. of
features

Features used Classif. accuracy
on train, test
data (%)

5 H2, CH4, C2H6, C2H4,
C2H2

94.66, 70.73

6 H2, CH4, C2H6, C2H4,
C2H2, CO

98.66, 68.30

7 H2, CH4, C2H6, C2H4,
C2H2, CO, CO2

88, 60.97

4. CONCLUSION

In this paper, a mutual information based optimal set
of features is selected for SVM based fault diagnosis of
power transformers. It is found that of the seven available
gases in DGA, CO2 should be discarded to obtain better
diagnostic performance. This optimal set of six features
were identified on an industrial dataset (labeled dataset 1).
Diagnostic performance was also analyzed with this set of
recommended features on a dataset available in literature
(labeled dataset 2) and the performance was found to be
satisfactory. The performances for both datasets can be
further improved by optimizing the values of some of the
parameters associated with SVMs, such as the type of
Kernel and its corresponding parameters and the regular-
ization parameter in the SVM formulation. The proposed
approach classifies a given observation as belonging to
one of the known classes. In case of an occurrence of a
new fault, the observation would be wrongly classified to
one of the existing classes. The availability of richer data
from various classes can avoid such problems and lead to
a more robust fault diagnosis scheme. Moreover, based
on the results in this paper we expect that while SVMs
will have to be trained afresh every time a new dataset
is encountered, the optimal set of features as identified in
this work can be used. This is of course only for the given
types of faults. For other types of faults, feature selection
in a similar manner can be performed.
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