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Abstract:
The quality of a model determines the closed loop performance of model predictive controllers.
However, identification of high quality multivariable models is a time and energy intensive
exercise. The industrial model predictive controllers are designed using large dimensional
multivariable models and they are often identified using ad-hoc single input bump tests. A
novel multivariable input design approach is developed using a modified model predictive control
objective function. It is shown that the proposed input design approach is trace optimal with
respect to the covariance of model parameters. The approach is shown to work well in closed
loop on both well and ill-conditioned processes even under model-plant mismatch while meeting
input and output constraints.
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1. INTRODUCTION

Model predictive control is a popular multivariable con-
troller that is widely used in processes with constrained
variables. Standard software and communication protocols
allow fast deployment of advanced control applications.
However, over the last four decades since the invention
of model predictive control, the basic approach to step
testing and modelling has largely remained the same. The
step tests are done by manipulating one input variable
at a time. This approach is ‘optimal’ only if the model
is diagonal and otherwise optimal inputs typically are
correlated and have to be obtained by solving a covariance
minimization problem (Koung and MacGregor (1994)).
There have been some recent advances on multivariable
input design and closed loop identification, however, the
industrial applications have lagged behind due to: (a) lack
of off-the-shelf tools, and (b) the interruption that all input
design algorithms cause to an operating process.

The performance of the model predictive controllers de-
pends critically on the quality of the estimated dynamic
models. Industrial experience has shown that the most
challenging and time-consuming task in an MPC commis-
sioning project is that of step testing and model identifica-
tion. A traditional approach to step testing would involve
a control engineer who spends many shifts in the control
room operating the plant in open loop. Additionally, dur-
ing MPC maintenance phase, the main task is often model
re-identification. A traditional model identification test on

a refinery unit, such as the crude unit, can take several
weeks. The quality of collected data depends primarily on
the experience of the control engineer. After the test, it can
take significant time to analyze the data and to identify
appropriate models. Currently available modeling tools
involve significant amounts of trial and error to make the
models conform to the industrial data. At the end of the
modeling exercise, the control engineer is left with, at best,
an intuitive feel for the fidelity of the individual models.
Since the models form the heart of any MPC application,
it is critical that the project team has confidence in the
models before deploying them online.

There is a growing demand for more efficient model iden-
tification methods that reduce duration of plant tests, the
time needed for model identification and the disturbances
to optimal operation of the plant during the test. The
quality of models estimated and the efficiency of these
identification methods depend on the choice of input dur-
ing the plant test and whether the test is done under open
or closed loop conditions. Multiple technology vendors
have started offering closed loop step testing packages as
part of their advanced control portfolio. The closed loop
approach to step testing and modeling is still in its early
stages of adoption in the industry.

There is extensive literature on designing inputs for lin-
ear processes Goodwin and Payne (1977); Ljung (1999);
Hjalmarsson (2005); Jansson and Hjalmarsson (2005); Qin
(2006). While a large portion of the literature focusses on
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input design under open loop, there have also been some
attempts to articulate the need for closed loop identifi-
cation and its relevance to high performance controllers
in general Van Den Hof and Schrama (1995); Gopaluni
et al. (2003, 2002); Forssell and Ljung (1999, 2000). These
traditional approaches to input design are based on finding
an optimal input sequence that minimizes a function of
the parameter covariance matrix. Consequently, there are
a few common challenges to implementation of these input
design algorithms: (a) the optimization problem involved
is often nonconvex, (b) the optimal input depends on the
“true” process model, and (c) the input and output con-
straints are not explicitly accounted. To the best knowl-
edge of the authors, Cooley and Lee (2001) and Jansson
and Hjalmarsson (2005) are some of the few articles that
attempt to formulate a convex input design optimization
problem and account for constraints. Bruwer and MacGre-
gor (2006) emphasizes the role of weak gain directions on
closed loop performance and propose systematic ways of
ensuring sufficient excitation along those directions. It also
states that in the closed loop case orthogonal excitation
along the setpoints is adeuqate to guarantee excitation
along all the relevant gain directions

