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Abstract: Control of product purity is of paramount importance in effective control of tightly
integrated process such as reactive distillation. In practice, however, measurements of product
concentrations may be unavailable or may be available at slower sampling rates when compared
with other measurements. A cost effective approach to improve control of such systems is to
develop a state estimator that can accommodate measurements at multiple rates and use it in
controller development. In this work, DAE EKF formulation developed by Mandela et al. (2010)
is modified to accommodate measurements available at multiple sampling rates. A successive
linearization based nonlinear MPC scheme is then developed for controlling a system modeled as
DAEs. Observer error feedback approach developed by Hunag et al. (2012) has been extended to
achieve offset reduction and to improve regulatory control of a multi-rate sampled data system.
The efficacy of the proposed approach is demonstrated by conducting simulation studies on an
ideal reactive distillation system. Analysis of the simulation results reveals that the feedback
introduced using the multi-rate concentration measurements reduces the offset significantly in
the face of unmeasured disturbances of moderate magnitude.

Keywords: Differential Algebraic Systems; Multi-rate Sampling; Extended Kalman Filter;
Nonlinear Model Predictive Control; Reactive Distillation.

INTRODUCTION

Reactive distillation (RD) has recently become one of the
most important hybrid unit operation in the processes in-
dustry. Control of quality variables, such as product purity
in a RD column, is of paramount importance in effective
control of such a tightly integrated process. In practice,
however, measurements of product concentrations may be
unavailable or may be available only at slow sampling
rates when compared with other measurements such as
temperatures and pressures. A cost effective approach to
improve control of such systems is to develop a state
estimator using a reliable mechanistic model of the plant
and use the estimated quality variables for improving the
control performance (Patwardhan et al. (2012)).

State estimation approaches that can accommodate mea-
surements sampled at multiple rates are at the core of the
control schemes for multi-rate sampled data systems. Over
the last two decades, many versions extended Kalman
filter (EKF) that can deal with the measurements sampled
at multiple rates have been developed and employed for
combined state and parameter estimation in variety of
applications (Patwardhan et al. (2012)). However, major-
ity of the available approaches are for systems modelled
as a set of ODEs. An RD system, on the other hand, is
typically modelled as a system of coupled differential alge-
braic equations (DAEs). The systems governed by DAEs
have received much less attention in the state estimation
literature. The extension of the Kalman Filter for nonlin-

ear DAE systems has been explored previously by Bec-
cera (2001). Their estimation scheme can accommodate
measurements obtained only from the differential states,
which can prove to be a serious limitation for systems such
as RD columns. To overcome this limitation, Mandela et
al (2010) have recently developed formulations for EKF
and UKF (Unscented Kalman Filter), which accommodate
measurements of differential as well as algebraic states.
However, in both the approaches (Beccera (2001), Man-
dela et al (2010)), it was assumed that all the measure-
ments are available at the single (fast) rate.

In this work, the DAE EKF formulation developed by
Mandela et al (2010) is further modified to accommo-
date measurements available at multiple sampling rates.
The RD system under consideration exhibits simultane-
ous input and output multiplicity behavior in the desired
operating region. To achieve tight control of such a highly
nonlinear system over a wide operating range, a successive
linearization based nonlinear predictive control scheme
is developed. To achieve off-set free close loop behavior,
Huang et al. (2009) have proposed observer error feedback
scheme that introduces integral action in the controller.
This observer error feedback approach is extended in the
present work for controlling a multi-rate sampled data
system. The efficacy of the proposed approach is demon-
strated by conducting simulation studies on a ideal reac-
tive distillation system (Olanrewaju and Al-Arfaj (2006)),
which exhibits input and output multiplicities simultane-
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ously at the desired operating point (point A in figure 1)
.

This paper is organized as follows. In Section 1, EKF
formulation for DAE systems is modified for the multi-
rate measurement scenario. Section 2 presents develop-
ment of multi-rate NMPC formulation based on successive
linearization of DAE model. The results of the simulation
case study using the ideal RD system are described in
Section 3, and, the conclusions reached through analysis
of the results are presented in Section 4.