In this work, we explore a novel approach to the generation
of an information rich test signal relevant to MPC appli-
cations. The idea of using a model predictive framework
based on the current controller model is formulated to
calculate a set of moves that maximize the output (con-
trolled variable) variability to the extent allowed by the
process constraints. The test moves are then implemented
in receding horizon manner, i.e., the first step or move
is implemented and the entire sequence recalculated at
the next sampling instant. We show that this approach is
equivalent to designing a T-optimal (trace optimal) input
for autoregressive exogenous (ARX) input models. The
application of the model predictive input design approach
is demonstrated on two examples - 1) on an illconditioned
process and 2) on a process involving model plant mis-
match.

This approach has numerous advantages: (a) the input is
designed by solving a convex optimization problem, (b)
the receding horizon nature of the algorithm ensures that
the “true” process model is not needed, (c) the input
and output constraints are explicitly included in the input
design optimization problem, (d) the plant tests are done
in closed loop, this ensures that both the strong and
weak gain directions have adequate excitation, and (e) the
implementation in off-the-shelf MPC technology is rather
straightforward.

2. MODEL PREDICTIVE CONTROL

The basic philosophy behind model predictive control is
to minimize a weighted sum of control errors and rate of
input change over a prediction horizon at every sample
instant. This minimization is performed while meeting
input and output constraints. The input thus generated is
implemented in a receding horizon fashion so as to account
for unmodelled dynamics and unmeasured disturbances.
Mathematically, the following quadratic objective is min-
imized at every sample instant to calculate a sequence of
future input moves,

Jk = (rk − yk)TΓ(rk − yk) + ∆uTkΛ∆uk (1)

where

rk =
[
rT1,k rT2,k · · · rTny,k

]T
∈ RPny×1

ri,k = [ri,k+1 ri,k+2 · · · ri,k+P ]
T ∈ RP×1

yk =
[
yT1,k yT2,k · · · yTny,k

]T
∈ RPny×1

yi,k = [yi,k+1 yi,k+2 · · · yi,k+P ]
T ∈ RP×1

∆uk) =
[
∆uT1,k ∆uT2,k · · · ∆uTnu,k

]T ∈ RMnu×1

∆ui = [∆ui,k+1 ∆ui,k+2 · · · ∆ui,k+M ]
T ∈ RM×1.

In the above formulation, P and M are the prediction and
control horizons, respectively, and Γ and Λ are the output
and input weighting matrices. ri,k, yi,k, and ui,k denote the
ith set points, outputs and inputs at the sampling instant
k. The number of inputs and outputs are denoted by nu
and ny, respectively. ∆ is the difference operator. Clearly,
at a given sample time k the objective function requires
future values of output. An estimate of future values of
output is obtained using a model. The objective function is
often minimized subject to process operating constraints.
The following standard optimization problem is solved at
every sampling instant,

minimize
∆uk

Jk

subject to yL ≤ yk ≤ yH
uL ≤ uk ≤ uH
∆uL ≤ ∆uk ≤ ∆uH

where ()L and ()H are lower and upper bounds on the
corresponding variables. One of the advantages of MPC is
its ability to formulate the input and output constraints
in a consistent way and ensure that they are satisfied in
any process situation.

The standard industrial practice in building a model for
MPC is to perform single input bump tests. Given that
the typical MPC models are as large as 100×100, such an
approach will be time and energy intensive. Moreover, it is
not possible to guarantee that the inputs and outputs meet
the process constraints during the tests. Single input bump
tests are also known to not provide sufficient excitation if
the process is ill-conditioned. In the next section a novel
input design approach is proposed and shown to address
some of the pitfalls of the ad hoc industrial approach.

3. MOVING HORIZON INPUT DESIGN

3.1 The Approach

The quality of an estimated model depends on the “infor-
mation content” in the input-output data and therefore it
is important to choose the inputs carefully and maximize
the information content. There are different matrices to
determine the information content and the quality of a
model. An optimal input is one that maximizes the infor-
mation content for a given metric of the model quality. The
model quality metric depends not only on the structure
of the model but also on the controller being used. For
instance, a model that can provide good multi-step ahead
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predictions is known to provide better closed loop perfor-
mance with MPC. The input design for a multivariable
process is often based on different principles than that
for a univariate process, especially when the process is ill-
conditioned Koung and MacGregor (1994).

The information content is often measured by the condi-
tion number of a particular matrix consisting of inputs and
outputs. Shouche et al. (1998) had taken the approach of
imposing the condition number of the information matrix
as an explicit constraint in the MPC objective function.
This approach ensures that the designed input is capable
of exciting the process to the extent permitted by the
constraints. Rivera et al (..) attempt to use the predictive
capability of the existing process model to design an input
sequence that generates information without sacrificing
the process constraints. The objective in this article is
to design an input that is commensurate with the MPC
objective function and maximize the information content
while maintaining the process constraints.

A reformulation of the MPC optimization problem is pro-
posed below to calculate a sequence of input moves that
are capable of generating an information rich data set
while maintaining the process constraints. As in MPC, a
receding horizon approach is taken to account for model-
plant mismatch and unmeasured disturbances. The re-
formulated optimization problem retains the structure of
the original MPC optimization problem with the only
difference being the maximization of the MPC objective
function rather than minimization. The idea behind this
formulation is that by maximizing the MPC objective
function one can maximize the variance in the inputs
while still keeping the process within the constraints. The
inputs are generated by solving the following optimization
problem

maximize
∆uk

Jk

subject to yL ≤ yk ≤ yH
uL ≤ uk ≤ uH
∆uL ≤ ∆uk ≤ ∆uH .

As in MPC, at each sample instant a sequence of inputs
are generated but only the first input is applied to the
process and the remaining inputs are discarded. While
this intuitive approach to input design is appealing it is
shown in the next section that this approach in fact is
trace optimal with respect to the parameter covariance
matrix.

3.2 T-Optimality

There are different metrics for input optimality. The most
popular among them is a metric on covariance of the
parameter matrix. The intuitive argument presented in
the previous section for the new input design method
can be justified by showing that the MPC objective Jk
is in fact proportional to the trace of inverse of parameter
covariance matrix (in other words trace (T ) of the infor-
mation matrix) for certain model structures. Therefore the
proposed input design method is T -optimal.

ARX Model

The covariance matrix of the parameters in a linear model
is a function of the input-ouput data and the noise co-
variance matrix. Finite impulse response (FIR) models
and Autoregressive Exogenous input (ARX) models are
often used in MPC. The special structure of FIR and ARX
models lends itself to formulate a least squares problem for
parameter estimation. Therefore, it is straightforward to
analytically derive an expression for the covariance matrix
and hence the information matrix for these model struc-
tures. These model structures are not only theoretically
appealing but are also often used by practicing engineers.
Modern identification methods often rely on initial estima-
tion of high order ARX models followed by model order
reduction for compatibility with the intended MPC or PID
application Zhu (2001).

Consider a multivariable ARX model of the following form
(for the i th output)

Ai(q)yi,k = Bi1(q)∆u1,k +Bi2(q)∆u2,k + · · ·
+Bim(q)unu,k + ei,k

where Ai(q) is a polynomial of order ni for i = 1 to ny and
Bij is a polynomial of order mij for j = 1 to nu. Assume
that the noise sequences ei,k are independent. The Ai(q)
and Bij(q) polynomials are of the form