1. MULTI-RATE EKF FOR DAE SYSTEMS

1.1 Modeling Assumptions

The nonlinear DAE model of RD column can be re-written
in an abstract form as follows

dx

dt
= f [x(t), z(t),m(t)] (1)

0 =G [x(t), z(t)] (2)
where, x ∈ Rnd represents the differential state variables,
z ∈Rna represents the algebraic state variables, u ∈ Rm

represents the manipulated input variables and d ∈Rd

represent the unmeasured disturbance variables. Let h
represents the smallest sampling interval and interval at
which manipulated input moves are made.

Assumption 1 It is assumed that total of r(= rF + rS)
measurements are available from the system, where, rF
is defined as measurements available at fast rate and
rS is defined as measurements available at slow rate.
In a regularly sampled multi-rate scenario, a subset of
the measurements, yF ∈ RrF , are available at faster
rate, i.e. at minor sampling instant {kh : k = 0, 1, 2, ...},
while remaining measurements yS(kj) ∈ RrS are avail-
able only the at slower rate, i.e. at major sampling
instant {kj = j(nh) : j = 0, 1, 2, ...}. The measurement
vector, y(k), at k’th sampling instant is given as follows
• Minor sampling instant (k 6= kj)

y(k) = yF (k) (3)

yF (k) =CF

∙
x(k)
z(k)

¸
+ vF (k) (4)

• Major sampling instant (k = kj)

y(k) =

∙
yF (k)
yS(k)

¸
=

∙
CF

CS

¸ ∙
x(k)
z(k)

¸
+ v(k) (5)

=C

∙
x(k)
z(k)

¸
+ v(k) (6)

Thus, at major sampling instants, all the mea-
surements are available simultaneously. Here, mea-
surement noise, v(k) is modelled as a zero mean
white noise processes with Gaussian distribution,
i.e. v(k) ∼ N (0,R) and vF (k) ∼ N (0,RF ), rep-
resents subset of measurement noise vector corre-
sponding to the fast rate measurements.

Assumption 2 The manipulated inputs are piecewise
constant over interval i.e.

m(t) =m(k) for tk ≤ t < tk+1 = tk + h

Further, the true value of the manipulated inputs (m)
is related to the known / computed value of the manip-
ulated inputs (u) as follows

m(k) = u(k) +wu(k) (7)
where wu,k ∈ Rm denotes an unknown disturbance in
manipulated inputs such that wu(k) ∼ N (0,Qu).

Assumption 3 The choice of the sampling interval is
small enough so that the variation of the unmeasured
disturbances can be adequately approximated using the
piecewise constant functions of the form

d(k) = d+wd(k) for tk ≤ t < tk+1 = tk + h

wd(k) ∈ Rdu denotes a disturbance in the unmeasured
disturbance such that wd(k) ∼ N (0,Qd) and d repre-
sents the mean or the steady state value of the unmea-
sured disturbance at some desired operating point.

Thus, the plant is simulated by solving the following set
of DAEs

x(k + 1) = x(k) +

Z (k+1)h

k∆

f [x(τ),m(k),d(k)] dτ (8)

0 =G [x(τ), z(τ)] (9)

using a suitable DAE solver. For the sake of convenience,
the following notation is adopted to represent the DAE
represented by (8-9) in discrete form

x(k) =F
£
x(k − 1),u(k − 1),d,w(k − 1)

¤
(10)

0 =G [x(k), z(k)] (11)

where w(k) represents augmented state noise vector, i.e.

w(k) =
£
wT
u (k) w

T
d (k)

¤T
with covariance matrices Q = diag [Qu Qd ].

1.2 Multi-rate EKF for Semi-implicit DAE System

In the present work, the EKF algorithm proposed by
Mandela et al (2010) is modified for multi-rate scenario
for the state estimation of the semi-implicit DAE system
given by (10-11) together with the measurement model
(3-6). EKF is preferred over UKF as the later formulation
was found to result in significantly large (about 20 times)
average computation time. The steps involved in the state
estimation based on EKF for multi-rate scenario are as
follows:

• Prediction Step: At every minor and major sam-
pling instant, given estimates (bx(k − 1|k − 1),bz(k −
1|k−1), the predicted mean is computed using a DAE
solverbx(k|k − 1) =F £bx(k − 1|k − 1),u(k − 1),d,0¤(12)

0 =G [bx(k|k − 1),bz(k|k − 1)] (13)

Defining an augmented state vector

X (k) =
£
xT (k) zT (k)

¤T
and Jacobian matrix

A(k − 1) =

⎡⎣ ∙ ∂f∂x
¸
(•)