Ai(q) = a
(0)
i + a

(1)
i q−1 + · · ·+ a

(ni)
i q−ni

Bij(q) = b
(0)
ij + b

(1)
ij q

−1 + · · ·+ b
(mij)
ij q−mij

where a
(.)
i and b

(.)
ij are coefficients of the respective polyno-

mials. These coefficients can be easily estimated from data
by solving a simple least squares problem Ljung (1999).
Note that the ARX model uses differenced input. Let us
consider a time period from k to k +N , where N denotes
the number of samples considered. By stacking the outputs
during this period and expanding the corresponding ARX
models, we can write

yi = Ziθi + ei (2)

where yi = [yi,k · · · yi,k+N ]T , Zi is a corresponding data
matrix obtained using the ith ARX equation and θi is a
vector of corresponding parameters in Ai(q) and Bij(q).
Similarly ei = [ei,k · · · ei,k+N ]T . Now stacking together
similar linear equations for each output, we can create the
following set of equations

y = Zθ + e

where y = [y1
T y2

T · · · yny
T ]T , θ = [θ1

T θ2
T · · · θny

T ]T ,

Z = diag(Z1,Z2, · · · ,Zny) 1 , θ = [θ1
T θ2

T · · · θny

T ]T

and e = [e1
T e2

T · · · eny
T ]T . The least squares solution

to the parameter vector, θ is given by

θ̂ = (ZTZ)−1ZTy (3)

and the corresponding variance of the estimated parame-
ters, θ̂ is proportional to Ljung (1999)

cov(θ̂) ∝ (ZTZ)−1. (4)

The matrix F := (ZTZ) is also called Fisher information
matrix and is inversely proportional to the parameter co-
variance matrix. Inputs for system identification are often
1 diag(.) is used to denote a matrix obtained by stacking its
arguments along the diagonal
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designed by minimizing some function of this parameter
covariance matrix. For instance, we can minimize the
trace (A - optimal design), eigenvalue (E - optimal), or
determinant (D - optimal) of the covariance matrix. The
minimization of the inverse of the covariance matrix often
is a nonlinear and complex function of the inputs and
therefore not amenable to convex optimization techniques.
Instead, maximization of a function of the information ma-
trix tends to be convex problem. The following proposition
shows that the maximization of the trace of information
matrix (also called T - optimal design) is equivalent to
maximization of the MPC objective function under some
mild technical constraints.

Proposition 1. The MPC objective Jk as defined in (1)
is proportional to trace(F) for ARX models with the
following choice of prediction horizons,

P = N −max
i

(ni) (5)

M = N −max
i,j

(mij) (6)

with appropriate input and output weights.

A proof is not presented due to lack of space but the idea
behind the proof is to rearrange the terms in the covariance
matrix in (4) in the form of the MPC objective function.

Box-Jenkins Model

The arguments developed for showing T -optimality of
the covariance of an ARX model can be extended to
that of a more general Box-Jenkins model. Consider a
standard SISO Box-Jenkins model of the following form
(for national simplicity a SISO model is considered but
extension to MIMO model is rather straightforward),

yk =
B(q, θ)

A(q, θ)
uk +

C(q, θ)

D(q, θ)
ek (7)

The corresponding one step ahead prediction error is
Gopaluni et al. (2004)

εk(θ) = G(q, θ)uk +H(q, θ)yk (8)

where G(q, θ) = −D(q, θ)B(q, θ)

C(q, θ)A(q, θ)
and H(q, θ) =

D(q, θ)

C(q, θ)
.