∙
∂f

∂z

¸
(•)

a21 a22

⎤⎦
Bw(k − 1) =

⎡⎣ ∙ ∂f∂w
¸
(•)

bw

⎤⎦
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where,

a21 = −
∙
∂G

∂z

¸−1
(•)

∙
∂G

∂x

¸
(•)

∙
∂f

∂x

¸
(•)

a22 = −
∙
∂G

∂z

¸−1
(•)

∙
∂G

∂x

¸
(•)

∙
∂f

∂z

¸
(•)

bw = −
∙
∂G

∂z

¸−1
(•)

∙
∂G

∂x

¸
(•)

∙
∂f

∂d

¸
(•)

such that the derivatives are evaluated at
(•) ≡ (bx(k|k − 1),bz(k|k − 1),u(k − 1),d) (14)

The update of the predicted covariance matrix,
P(k|k−1),of the augmented state estimates, bX (k|k−
1),is carried out as follows

P(k|k − 1) =Φ(k − 1)P(k − 1|k − 1)Φ(k − 1)T

+ΓTw(k − 1)QΓw(k − 1) (15)

Φ(k) = eA(k)h ; Γw(k) =

Z h

0

eA(k)τBw(k)dτ

• Update step: Calculations for the update step are
different at minor and major sampling instant.
· Minor sampling instant (k 6= kj): The
Kalman gain can be computed as follows

LF (k) =P(k|k − 1)CT
F [VF (k)]

−1

VF (k) =CFP(k|k − 1)CT
F +RF (16)∙ bx(k|k)ez(k|k)

¸
=

∙ bx(k|k − 1)bz(k|k − 1)
¸
+ LF (k)eF (k)

eF (k) = yF (k)−CF
bX (k|k − 1) (17)

P(k|k) = [I− LF (k)CF ]P(k|k − 1)
· Major sampling instant (k = kj): The
Kalman gain can be computed as follows

L(k) = P(k|k − 1)CT
£
CP(k|k − 1)CT +R

¤−1
(18)∙ bx(k|k)ez(k|k)

¸
=

∙ bx(k|k − 1)bz(k|k − 1)
¸
+ L(k)e(k)

e(k) = y(k)−C bX (k|k − 1) (19)

P(k|k) = [I− L(k)C]P(k|k − 1)
In each case, since the updated differential and

algebraic states, (bx(k|k),ez(k|k)) together may not
satisfy the algebraic equations, the algebraic states,bz(k|k), are recomputed using the differential statesbx(k|k) by solving for

0 =G [bx(k|k),bz(k|k)] (20)

2. NMPC SCHEMES BASED ON OBSERVER ERROR
FEEDBACK

Let yc represent set of controlled outputs

yc(k) ≡ yc(k) = CS

∙
x(k)
z(k)

¸
which, in the present case, corresponds to the slowly sam-
pled measurements. Consider the problem of generating
future predictions using continuous time model

dex
dt
= f [ex(t),ez(t),u(t),d(t)] (21)

0 =G [ex(t),ez(t)] (22)

with initial condition ex(kh) = bx(k|k), z(kh) =bz(k|k) and
using future input sequence

Uf ≡ {u(k|k),u(k + 1|k)........u(k + p− 1|k)} (23)
To make the problem computationally tractable, it is
proposed to linearize the DAE in the neighborhood of the
current operating point

(•) ≡
¡bx(k|k),bz(k|k),u(k − 1),d¢ (24)

and then the linear model is used for carrying out predic-
tions.

2.1 Successive Linearization of DAE Model

RHS of equation (21) can be linearized in the neighbor-
hood of point (•) as follows

dex
dt
≈ f(k) +Ax(k)δex(t) +Az(k)δez(t)
+Bu(k)δu(t) + Bd(k)δd(t)

δex(t) = ex(t)− bx(k|k), δez(t) = ez(t)− bz(k|k)
δu(t) = u(t)− u(k − 1), δd(t) = d(t)− d

f(k) = f
£bx(k|k),bz(k|k),u(k − 1),d¤

Ax(k) =

∙
∂f

∂x

¸
(•)

; Az(k) =

∙
∂f

∂z

¸
(•)

Bu(k) =
∙
∂f

∂u

¸
(•)

; Bd(k) =
∙
∂f

∂d

¸
(•)

Also, equation (22) can be linearized in the neighborhood
of point (•) as follows

G [ex(t),ez(t)] ≈ gk + Gx(k)δex(t) + Gz(k) δez(t) = 0
g(k) =G [bx(k|k),bz(k|k)]
Gx(k) =

∙
∂G

∂x

¸
(•)

; Gz(k) =
∙
∂G

∂z

¸
(•)

δez(t) =− [Gz(k)]−1 [g(k) + Gx(k)δex(t)]
Thus, equation (21) can be locally approximated as follows

dex
dt
= f(k)−Az(k) [Gz(k)]−1 g(k) +A(k)δex(t) (25)
+Bu(k)δu(t) + Bd(k)δd(t)

A(k) =
h
Ax(k)−Az(k) [Gz(k)]−1 Gx(k)

i
(26)

ex(t = kh) = bx(k|k) (27)
The equations (25) can be integrated over interval t ∈
[kh, (k + 1)h] as follows

x(k + 1)=Ψ(k)F(k) +Φ(k)x(k) + (28)

Γu(k)δu(k) + Γd(k)w(k)

δz(k + 1)=− [Gz(k)]−1 [g(k) + Gx(k)δx(k + 1)] (29)
where
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F(k) = f(k)−Az(k) [Gz(k)]−1 g(k)
−A(k)bx(k|k)

Ψ(k) =

Z h

0

exp (A(k)τ) dτ ; Φ(k) = exp [A(k)h](30)

Γu(k) =

Z h

0

exp (A(k)τ)Bu(k)dτ (31)

Γd(k) =

Z h

0

exp (A(k)τ)Bd(k)dτ (32)

The resulting discrete DAE is then used for carrying out
predictions.

2.2 Model Predictions

Given the set of future manipulated inputs, the model
predictions are carried out using the local linear model
as follows:

• It is proposed to use the innovation sequence {e(kj)}
generated at major sampling instants as a proxy
for model plant mismatch (MPM) and unmeasured
disturbances affecting the plant. Additional degrees
of freedom are introduced by making use of filtered
innovations while carrying out model predictions.
Thus, during two major sampling instant, kj ≤ k <
kj+1, innovation sequence filtered through a unity
gain filter is evaluated at the fast rate as follows

ε(k + 1) = Φεε(k) + [I−Φε] e(kj)

Φε = diag [ α1 α2 ... αm ]
Here, αi with 0 ≤ αi < 1 are treated as tuning para-
meters, which can be used for shaping the regulatory
response.

• To carry out state predictions at minor as well as
the major sampling instant, observer gain L(kj),
evaluated at the previous major sampling instant, is
used as followsex(k + l + 1|k) =Ψ(k)F(k) +Φ(k)bx(k + l|k) +(33)

Γm(k)δu(k + l|k) + L(kj)ε(k)ez(k + l + 1|k) = bz(k|k)− [Gz(k)]−1 [◦] (34)

[◦] = [g(k) + Gx(k) (ex(k + l + 1|k)− bx(k|k))]
δu(k + l|k) = u(k + l|k)− u(k−1) (35)

l= 0, 1, 2, ..., p− 1 (36)
• At major sampling instants, yc (k) is a subset of
ym (k) , and we estimate

ec(kj) = yc (kj)−Cs

∙ bx (kj |kj)bz (kj |kj)
¸

and use it during two major sampling instant, kj ≤
k < kj+1 to compute filtered output mismatch signal

η(k) = Φηη(k − 1) + [I−Φη] ec(kj)

Φη = diag [ β1 β2 ... βm ]
Here, βi with 0 ≤ βi < 1 are treated as tuning
parameters. This filtered signal is then used then for
correcting the output predictions at minor as well as
major sampling instants as follows

eyS (k + l|k) = Cs

∙ ex (k + l|k)ez (k + l|k)

¸
+ η(k) (37)
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Fig. 1. Bifurcation diagram for Reactive Distillation Col-
umn

for l = 1, 2, ....., p.