Assume that G(q, θ1) and H(q, θ2) are parametrized inde-
pendently with θ1 and θ2 such that θ = [θ1 θ2]. Then
the information matrix of a standard maximum likelihood
approach to estimate the parameters is given by

F = E
(
∂

∂θ
logL(θ|y)

)2

(9)

where logL(θ|y) is the log-likelihood function given by

logL(θ|y) = − 1

2N
log 2πσ − 1

2σ2

N∑
k=1

ε2
k(θ) (10)

Assuming ergodicity of the prediction errors the informa-
tion matrix at time k can be approximated for sufficiently
large N by

F ≈

N∑
k=1


(

∂
∂θ1

εk(θ)
)(

∂
∂θ1

εk(θ)
)T (

∂
∂θ1

εk(θ)
)(

∂
∂θ2

εk(θ)
)T(

∂
∂θ2

εk(θ)
)(

∂
∂θ1

εk(θ)
)T (

∂
∂θ2

εk(θ)
)(

∂
∂θ2

εk(θ)
)T


(11)

Therefore the T -optimal input design objective function is

trace(F) ≈
N∑
k=1

trace

(
∂

∂θ1
εk(θ)

)(
∂

∂θ1
εk(θ)

)T
+ trace

(
∂

∂θ2
εk(θ)

)(
∂

∂θ2
εk(θ)

)T
(12)

≈
N∑
k=1

trace

(
∂

∂θ1
G(q, θ1)uk

)(
∂

∂θ1
G(q, θ1)uk

)T
+ trace

(
∂

∂θ2
H(q, θ2)yk

)(
∂

∂θ2
H(q, θ2)yk

)T
≈

N∑
k=1

M∑
j=1

αkjukuj +

N∑
k=1

M∑
j=1

βkjykyj (13)

for some large M and constant coefficients αkj and βkj .
Assuming that the contributions of the cross correlation
between inputs and outputs at nonzero lags is negligible
(this assumption can be justified by the fact for a stable
system the cross correlation is negligible after a sufficiently
large lag),

trace(F) ≈
N̂∑
k=1

αkku
2
k +

N̂∑
k=1

βkky
2
k (14)

for some sufficiently large N̂ . Thus the MPC objective
function Jk can be made proportional to (14) with ap-
propriate choice of weights.

3.3 Merits and Demerits

The proposed input design approach and the MPC have
the same objective function. Consequently, the inputs and
outputs are given appropriate weights that are equal.
Unlike traditional single input bump tests, this approach
automatically provides a multivariate input sequence. The
input and output prediction horizons used in MPC and
in the input design method are the same and therefore
the designed input will be control relevant in the sense
of generating an input for multistep ahead predictions. In
addition, the input-output constraints are automatically
satisfied and therefore the experimentation does not push
the process into unacceptable operating regions. The in-
puts are designed at every sample instant in a deciding
horizon fashion and therefore any model-plant mismatch
and unmeasured disturbances are automatically accounted
for. An important practical advantage is that the pro-
posed approach can be implemented in the industry on
an existing MPC installation by simply maximizing the
objective subject to the constraints of the controller. With
the proposed approach, MPC will work in either control
mode or testing mode (when the input is being designed).
While the main argument behind this approach is based on
MPC, one can easily use this approach on any controller.

Despite the clear advantages of the propose method there
are some challenges as well. This approach generates closed
loop data and therefore special closed loop identification
methods may be required to ensure unbiassed estimates.
This approach will not work on a controller with no input-
output constraints.
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Fig. 1. Comparison of the singular values - estimated
model (dash-dotted) with the true system (solid).

4. SIMULATION EXAMPLES

4.1 Example 1 - Ill Conditioned Process

The proposed approach is demonstrated here on a high
purity distillation column simulation. By its very nature,
high purity distillation columns tend to be ill-conditioned
from a systems point of view. As such, conventional
perturbation methods do not yield expected results for
model identification purposes. Moving the process inputs
independently leads to inaccurate identification of the
weak gain directions - Cooley and Lee (2001); Koung and
MacGregor (1994). To design optimal perturbation for
these types of systems one has to adopt one of the following
approaches: (1) Use a priori knowledge to move inputs
in a correlated fashion, the degree of correlation being
dependent on the process model, which is often unknown
at the identification stage, and (2) conduct the experiment
under closed loop conditions and rely on the controller to
provide the necessary correlation to identify the strong and
weak gain directions accurately. The process model along
with its singular values is shown in Figure 1. This is a 2×2
process with the following transfer function,