2.3 NMPC Formulation

Given the model predictions, at instant k, NMPC is for-
mulated as a constrained optimization problem as follows

min
Uf

pX
j=1

kE (k + j|k)k22,WE
+

q−1X
i=0

°°∆uT (k + i|k)
°°2
2,W∆u

(38)

E (k + j|k) = eyS (k + j|k)− yr (39)

∆u (k + j|k) = u (k + j|k)− u (k + j − 1|k) (40)

subject to

uL ≤ u (k + j|k) ≤ uH for j = 0, 1, .., q − 1 (41)
u (k + j|k) = u (k + q − 1|k) for j = q, q + 1, .., p− 1(42)

where yr is the set point for the output,WE andW∆u are
positive semi-definite weighting matrices, p represents the
prediction horizon and q represents the control horizon.
The controller is implemented in moving horizon, i.e., the
first optimal move u (k|k) is implemented the linearization
and the optimization steps are repeated over the horizon
[k + 1, k + p+ 1].

3. CONTROL OF IDEAL REACTIVE DISTILLATION
COLUMN

An ideal reactive distillation column presented in Olanre-
waju and Al-Arfaj (2006) is of interest in this work.

3.1 Ideal Reactive Distillation System

A benchmark reactive distillation system (Olanrewaju and
Al-Arfaj (2006)), in which a quaternary hypothetical
reaction of the form a + b ↔ c + d is carried out, has
been used in the present work to investigate the close loop
performance of DAE observer based SLNMPC in multi-
rate scenario. The reactive distillation system hasN stages
in the column and is numbered from bottom to the top.
The reactive section contains NRX trays, the rectifying
section contains NR trays, and the stripping section below
the reactive section contains NS trays. Reaction occurs
only in reactive section in which solid catalyst is present on
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trays. Pure reactant a enters the column on the first tray of
the reactive section (i.e. tray no. NS+1) and pure reactant
b enters the column on the last reactive stage (i.e. tray no.
NS +NRX). In the present work, an RD column with NS

= 7, NRX = 6, and NR = 7 has been considered. Detailed
model equations for this system are given Olanrewaju and
Al-Arfaj (2006). For the RD system under consideration,
the liquid compositions of all the components on all stages
including reboiler stage and condenser stage and molar
holdup of reboiler and condenser are considered as the
differential state variables and while the temperatures
on all the stages except total condenser are considered
as the algebraic states. The algebraic constraints arise
from the vapor liquid equilibrium on each stage of the
distillation column. Kinetic and physical properties of the
ideal RD system and VLE parameters are taken from
Olanrewaju and Al-Arfaj (2006). Thus, the mathematical
model consists of 90 differential states and 21 algebraic
states. Process simulation was carried out using implicit
Euler method with integration interval of 1 sec.

The following regularly sampled multi-rate scenario is
considered

• Fast rate measurements: It is assumed that tem-
peratures on alternate 11 stages starting from reboiler
stage are being measured at the fast rate with a inter-
val of 30 sec. Molar holdups in reboiler and condenser
are also assumed as measured variables at the fast
rate. Each temperature measurement is assumed to
be corrupted with a zero mean, normally distributed
white noise sequence with standard deviation 0.1 K.
The measurements of the holdups are assumed to
be corrupted with a zero mean white noise with a
standard deviation of 2 mols.

• Slow rate measurements: The slow rate measure-
ments are feed stage composition of reactant a (xa) ,
composition of heavy product d in the bottom (xb) and
composition of light product c in the distillate (xd),
which are assumed to be available at every 2 minute
interval or every 1 minute interval. Each concentra-
tion measurement is assumed to be corrupted with
zero mean, normally distributed white noise sequence
with standard deviation of 0.001 mol fraction.

It is further assumed that the true manipulated inputs (m)
are corrupted with zero mean white noise (wu) as given by
equation (7) where the covariance matrix of wu is given
as

Qwu = diag
£
0.14152 0.1652 0.0632

¤
(43)

3.2 Steady state multiplicity analyses

Before proceeding to closed loop studies, a bifurcation
study is presented for the RD column. The vapor boilup is
chosen as the continuation parameter in the bifurcation
study while keeping the reflux flow constant. Figure 1
shows the steady state multiplicity behavior of the RD
system for different values of vapor flow-rate at constant
reflux flow rate. There are three steady state states (output
multiplicity) for the system at vapor boilup rate (Vs)
28.3 mol/s. From the viewpoint of operation, the unstable
steady state point A (xb = 0.95), is the most desirable
operating point as the desired purity can be achieved at
lower vapor boilup and, in turn, with lower energy cost.
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Fig. 3. Regulatory response for +10% disturbance in feed
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However, the steady state A is locally unstable while the
remaining two are locally stable steady states. Moreover,
the desired purity (xb = 0.95) can also be achieved at
higher vapor boilup rates corresponding to points B1
(V s = 28.5 mol/s) or B2 (V s = 28.8 mol/s) (Fig. 1),
which indicate the existence of input multiplicity. While
the steady states corresponding to B1 and B2 are stable,
operating at either of these points implies higher energy
cost. Thus, the control problem is to operate the system
at the unstable operating point A.

3.3 Regulatory Control Problem

In the close loop operation, reflux flow rate (FR) and
vapor boil-up rate (VS) are treated as manipulated inputs.
In addition, feed rate of reactant a (i.e. , Fa) is also
manipulated to maintain stoichiometric balance in reactive
section. The NMPC scheme has three controlled outputs
,yS , i.e. xa, xb and xd.

In the present work, the regulatory performance of SLN-
MPC scheme is evaluated at desired unstable operating
point (point A in Fig. 1). In particular, the regulatory
behavior of the RD system in the presence of ± 10% step
changes in the feed rate of reactant ‘b’ is considered in the
simulation studies. The following four different measure-
ment scenarios have been investigated.

• Fast Rate Scenario 1 (FR-1): Fast rate measure-
ments of only temperature and liquid holdups (i.e.
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Table 1. NMPC tunning parameters

Prediction horizon, p 20
Control horizon, q 2
Sampling time, Ts 30 sec
Weighting matrix, WE [1.4912, 8.7460, 1]× 106

only yF ) are available. This amounts to inferential
control of yS .

• Multi Rate Scenario 1 (MR-1): In addition to yF ,
slow rate measurements of yS are available at every
2 minute interval.

• Multi Rate Scenario 2 (MR-2): In addition to yF ,
slow rate measurements of yS are available at every
1 minute interval

• Fast Rate Scenario 2 (FR-2): Measurements of
yF as well as yS are available at the fast rate

The NMPC tuning parameters are shown in Table 1.

The model plant mismatch filter tuning matrices Φε and
Φη are chosen as follows

Φε = 0.9In×n and Φη = 0.9Ir×r
It may be noted thatW∆u is chosen as null matrix. The
state and the measurement noise model parameters have
been used to develop multi-rate DAE EKFs. To highlight
the offset reduction ability of the proposed scheme, the
simulation results presented, however, are for scenarios
where stochastic disturbances and measurement noise are
absent. NMPC problem is solved using fmincon function
from theMATLAB (R) Optimization Toolbox. Comparison
of regulatory performances for different measurement sce-
narios are shown in Figures 2-5. The controlled variables
are xd, xa and xb. The unmeasured disturbances (±10%)
in feed rate of reactant b are introduced after initial 25
minutes of operation with no model plant mismatch. In
the absence of MPM, even the inferential control scheme
(FR-1) is able to maintain the RD system at the desired
concentration set points. However, the occurrences of step
changes in the unmeasured disturbance leads to biased
state estimation due to MPM, and, as a consequence, the
inferential control scheme (FR-1) leads to large offsets.
The offsets reduces significantly in the multi-rate scenarios
MR-1 and MR-2 due to the feedback introduced through
slowly sampled concentration measurements. Moreover,
with the increase in the frequency of sampling of the con-
centration measurements, the offset reduces more and the
regulatory performance improves. The offset disappears
when concentration measurements are available at the fast
rate (FR-2). The profiles of manipulated inputs are shown
in Figure 5 for different measurement scenarios. The aver-
age computational times for all the different measurement
scenarios considered is less than 5 sec on Intel CORETM

i5 CPU 2.67 GHz with 4 GB RAM processor.

4. CONCLUSION

In this work, a DAE EKF based nonlinear MPC scheme
is proposed, which can accommodate measurements of
quality variables available at slower sampling rates. To
achieve off-set reduction, the observer error feedback ap-
proach developed by Huang et al. (2009) is extended
to accommodate multi-rate measurements. The efficacy
of the proposed approach is demonstrated by conducting
simulation studies on a ideal reactive distillation system
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(Olanrewaju and Al-Arfaj (2006)). Analysis of the simula-
tion results reveals that the offset reduces significantly and
the regulatory performance improves with the increase in
frequency of sampling of the quality variables. Possibility
of employing target states for elimination of offset in the
multi-rate scenarios is currently being investigated.
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