G(s) =

[
0.878
τs+1 − 0.864

τs+1

1.0819
τs+1 − 1.0958

τs+1

]
(15)

where τ = 194, and

W =
[−0.6246 −0.7809
−0.7809 0.6246

]
V =

[−0.7066 0.7077
−0.7077 −0.7066

]
Σ =

1√
τ2ω2 + 1

[ 1.9721 0
0 0.0139 ]

cond(G) =
σ1(ω)

σ2(ω)
= 141.732

where W and V are the unitary matrices of singular value
decomposition, Σ is the matrix of singular values and ω
denotes the frequency. As can be seen from the singular
values, the system is poorly conditioned. Conventional
open loop step testing approaches can often lead to models
which estimate only the strong gain direction. The input
space of an open loop PRBS type test is shown in Figure 2.
The receding horizon formulation was next used to carry
out a closed loop experiment for the system. The following
tuning parameters and constraints were used during the

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

y1

y 2

Fig. 2. Open loop excitation shown in the output space
(red straight lines denote the directions of the two
column vectors in V ).

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

y1

y
2

Fig. 3. Output space with the receding horizon approach
to experiment design (red straight lines denote the
directions of the two column vectors in V ).

experiment: P = M = 10, uL = −200, uH = 200,
yL = −2, yH = 2, Γ = −0.01I, Λ = −I. White noise of
variance 0.1 was added to each output with power of 0.1.
The data from the closed loop step test is shown in Figure
3. The data shows significant excitation along the weak
gain direction as opposed to the open loop experiment
in the Figure 2 where the strong direction was dominant.
The models estimated from the closed loop experiment are
compared in Figure 4.

It is even more instructive to look at the gains estimated
from the two different approaches and their inverse,

K =
[

0.8724 −0.8585
1.0751 −1.0890

]
K−1 =

[
40.20 −31.69
39.68 −32.20

]
K1 =

[
0.8253 −0.8114
1.0279 −1.0417

]
K−1

1 =
[

40.59 −31.62
40.05 −32.16

]
K2 =

[
0.6968 −0.7424
0.8940 −0.9269

]
K−1

2 =
[−38.10 −30.51
−36.75 28.35

]
where K is the gain of the true system, K1 is the gain es-
timated from the closed loop receding horizon experiment
data and K2 is the gain estimated from the open loop
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Fig. 4. Comparison of the estimated model with the true
system (green - model, blue - true system).

data. Note how different the inverse is for the open loop
based model from the true inverse. A controller based on
the second model can end up making moves in the wrong
direction. This is a direct result of not estimating both the
gain directions accurately. Inaccurate estimation of gain
directions can have significant impact on the controller
performance, especially for the optimization or linear pro-
gramming layer of the controller.

5. CONCLUSIONS

The proposed approach has many advantages: (1) ability
to handle constraints in a predictive way during the step
test, (2) ability to deal with ill-conditioned processes,
(3) ability to account for unmeasured disturbances and
mitigating their impact on constraint violations during the
step test and (4) ability to switch between control and step
testing merely by switching the objectives of the MPC.

On the other hand compared to traditional experiment
design approaches, it is not clear how the proposed method
will address excitation over different frequency ranges.
It is expected that the choice of the prediction horizon
will influence the frequency content of the implemented
signal. This is a topic that needs further research. One of
the advantages of a conventional step testing approach is
the transparency of the move plan and complete control
over the implemented move sequence. In the case of the
proposed approach, an automated move plan is generated,
the first move is implemented and the rest discarded. The
generated move plan is a function of the: (1) input/output
weightings, (2) input/output constraints, (3) prediction
horizon, (4) current model plant mismatch, and (5) unmea-
sured disturbances. More work is needed to establish the
relationships between these parameters and the calculated
move sequence.
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